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Abstract

Background: NADPH oxidase is implicated in neurotoxic microglial activation and the progressive nature of Alzheimer’s
Disease (AD). Here, we test the ability of two NADPH oxidase inhibitors, apocynin and dextromethorphan (DM), to reduce
learning deficits and neuropathology in transgenic mice overexpressing human amyloid precursor protein with the Swedish
and London mutations (hAPP(751)SL).

Methods: Four month old hAPP(751)SL mice were treated daily with saline, 15 mg/kg DM, 7.5 mg/kg DM, or 10 mg/kg
apocynin by gavage for four months.

Results: Only hAPP(751)SL mice treated with apocynin showed reduced plaque size and a reduction in the number of
cortical microglia, when compared to the saline treated group. Analysis of whole brain homogenates from all treatments
tested (saline, DM, and apocynin) demonstrated low levels of TNFa, protein nitration, lipid peroxidation, and NADPH oxidase
activation, indicating a low level of neuroinflammation and oxidative stress in hAPP(751)SL mice at 8 months of age that was
not significantly affected by any drug treatment. Despite in vitro analyses demonstrating that apocynin and DM ameliorate
Ab-induced extracellular superoxide production and neurotoxicity, both DM and apocynin failed to significantly affect
learning and memory tasks or synaptic density in hAPP(751)SL mice. To discern how apocynin was affecting plaque levels
(plaque load) and microglial number in vivo, in vitro analysis of microglia was performed, revealing no apocynin effects on
beta-amyloid (Ab) phagocytosis, microglial proliferation, or microglial survival.

Conclusions: Together, this study suggests that while hAPP(751)SL mice show increases in microglial number and plaque
load, they fail to exhibit elevated markers of neuroinflammation consistent with AD at 8 months of age, which may be a
limitation of this animal model. Despite absence of clear neuroinflammation, apocynin was still able to reduce both plaque
size and microglial number, suggesting that apocynin may have additional therapeutic effects independent of anti-
inflammatory characteristics.
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Introduction

Alzheimer’s disease (AD) is a devastating and progressive neuro-

degenerative disease that culminates in dementia, affecting over 5

million people in the United States alone. Current treatment is largely

unable to halt disease progression. The hallmark neuropathology of

AD consists of insoluble extracellular plaques containing b -amyloid

(Ab) and intraneuronal neurofibrillary tangles in the cortical region of

the brain. Microglia, the resident immune cells in the brain, have been

implicated in the progressive nature of numerous neurodegenerative

diseases, particularly AD [1]. However, traditional anti-inflammatory

therapies such as Non-steroidal Anti-inflammatory Drugs (NSAIDs)

have produced conflicting results [2], highlighting the need for new

and more specific anti-inflammatory targets. Here, we propose that

targeting NADPH oxidase and neurotoxic microglial activation may

be of significant therapeutic relevance for AD.

NADPH oxidase is an enzyme complex in phagocytes, such as

microglia, that is activated during host defense to catalyze the

production of superoxide from oxygen [3]. A variety of stimuli,

including bacteria components [4], inflammatory peptides [3], Ab
[5], and multiple other neurotoxins [6] activate microglial

NADPH oxidase, causing the production of neurotoxic reactive

oxygen species (ROS). In fact, NADPH oxidase is activated in the

brains of AD patients [7] and the catalytic subunit (gp91) is

upregulated in Parkinson’s disease (PD) [8], further implicating the

enzyme complex in neurodegenerative diseases.

The premise of deleterious microglial activation in AD has been

supported by analysis of post-mortem brains from AD patients

[9,10], where microglial activation occurred before neuropil

damage in the disease process [11], suggesting a causal role. The

Amyloid Hypothesis holds that Ab has a causative role in AD

pathology, which may occur through direct toxicity to neurons

[12,13] and microglia-mediated neurotoxicity [14,15]. In fact,

evidence shows that microglia cluster around senile plaques and

neurofibrillary tangles [10,16], become activated [17], and
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produce neurotoxic factors, including nitric oxide (NO) [18],

superoxide [15,19], and tumor necrosis factor alpha (TNFa) [20].

Several studies have demonstrated that Ab will both recruit and

activate microglia [16,17], further supporting a role for both Ab
and microglia in AD progression [21]. Interestingly, the receptor

complex necessary for microglia to recognize and phagocytize Ab
fibrils are also the same receptors responsible for Ab activation of

microglial NADPH oxidase and the production of superoxide

[22,23], indicating microglia themselves are a source of oxidative

stress [23]. Furthermore, microglial NADPH oxidase has also

been implicated as a critical component to neurotoxic reactive

microgliosis [24,25,26]. Reactive microgliosis refers to the toxic

microglial response to neuronal damage responsible for a chronic

cycle of neuroinflammation and neurotoxicity [27], a process

believed to underlie diverse neurodegenerative diseases [24,25,26].

Several compounds have demonstrated the ability to inhibit

microglial NADPH oxidase, including memantine [28,29], statins

[30], ibuprophin [5], dextromethorphan (DM) [31,32,33], and 49-

Hydroxy-39-methoxyacetophenone (apocynin) [34]. DM is a

noncompetitive N-methyl-d aspartate (NMDA) receptor agonist

that has been shown to have both anti-inflammatory [31] and

neuroprotective properties in models of Parkinson’s disease

[31,32,33], independent of the NMDA receptor and through

inhibition of microglial NADPH oxidase [35,36]. Apocynin was

originally isolated from the medicinal plant Picrorhiza kurroa, has

low toxicity, impairs the assembly of the NADPH oxidase complex

[37], and is neuroprotective against microglia-mediated neurotox-

icity in PD models [38]. While clearly successful in PD models

[31,32,33], until now the ability of DM and apocynin to offer in

vivo neuroprotection in AD models was unknown.

In the current study, we addressed whether chronic adminis-

tration of known NADPH oxidase inhibitors (apocynin and DM),

beginning at the time plaque deposition began to occur in

hAPP(751)SL mice, could prevent neuroinflammation, neuron

damage, and behavioral learning and memory deficits.

Materials and Methods

Reagents
Lipopolysaccharide (LPS; strain O111:B4) was purchased from

EMD Chemicals (Gibbstown, NJ). Cell culture reagents were

obtained from Invitrogen (Carlsbad, CA). HALT protease inhibitor

was obtained from Thermo Fisher Scientific (Rockford, IL).

Fluorescent Ab peptide was purchased from AnaSpec, Inc.

(Fremont, CA), and non-fluorescent Ab was purchased from

American Peptide Company (Sunnyvale, CA). Dextromethorphan,

apocynin, staurosporine, fMetLeuPhe and all other reagents were

purchased from Sigma Aldrich Chemical Co. (St. Louis, MO).

Animals
A total of 53 male transgenic hAPP(751)SL mice with a C57BL/

6xCBA background were used for the in vivo portion of this study.

The hAPP(751)SL mice over-express human APP(751) with the

London (V717I) and the Swedish (K670M/N671L) mutations

under the regulatory control of the murine-Thy-1 promoter, which

ensures high expression in brain neurons, with little expression in

the periphery. Due to the London mutation, high levels of b-

amyloid 1–42 are expressed all over the brain, particularly in the

cortex and hippocampus. The hAPP(751)SL mice develop plaques

consisting of amyloid depositions starting at 3 to 4 months, where

deposits begin to accumulate in the hippocampus by 7 months.

The hAPP(751)SL mice also show neuronal damage with

increasing age, particularly at 14 months [39]. The hAPP(751)SL

mice fail to show motor deficits, but present profound deficits for

tests of cognition, including the Morris Water Maze and object

recognition tests [40]. The hAPP(751)SL mice were purchased

from, housed at, and treatment procedures were completed at

JSW Life Sciences (Grambach, Austria).

For in vitro studies with primary microglial cultures, timed-

pregnant Fisher 344 rats were purchased from Charles River

Laboratories (Raleigh, NC). All animals were housed under a

constant 12 hour light and dark cycle, and food and water were

available ad libitum. All experiments were approved by the Virginia

Commonwealth University Animal Care and Use Committee

(AM10124) and conducted in strict accordance with guidelines set

forth by the National Institutes of Health.

Animal studies-treatment
The hAPP(751)SL mice were randomly assigned to one of 4

treatment groups: vehicle, dextromethorphan (DM) 15 mg/kg,

DM 7.5 mg/kg, or apocynin 10 mg/kg. Starting at 4 months of

age (62 weeks), animals were either treated with saline (vehicle,

n = 14), DM 15 mg/kg (n = 13), DM 7.5 mg/kg (n = 12), or

apocynin 10 mg (n = 14) by oral gavage daily for 4 months.

Morris Water Maze (MWM)
At the end of the 4 month treatment period, mice were trained

in the MWM. The MWM tests took place in a black circular pool

with a diameter of 100 cm filled with water and divided into four

virtual quadrants. A transparent platform (diameter of 8 cm)

was placed in the southwest quadrant of the pool. The walls

surrounding the pool were marked with bold geometric symbols

for spatial orientation. During behavioral testing, mice were

placed in the pool and allowed to find the hidden platform. If

the mouse was unable to locate the platform, the investigator

guided the mouse. After each trial, mice were allowed to rest on

the platform for 10–15 seconds and orient themselves. Mice

performed three swimming trials per day for four consecutive days.

During the trials, motion within the pool was detected with a

computerized tracking system. These data were used to quantify

swimming speed, escape latency (time, in seconds, for the mouse to

find the hidden platform and escape the water), pathway (length

traveled, in meters, before reaching the target), and abidance in

the target quadrant (measured in percentage of the total trial time).

Following the final trial on the fourth day, mice completed a

‘probe trial’ where the platform was removed and the number of

crossings over the former platform position and abidance in the

target quadrant were measured.

Tissue collection
Following behavioral testing, animals were sacrificed and brain

tissue was collected for further study. All mice were sedated using

Isofluran inhalation before tissue collection. Mice were transcar-

dially perfused with 0.9% saline and the brains were removed and

divided into the right and left hemisphere. The left hemisphere

was immediately processed for histology, while the right

hemisphere was frozen on dry ice and stored at 280uC until use.

TBARS assay
Lipid peroxidation in tissue samples was determined by the

thiobarbituric acid reactive substances (TBARS) assay. Brain tissue

was homogenized in 2.5% SDS with 5 mM butylated hydro-

xytoluene. 400 mL of this homogenate was mixed with 375 mL of

20% acetic acid, pH 3.5, and 225 mL of thiobarbituric acid

(1.33%). The resulting mixture was incubated for 1 hour at 95uC.

After incubation, 1 mL of 15:1 butanol:pyridine was added and

the mixture was centrifuged for 10 minutes at 4000 g. The amount
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of TBARS were determined by measuring the optical density of

the organic layer at 535 nm and comparing the absorbance to a

malondialdehyde (MDA) standard.

Cellular fractionation: membrane preparation
Membrane fractions from both cell culture and tissue were

isolated using differential centrifugation followed by lipid

extraction [41]. Frozen brain tissue was suspended in fraction-

ation buffer (FB; 20 mM HEPES, 250 mM sucrose, 1 mM

EDTA, 10 ul/mL HALT protease inhibitor, 10 mM DTT,

pH 7.5) and incubated for one minute at 37uC [42]. Brain

samples were homogenized with a Teflon pestle 15 times and the

resulting solution was centrifuged at 4uC, 600 g for 10 minutes.

Supernatant was removed and an additional 2.5 mL of FB was

added to the pellet. After resuspending the pellet, the samples

were spun again at 4uC, 600 g for 10 minutes. The resulting

supernatant was added to the first and centrifuged at 4uC,

15,000 g for 10 minutes. The supernatant from this spin was

then centrifuged at 4uC, 100,000 g for 1 hour. The resulting

pellet was solublized in 150 uL of 50 mM ammonium bicar-

bonate by vortexing. To this solution, 1 mL of 2:1 TFE:Chloro-

form (freshly prepared) was added. Samples were placed on ice

and vortexed for 1 minute every 10 minutes and then

centrifuged at 4uC, 16,000 g for 10 minutes. The bottom

chloroform layer (containing lipids) was removed, and the

remaining top layer and insoluble phase were evaporated at

37uC in a SpeedVac. The resulting pellet was suspended in

solublization buffer (SB; 8 M Urea, 25 mM TrisHCl, 2% SDS,

10 mM DTT, pH 7.5) and protein concentration was deter-

mined using the Coomassie Plus (Bradford) Protein Assay

(ThermoScientific; Rockford, IL). The resulting samples were

used to determine levels of NADPH oxidase activation by

western blot, measuring the amount of p67 that had translocated

to the membrane.

Protein isolation: whole brain homogenate
From tissue samples, protein was isolated by suspending frozen

tissue in 10 volumes of lysis buffer (Cytobuster Protein Extraction

Reagent; EMD Chemicals; Darmstadt, Germany) with 10 mL/mL

HALT protease inhibitor and 10 mL/mL EDTA. Samples were

homogenized using a motorized pellet mixer and then centrifuged

for 5 minutes at 5000 g. The protein concentration of the resulting

supernatant was determined using a BCA protein assay (Thermo-

Scientific; Rockford, IL).

Immunoblotting
Protein samples were resolved by SDS-PAGE on 10% gels. Protein

was then transferred to nitrocellulose membranes, blocked for 1 hour

in 5% milk, and incubated overnight at 4uC in primary antibody

(mouse anti-GAPDH, rabbit anti-p47-phox, or rabbit anti-p67-phox;

Millipore; Temecula, CA). Blots were then probed with horseradish

peroxidase-conjugated secondary antibodies and visualized using

enhanced chemiluminescence (GE Healthcare; Piscataway, NJ).

TNF a ELISA
The production and release of TNFa was measured using

100 mg/well of whole brain homogenate with a commercial

enzyme-linked immunosorbent assay (ELISA) kit from R&D

Systems (Minneapolis, MN), as described previously [43].

Nitrotyrosine ELISA
The amount of nitrated proteins was measured using 100 mg/

well of whole brain homogenate with a commercial enzyme-linked

immunosorbent assay (ELISA) kit from Millipore (Temecula, CA),

per the manufacturer protocol.

Histology
Tissue fixation and sectioning. One hemisphere from each

mouse brain was fixed by immersion in a solution of 4%

paraformaldehyde in PBS (pH 7.4; freshly prepared) at 4uC for

24 hours. After fixation, brains were transferred to a 15% sucrose/

PBS solution for 24 hours. Brains were then frozen in dry-ice

cooled Isopentane and stored at 280uC until use. Frozen brains

were sectioned into 15-10 mm thick sections per level (5 levels)

starting at the level of the total appearance of the dentate gyrus

and according to Paxinos and Franklin [44].

6E10 and ThioflavinS double staining. The presence of

amyloid depositions was visualized immunohistochemically using

an anti-b-amyloid antibody directed against amino acids 1–17 of

the human b-amyloid peptide (Signet Laboratories; Dedham, MA)

with a Cy3 secondary antibody (Jackson Laboratories; Bar

Harbor, ME). Additionally, tissue sections were stained with

ThioflavinS to recognize beta-sheet structures. Briefly, sections

were washed in H2O for 3 minutes and then placed in 1%

ThioflavinS for 7 minutes. Sections were then washed in 80%

ethanol and PBS before incubating in 1% hydrogen peroxide in

methanol at room temperature for 15 minutes. Sections were then

blocked using MOM-blocking reagent and MOM-diluent

according to the manufacturer’s protocol (MOM-Kit; Vector

Labs; Burlingame, CA). After blocking, samples were incubated

with 6E10 antibody (Signet Laboratories; Dedham, MA) for 30

minutes at room temperature, washed with PBS, and incubated in

10% non-immune goat normal serum for 60 minutes at room

temperature. Sections were then washed and incubated with Cy3

goat anti-mouse antibody (Jackson Laboratories; Bar Harbor, ME)

for 60 minutes in the dark at room temperature. Finally, the

sections were washed in PBS and H2O before adding coverslips.

Measurement of amyloid deposition and plaque load.

Measurement of 6E10 and ThioflavinS staining was done using

Image-Pro Plus software (MediaCybernetics). Briefly, an area

of interest (AOI) was measured encompassing both the hippo-

campus and cortex of each section. Within this AOI, stained

objects were detected that were over a threshold level of in-

tensity and a size of 8.75 mm2. A measurement of the area of

each object, sum of stained area, and the number of objects was

made in each AOI. Mean plaque size was calculated by dividing

the sum area of plaques by the total number of plaques. The

plaque area percentage was measured by dividing the sum area

of plaques by the region area and multiplying the result by 100.

CD11b and synaptophysin immunohistochemistry. To

determine microglial activation in brain slices, slices were stained

with CD11b antibody. Synaptic density was visualized by staining

with a synaptophysin antibody in separate brain slices. For both

antibodies, frozen brain sections were washed for 10 minutes in

PBS and then for 4 minutes in 1 mg/ml sodium-borohydrate in

PBS. Sections were then washed and treated with 1% hydrogen

peroxide in methanol at room temperature for 10 minutes. Non-

specific binding was then blocked with 10% horse serum for 30

minutes and MOM-diluent (Mom-Kit; Vector Labs; Burlingame,

CA) for 5 minutes. Sections were then incubated with anti-CD11b

antibody (Serotec; Raleigh, NC) or anti-synaptophysin antibody

(Thermo Fisher Scientific; Fremont, CA) for 1 hour at room

temperature. Samples were incubated with blocking reagent (10%

non-immuno goat-normal serum for CD11b and Vectastain Elite

ABC Kit (Vector Labs; Burlingame, CA) for synaptophysin) for 20

minutes and room temperature and then washed with PBS.

CD11b samples were then incubated with Cy 3 goat anti-rat
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antibody (Jackson Laboratories; Bar Harbor, ME), washed, and

then stained with DAPI and methanol (Sigma Aldrich Chemical

Co.; St. Louis, MO) for 15 minutes to stain cell nuclei. Sections

were washed in 80% ethanol followed by H2O before adding

coverslips. After primary antibody and blocking of synaptophysin-

stained samples, samples were washed with PBS and incubated for

30 minutes with Vectastain ABC Reagent (Vector Labs;

Burlingame, CA), washed, and developed for 18 minutes with

HistoGreen (Linaris; Bettingen, Germany). Tissues were then

washed in TBS and H2O and dehydrated with a graded alcohol

series and xylol before adding coverslips.

Measurement of microglia number in vivo
The number of microglia in each section was measured

similarly to the protocol for 6E10 and ThioflavinS staining, except

that the count only concentrated on CD11b staining that co-

stained with the nucleus of the cell. Sections were co-stained with

CD11b and DAPI, and cells were only counted in the AOI if their

nucleus was within the name 10 mm thick section.

Measurement of synaptic density in vivo
Synaptic density was also measured using Image-Pro Plus

software (MediaCybernetics). Synapse number was counted at

1000-fold magnification from three images per region (CA1, CA3,

and GDmb regions of the hippocampus). The total number of

synapses was divided by the measured area (mm2) and averaged

between the three images analyzed for each region.

Cortical neuron-glia cultures
Rat cortical neuron-glia cultures were prepared using a

previously described protocol [15]. Briefly, midbrain tissues were

dissected from day 16/17 Fisher 344 rat embryos. Cells were

dissociated via gentle mechanical trituration in minimum essential

medium (MEM) and immediately seeded (56105/well) in poly D-

lysine (20 mg/ml) pre-coated 24-well plates. Cells were seeded in

maintenance media and exposed to the treatment media, as

described previously [15]. Three days after seeding, the cells were

replenished with 500 mL of fresh maintenance media. Cultures

were treated 7 days after seeding.

Microglia-enriched cultures
Primary enriched microglia cultures were prepared from the

whole brains of day-old Fisher 344 rat pups, using the procedure

described previously [45]. Briefly, after removing meninges and

blood vessels, the brain tissue was gently triturated and seeded

(56107) in 175 cm3 flasks. One week after seeding, the media was

replaced. Two weeks after seeding, when the cells had reached a

confluent monolayer of glial cells, microglia were shaken off and

re-plated at 16105 in a 96-well plate. Cells were treated 24 hr after

seeding the enriched microglia. Immunocytochemistry revealed

less than 1% astrocyte or neuron contamination.

Cell lines
The rat microglia HAPI cells were a generous gift from Dr

James R. Connor [46] and were maintained at 37uC in DMEM

supplemented with 10% FBS, 50 U/mL penicillin and 50 mg/mL

streptomycin in a humidified incubator with 5% CO2/95% air.

Beta-amyloid phagocytosis assay
The ability of cells to phagocytose b-amyloid peptide was

measured using a protocol modified from Floden and Combs [47].

Fluorescently labeled b-amyloid 1–42 was prepared by adding

50 mL of 1% sterile ammonium hydroxide to lyophilized peptide,

vortexing, adding 450 mL PBS, and incubating at 37uC for 1 week.

Non-labeled b-amyloid 1–42 was suspended in PBS to give a

1 mM concentration, vortexed, and incubated at 37uC for one

week. Aggregated b-amyloid (fluorescent or non-labeled) was

aliquoted and stored at 220uC until use. To measure phagocy-

tosis, primary microglia were seeded in a 96-well plate (0.56105

cells per well). 24 hours after seeding, cells were treated with

100 mM apocynin (solublized in DMSO) or control media for 30

minutes. Following pretreatment, cells were treated with control

media, 100 mM apocynin, 2 mM non-labeled, aggregated b-

amyloid 1–42, or apocynin and b-amyloid for 24 hours at 37uC.

After 24 hours, media and treatments were removed, and cells

were treated with control media, 100 mM apocynin, or cytocha-

lasin D (control) for 30 minutes. To this treatment was then added

100 uL of 0.1 mM aggregated fluorescent b-amyloid. Plates were

incubated for 6 hours to allow for phagocytosis of the fluorescent

peptide, and then plates were read at 480 nm excitation, 520 nm

emission.

Superoxide Assay
Extracellular superoxide (O2

2) production from microglia was

determined as reported previously [48] by measuring the

superoxide dismutase (SOD) inhibitable reduction of 2-(4-lodophe-

nyl)-3-(4-nitrophenyl)-5-(2,4,-disulfophenyl)-2H-tetrazolium, mono-

sodium salt (WST-1) [49,50,51]. The amount of SOD-inhibitable

superoxide was calculated and expressed as percent of vehicle-

treated control cultures.

Hydrogen peroxide assay
Levels of hydrogen peroxide production in cell culture were

determined as previously described, with slight modifications [52].

Briefly, cells were seeded in a 96-well plate (0.756105 cells per

well) and incubated for 24 hours at 37uC. Cells were then washed

once with warm HBSS, and then 50 mL of HBSS was added to

each well, followed by 50 mL of control (HBSS) or treatment. To

each well, 100 mL of assay mix (200 mM homovanillic acid, 10 U/

mL horseradish peroxidase, 2 mM HEPES, pH 7.5) with or

without catalase (10,000 U/mL), was added. Cells were incubated

for 3 hours at 37uC. Following incubation, 16 mL of stop solution

(0.1 M glycine, pH 10) was added to each well, and the plates

were read at 321 nm excitation, 421 nm emission. Results are

calculated as catalase-inhibitable florescence and reported as a

percent of control values.

Cell survival (MTT) assay
Cell survival was measured using thiazole blue (MTT) to

evaluate metabolic viability of cells [53]. Microglia enriched

cultures (16105 cells per well in a 96-well plate) were pretreated

with 100 mM apocynin or control media for 30 minutes, and then

treated with 100 ng/mL LPS, 2 mM staurosporine, 2 mM Ab,

DMSO, or control media for 24 hours. After the 24 hour

incubation, 5 mg/mL MTT was added to cells in a 96-well plate

for a final concentration of 0.1 mg/mL. Cells were then incubated

for 90 minutes at 37uC. MTT and culture media were removed

from the wells and 100 mL of DMSO was added to each well. The

plate was then placed on an orbital shaker for 30 minutes and the

absorbance was read at 550 nm.

Microglia Cell Number in vitro
Microglial cell number was measured by taking microglia cell

counts from mixed neuron-glia cultures treated for 24 hours with

10 ng/mL LPS or 2 mM Ab with or without 100 mM apocynin. After

treatment, cells were fixed in 3.7% formaldehyde, washed once with
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PBS, and treated with 1% hydrogen peroxide. Cells were then

washed three times with PBS and blocked for one hour in PBS with

1% bovine serum albumin, 0.4% Triton X-100 and 4% goat serum.

Plates were then incubated overnight at 4uC in a 1:1000 dilution of

anti-IBA-1 antibody (Wako Pure Chemical Industries, Ltd., Rich-

mond, VA) in Dako antibody diluent (DAKO, Capinteria, CA). After

incubation with primary antibody, cells were washed three times and

incubated with Vectastain ABC Kit reagents according to the

manufacturer’s instructions (Vector Laboratories, Burlingame, CA).

Images were taken on an AxioCam MRc5 imaging system (Carl Zeiss

MicroImaging, Thornwood, NY). Cell numbers were quantified by

counting nine representative areas per well in a 24 well plate at 100X

magnification (an average of numbers counted by at least 2

individuals is reported).

Statistical Analysis
Group differences in the behavioral tests were calculated using a

parametric ANOVA with a Bonferroni’s multiple comparison

post-hoc test or a non-parametric Kruskal Wallis ANOVA with a

Dunn’s multiple comparison test if Gaussian distribution was

missing. For assessments of learning deficits, a two-way ANOVA

was used followed by Bonferroni’s multiple comparison test. For in

vitro studies, significance was calculated using a one-way ANOVA

followed by a Bonferroni post-hoc test. The treatment groups are

expressed as the mean 6 SEM. A value of p,0.05 was considered

statistically significant.

Results

Apocynin reduces plaque size in the cortex and
hippocampus of hAPP(751)SL mice

Brain slices from each group (vehicle, 15 mg/kg DM, 7.5 mg/kg

DM, 10 mg/kg apocynin) were stained for two markers of Ab
deposition: 6E10 (measuring all Ab peptide) and thioflavin S

(measuring b-sheets of Ab). This allowed for the measurement of

plaque number, mean plaque size, and the percentage of area

occupied by plaques in both the cortex and hippocampus. Using

6E10 staining, both the cortex and hippocampus display reduced

plaque size in apocynin treated animals, compared to vehicle-treated

controls (p,0.05; Figure 1). DM, at either dose, did not produce any

significant reduction in plaque size. No significant differences were

observed in plaque number or percentage area in the hippocampus

Figure 1. Apocynin reduces plaque size in the cortex and hippocampus of hAPP(751)SL mice. Mice were treated daily with 15 mg/kg
dextromethorphan (DM), 7.5 mg/kg DM, or 10 mg/kg apocynin for four months. The size of b-amyloid plaques was measured for each group and
compared to control, vehicle-treated animals. Representative images show 6E10 staining of b-amyloid protein for each group in the cortex (A) and
hippocampus (B), respectively. Quantification of plaque size the cortex (C) and hippocampus (D) revealed that only apocynin significantly decreased
the size of plaques, compared to vehicle. DM, at either dose, did not alter plaque size in the cortex or the hippocampus. Plaque size was determined
as the absolute plaque area divided by the absolute plaque number. *p,0.05 vs. vehicle, 1-way ANOVA with Bonferroni post-hoc test.
doi:10.1371/journal.pone.0020153.g001
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or cortex with any of the treatments (data not shown). Additionally,

ThioflavinS staining of b-sheets revealed no differences between

vehicle, DM, and apocynin-treated hAPP(751)SL mice (data not

shown).

Apocynin reduces the number of microglia in the cortex
of hAPP(751)SL mice

The number of microglia in both the cortex and hippocampus

of hAPP(751)SL mice with DM or apocynin treatment was counted

using CD11b immunoreactivity. Decreases in the number of

microglia in the cortex was observed in mice treated with 10 mg/

kg apocynin (p,0.05; Figure 2). No changes were seen in the

hippocampus (Table S1).

Neither dextromethorphan nor apocynin improve
behavioral deficits in hAPP(751)SL mice

Behavioral deficits were measured in hAPP(751)SL mice by

performance in the Morris Water Maze (MWM) through 3 daily

trials over 4 consecutive days after 4 months of treatment with

vehicle (0.9% saline), 15 mg/kg DM, 7.5 mg/kg DM, or 10 mg/kg

apocynin. Overall performance in the MWM was determined by

escape latency (seconds) and swimming path (meters). A downward

trend was observed within groups on subsequent days (data not

shown), indicating that each treatment group was able to learn and

improve overall performance. No significant changes were seen in

escape latency or swimming path between groups on any of the days

(Table S2). A trend in improvement in the swimming path was

observed between vehicle and apocynin treated mice on day 2 of the

4 day test (ANOVA p = 0.084; t-test p = 0.024), although this was

not observed on any of the other days or other MWM tests. At the

end of the testing period (day 4), the hidden platform was removed

from the pool and measures of abidance in the target quadrant and

the number of target crossing were taken. No significant changes

were observed between groups for either measurement (Table S2).

Neither dextromethorphan nor apocynin alter synapse
density in the hippocampus of hAPP(751)SL mice

Synapse density was measured in the CA1, CA3, and GDmb

regions of the hippocampus with synaptophysin immunoreactivity.

Neither DM nor apocynin altered synapse density of any of the

regions examined (data not shown). This is consistent with the lack

of behavioral changes seen in hAPP(751)SL mice treated with

apocynin and DM.

NADPH oxidase activation, TNFa, lipid peroxidation, and
nitrotyrosine levels in hAPP(751)SL mouse brains are low,
and unaffected by treatment with dextromethorphan or
apocynin

The ability of DM and apocynin to reduce NADPH oxidase

activation in hAPP(751)SL mice was measured by western blot

analysis of translocation of the p67PHOX cytosolic protein to the

membrane, as previously reported [54]. Notably, there were low

levels of NADPH oxidase activation which was not modified by

either apocynin or DM (data not shown). Similarly the levels of

TNFa (as measured by ELISA) were not altered with DM or

apocynin treatment (data not shown), where levels of TNFa in

vehicle-treated controls were negligible (,100 pg/mg of total

protein), indicating low basal levels of TNFa in hAPP(751)SL mice

at 8 months of age. Levels of nitro-tyrosine were also measured via

ELISA, where again levels of nitrotyrosine in vehicle treated

controls (basal levels) were very low (1.32 mg/mL; Table S3),

further supporting an absence of oxidative stress.

Brain homogenates from each group (vehicle, 15 mg/kg DM,

7.5 mg/kg DM, 10 mg/kg apocynin) were used to measure the

levels of lipid peroxidation using a TBARS assay. Levels of

malondialdehyde (MDA) from each group were approximately

2.5 mM, suggesting low levels of oxidative stress. This is par-

ticularly interesting, as lipid peroxidation has previously been

reported to increase significantly in post-mortem analysis of

preclinical [55] and diagnosed AD [56,57] brain. No statistically

significant changes were observed in the levels between groups

(data not shown), indicating that the treatments (DM or apocynin)

to not alter levels of oxidative stress in hAPP(751)SL mice.

Thus, neuroinflammation and oxidative stress were not readily

apparent at 8 months of age in the hAPP(751)SL mice tested,

which may explain why the known NADPH oxidase inhibitors

failed to reduce these parameters. Together, these findings also

indicate that although apocynin inhibited microglial number and

plaque formation, it is very likely that it did so through

mechanisms that are independent of anti-inflammatory and

antioxidant properties. In addition, these findings also indicate

Figure 2. Apocynin reduces the number of microglia in the
cortex of hAPP(751)SL mice. Mice were treated daily with 15 mg/kg
dextromethorphan (DM), 7.5 mg/kg DM, or 10 mg/kg apocynin for four
months. The number of microglia was then counted for each group by
staining with anti-CD11b antibody and each treatment group was
compared to control. CD11b-stained microglia were only counted if they
corresponded to a DAPI stained nuclei (data not shown). Representative
images from each group of the stained microglia are shown in panel (A).
Apocynin reduced the number of microglia in the cortex of hAPP(751)SL

mice, whereas neither dose of DM reduced microglia number (B).
*p,0.05 vs vehicle, 1-way ANOVA with Bonferroni post-hoc test.
doi:10.1371/journal.pone.0020153.g002
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that Ab plaque load, microglia number, and learning deficits

may occur independently of neuroinflammation and oxidative

stress.

Apocynin & dextromethorphan reduce Ab-induced
superoxide and are neuroprotective in vitro

To confirm that both apocynin and DM were capable of

inhibiting NADPH oxidase at all, we next tested their ability to

reduce the production of extracellular ROS and neurotoxicity in

response to Ab. Both apocynin and DM were able to reduce the

production of Ab-induced extracellular superoxide to nearly

control levels in primary microglia cultures (Figure 3) and

ameliorate Ab-induced neurotoxicity in cortical mixed-neuron-

glia cultures (Figure 3). Thus, in the presence of microglial

NADPH oxidase activation in vitro, both compounds are able to

reduce extracellular ROS and cellular damage. These findings

further support that the inability of either DM or apocynin to

reduce measures of oxidative stress and synaptic density may have

been due to a lack of activation of NADPH oxidase and

neuroinflammation in hAPP(751)SL mice at 8 months.

Apocynin reduces H2O2, but does not reverse Ab-
induced decreases in phagocytosis in vitro

We confirmed that apocynin was working as predicted by

demonstrating that 30 minute pretreatment with apocynin will

attenuate LPS-induced H2O2 production (Figure 4). To test a

possible mechanism for the in vivo observation of decreased plaque

size with apocynin treatment, the capability of microglial to

phagocytize fluorescently labeled Ab was tested in microglial-

enriched primary cell cultures. Pre-treatment of cells with 2 mM

Ab for 24 hours prior to the addition of the fluorescent Ab
significantly reduces the phagocytosis capacity of microglia by

41% (p,0.05) (Figure 4). Co-treatment with 100 mM apocynin did

not reverse the Ab-induced decreases in fluorescent Ab phagocy-

tosis (Figure 4), supporting that superoxide and reactive oxygen

Figure 3. Apocynin reduces NADPH oxidase activation and is
neuroprotective in vitro. (A) Enriched microglia cultures were treated
with media alone (Control), apocynin (10 mM), Dextromethorphan (DM,
10 mM), Ab (2 mM), Apocynin + Ab, and DM + Ab. The production of
extracellular superoxide was measured by the superoxide dismutase
(SOD)-inhibitable reduction of tetrazolium salt, WST-1 at 30 minutes
post-treatment. Results are mean 6 SEM. Data are from four separate
experiments. *p,0.05, compared with control cultures. (B) Apocynin
and DM protect against Ab-induced toxicity in cortical neuron-glia
cultures.) Cortical neuron-glia cultures were treated with media alone
(Control), Apocynin (10 mM), Dextromethorphan (DM, 10 mM), Ab
(2 mM), Apocynin + Ab, and DM + Ab. Toxicity was assessed by MTT 7
days later. Graphs show the results expressed as percentage of the
control cultures and are the mean 6 SEM from three independent
experiments in triplicate. * p,0.05, control compared to treatment.
doi:10.1371/journal.pone.0020153.g003

Figure 4. Apocynin regulates microglial H2O2 production, but
not Ab phagocytosis. (A) Apocynin attenuates LPS-induced hydrogen
peroxide (H2O2), as predicted. Microglia-enriched cultures were treated
with Hank’s balanced salt solution (HBSS), or HBSS with LPS (10 ng/mL),
apocynin (100 mM), or the combination of apocynin (100 mM) and LPS
for 3 hours. The level of H2O2 was then measured in each group and
compared to control levels. Apocynin does significantly reduce LPS-
induced increases in H2O2, returning levels to control values. *p,0.05
vs. control; #p,0.05 vs. LPS, 1-way ANOVA with Bonferroni post-hoc
test. (B) Pre-treatment with 2 mM Ab significantly reduces phagocytosis
of fluorescent Ab, and apocynin does not act to reverse this decrease.
Microglia-enriched cultures were treated with control media, or media
with b-amyloid (Ab; 2 mM), apocynin (100 mM), or the combination of
apocynin (100 mM) and Ab (2 mM) for 24 hours. Fluorescently labeled
Ab (final concentration 0.1 mM) was then added to each well, and
incubated with the cells for 6 hours to allow for phagocytosis of the
fluorescent protein. The amount of phagocytosis of fluorescent Ab was
measured for each group and compared to control levels. *p,0.05 vs
control, 1-way ANOVA with Bonferroni post-hoc test.
doi:10.1371/journal.pone.0020153.g004
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species (e.g. ROS) do not mediate the Ab-induced loss of

phagocytic function. Thus, while loss of microglial phagocytic

function has been implicated as a key component to the

development of plaques and AD progression [58,59], apocynin

failed to ameliorate this response in vitro, indicating it is an

unlikely mechanism in the in vivo effects on plaque size.

Apocynin attenuates LPS-induced increases in cytokine
production in vitro

We then focused in vitro analyses specifically on apocynin, which

reduced both plaque size and microglial number in vivo. Specifically,

we next addressed whether apocynin was able to ameliorate a

generalized pro-inflammatory response from microglia. The pro-

inflammatory cytokine response of primary microglia-enriched

cultures was tested by measuring levels of TNFa following treatment

with 10 ng/mL LPS and/or 100 mM apocynin. LPS significantly

increased levels of TNFa at 24 hours after treatment (to 2907 pg/

mL), and apocynin was able to significantly reduce this response

(reduced to 1952 pg/mL), although levels did not return to that of

control (4 pg/mL) (Figure 5) (p,0.05). These data confirm that if

TNFa levels are elevated, in the very least, apocynin is able to

reduce them in vitro.

Apocynin does not inhibit apoptotic or inflammation-
induced cell death in microglia in vitro

We also considered that the reduction of microglial cell number

in the brains of hAPP(751)SL mice could be a result of increases

microglial cell death or a reduction in proliferation. To test

microglial cell survival in response to a number of toxic stimuli,

and the effect that apocynin has on this response, primary

microglia-enriched cultures were treated with 2 mM Ab, 1000 ng/

mL LPS (to cause inflammation-induced cell death), or 2 mM

staurosporine (to induce apoptotic cell death) in the presence and

absence of 100 mM apocynin. Neither Ab, apocynin, nor the

Figure 5. Apocynin ameliorates LPS-induced TNFa production, but has no effect on microglial cell death or cell number in vitro. (A)
Microglia-enriched cultures were treated with control media, lip polysaccharide (LPS; 10 ng/mL), and/or Apocynin (100 mM) for 24 hours. Tumor
necrosis factor alpha (TNFa) levels in the supernatant were measured via ELISA. LPS (10 ng/mL) significantly increased levels of TNFa and pre-
treatment with 100 mM Apocynin significantly reduced the amount of TNFa released by microglia. *p,0.05 vs. control; #p,0.05 vs. LPS, 1-way
ANOVA with Bonferroni post-hoc test. (B) Apocynin does not protect against inflammation-induced cell death. Microglia-enriched cultures were
treated with control media, 1000 ng/mL LPS, 100 mM Apocynin, or LPS and apocynin for 24 hours. After incubation, cell survival was measured with
the MTT assay. 100 ng/mL LPS significantly reduced microglial cell survival (through inflammation-induced cell death), which is not rescued by
apocynin). (C) Microglia-enriched cultures were treated with control media, 2 mM staurosporine (SS), 100 mM Apocynin, or SS and apocynin for
24 hours. After incubation, cell survival was measured with the MTT assay. Data show that 2 mM SS significantly reduces microglial cell survival
(through apoptosis), and is not reversed by the addition of apocynin. *p,0.05 vs control,1-way ANOVA with Bonferroni post-hoc test. (D) Apocynin
does not alter Ab or LPS-induced increases in microglia number in vitro. Mixed neuron-glia cultures were treated with 2 mM Ab, 10 ng/mL LPS and/or
100 mM apocynin for 24 hours. Cultures were then fixed and stained with IBA-1 antibody for microglia. The number of microglia was then counted in
9 representative areas per well. The number of microglia was significantly increased in cultures treated with LPS (196% of control) and Ab (186% of
control). Apocynin treatment did not prevent the increase in cell count caused by LPS or Ab. Apocynin alone caused no significant change in cell
count. *p,0.05 vs control, 1-way ANOVA with Bonferroni post-hoc test.
doi:10.1371/journal.pone.0020153.g005
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combination reduced cell survival in vitro (data not shown). Both

LPS (Figure 5) and staurosporine (Figure 5) significantly reduced

cell survival with 24 hours of treatment, but apocynin is not

capable of preventing either inflammation-induced or apoptotic

cell death (p,0.05) (Figure 5).

Apocynin does not alter Ab or LPS-induced increases in
microglia number in vitro

To look at the effect of Ab and/or apocynin on microglial cell

proliferation (to possibly account for the reduction in microglial

number observed in vivo), mixed neuron-glia cultures were treated

for 24 hours with 2 uM Ab, 10 ng/mL LPS and/or 100 mM

apocynin and microglia were stained with IBA-1 antibody, and

counted. Both LPS and Ab significantly increased the number of

microglia in the mixed neuron-glia culture (196% and 186% of

control, respectively; p,0.05) (Figure 5). Apocynin, however, had

no significant effect on the number of IBA-1 stained microglia in

LPS or Ab-treated mixed neuron-glia cultures.

Discussion

Accumulating evidence indicates that the ideal therapeutic

window for anti-inflammatory treatment targeting neurotoxic

microglial activation may be early in the neurodegenerative

process [26], highlighting a role for prevention. Microglial

NADPH oxidase has been implicated in the progressive nature

of AD through the chronic production of ROS in response to Ab
and/or neuron damage and the amplification of pro-inflammatory

factors, such as TNFa. Here, we used an in vivo/in vitro approach to

test the hypothesis that inhibition of NADPH oxidase reduces

microglia-mediated neuropathology (neuroinflammation, oxida-

tive stress, and neuron damage) and behavioral symptoms

(learning and memory deficits) associated with AD. Specifically,

using the hAPP(751)SL transgenic mouse model of AD, the

ability of chronic administration (4 month) of two NADPH

oxidase inhibitors (apocynin and DM) to prevent toxic microg-

lial activation, reduce plaque size, preserve neuron function, and

attenuate cumulative learning and memory deficits was tested.

Importantly, this study also addressed the utility of the hA-

PP(751)SL transgenic mouse model for testing anti-inflammatory

compounds. The hAPP(751)SL mice over-express human APP Swiss

and London mutations, with elevated expression in neurons

throughout the brain, pronounced expression in the hippocampus,

and little expression the periphery [60,61,62]. Amyloid depositions

occur as plaques and begin at 3 to 4 months in hAPP(751)SL mice,

with accumulation in the hippocampus commencing at 7 months

[60,61,62]. Using this defined window of plaque deposition, we

sought to prevent neuropathology and behavioral deficits by

administering the drugs early, from 4–8 months of age, before

significant damage had occurred. Despite the high level of Ab,

accumulation of Ab protein deposits, and behavioral deficits

associated with this model [60,61,62], we found that at 8 months

hAPP(751)SL mice showed little evidence of neuroinflammation and

oxidative stress in saline control animals, as TNFa protein, lipid

peroxidation, protein nitration, and NADPH oxidase activation

were low, making reduction by any inhibitors improbable. We were

intrigued by these findings, as there is a well established link between

Ab and neuroinflammation/oxidative stress [19]. Further, post-

mortem analysis of AD brains reveal microglia clustered around

plaques combined with high levels of oxidative stress and

neuroinflammation [63,64], including activation of NADPH oxidase

[1]. However, recent reports reveal distinct differences in murine AD

models when compared to the human disease that are consistent

with our findings. For example, the activation of complement, which

is absent in mouse models and present in human disease, has been

strongly implicated in the cross-species difference in neuroinflamma-

tion [65]. Yet, recent reports employing a slightly different murine

model, aged (14 month) R1.40 mice, show that NADPH oxidase is

activated in these aged mice and that this response can be modified

by ibuprophin [5]. While this study reported significant effects on

plaque load, microglial activation, and indicators of oxidative stress

that were modified by ibuprophin [5], the effect on cytokines, neuron

damage, and behavioral deficits were not discussed. Thus, it remains

possible that with significant aging (perhaps at 14 months) there

would be more pronounced evidence of NADPH oxidase activation

and neuroinflammation in the hAPP(751)SL model also.

However, despite the lack of evidence for NADPH oxidase-

induced pathology in vivo and the consequent inability of either

compound tested to regulate the enzyme complex’s low function in

hAPP(751)SL mice, apocynin (and not DM) treatment reduced

microglial number (Figure 2) and Ab plaque size (Figure 1) in vivo.

While in vitro analysis employed the use of immature cells and cell

lines, the data revealed that apocynin had no effect on microglia

cell death (Figure 5), nor microglial increases in neuron-glial

cultures treated with LPS or Ab (Figure 5). Together, these results

suggest that the reduction of microglia number in vivo may not be

due to direct effects of apocynin on microglial number, but may

instead occur through effects on the deposition, such as APP

processing/amyloidgenesis, Ab aggregation, Ab transport, or

degradation of Ab. Rather, we speculate that perhaps the

reduction in microglial number by apocynin may be driven by

the reduced plaque size.

The reduction in cortex and hippocampus plaque size conferred

by apocynin could be the consequence of a number of processes,

including plaque phagocytosis, deposition, degradation, or APP

processing and transport. As loss of microglial phagocytic function

has been implicated as a key component to the development of

plaques and AD progression [58,59], we next tested the ability of

apocynin to regulate Ab fibril phagocytosis. Our results indicate

that treatment of primary microglia cultures with high doses

(2 mM) of unlabeled, fibrilized Ab for 24 hours reduced the ability

of microglia to phagocytize fluorescent Ab after the unlabeled

ligand was washed away, supporting that high levels of Ab may

reduce microglial phagocytosis. However, our data also indicate

that apocynin does not modify Ab phagocytosis in any of the

conditions tested. Therefore, the reduction in plaque size observed

in hAPP(751)SL mice with apocynin treatment are independent

the microglial functions tested here.

Another interesting finding emphasized by this work is the

disconnect between plaque size and memory deficits in the

hAPP(751)SL mice. While apocynin was able to reduce plaque size

(Figure 1) and microglial number (Figure 2) in vivo, there were no

significant effects on behavior or synaptic density (synaptophysin

staining). This was unexpected, as apocynin has been shown to

protect against behavioral deficits linked to chronic brain hypoxia

[66] and presumably the behavior loss in hAPP(751)SL mice is due

to Ab deposition. As neuronal damage and behavioral deficits in

the hAPP(751)SL model peak around 14 months of age, aging may

again be necessary to acquire more AD-relevant pathology for this

model. Alternatively, it is also possible that a reduction of greater

than 50% of the plaque size is necessary to impact synaptic

plasticity and behavior.

The in vitro component of this study demonstrated that both

DM and apocynin attenuate Ab-induced extracellular superox-

ide (O2
N-) production in primary microglia cultures (Figure 3)

and protect against Ab-induced toxicity in cortical mixed

neuron-glia cultures (Figure 3), as expected. In addition, further

in vitro analysis with apocynin including several functional
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positive controls revealed that apocynin reduced H2O2 produc-

tion (Figure 4) and LPS-induced cytokine production (Figure 5),

demonstrating its established anti-inflammatory properties as

expected. Furthermore, apocynin and associated metabolites

readily reach the brain, where they have demonstrated

properties such as NADPH oxidase inhibition, neuroprotection,

and anti-inflammatory properties in other CNS disease models,

such as hypoxia [66]. This further supports the premise that

NADPH oxidase activation was not present in hAPP(751)SL

mice at this time.

In summary, apocynin treatment for 4 months in hAPP(751)SL

mice reduced plaque size and microglial number, resulting in

brains that resembled younger mice. In vitro analysis confirmed

that apocynin reduced Ab toxicity in mixed cortical neuron-glia

cultures, and H2O2, O2
N-, and TNFa production in primary

microglia cultures. However, in vivo analysis revealed no effects for

apocynin on synaptophysin (indicative of subleathal neuronal

damage) or behavioral measures of learning and memory. In fact,

upon further analysis, it was apparent that 8 month old

hAPP(751)SL mice presented low levels of neuroinflammation

and oxidative stress, which not surprisingly, was unaffected by

apocynin. Additional in vitro study indicated that apocynin failed to

affect microglial death, proliferation, and phagocytosis, indicating

that the microglia number and plaque size reduction in vivo likely

occur through unknown mechanisms that are independent of

apocynin’s anti-inflammatory characteristics. Together, these

findings suggest that apocynin is a unique NADPH oxidase

inhibitor with anti-b amyloid traits, supporting its possible use as a

novel and preventative therapeutic compound for early AD.

Supporting Information

Table S1 Microglial number in the hippocampus of
hAPP(751)SL mice. The number of microglia was measured in

hAPP(751)SL mice (Vehicle, DM 15 mg/kg, DM 7.5 mg/kg, and

Apocynin 10 mg/kg) following 4 months of treatment. While the

total number of microglia decreased significantly in the cortex

(Figure 2), the number in the hippocampus showed only a trend

toward a decrease in the numbers, as seen by staining with anti-

CD11b antibody (statistical significance was tested with 1-way

ANOVA with Bonferroni post-hoc test).

(DOC)

Table S2 Behavioral measures in hAPP(751)SL mice.
hAPP(751)SL mice (Vehicle, DM 15 mg/kg, DM 7.5 mg/kg, and

Apocynin 10 mg/kg) were behaviorally tested using the Morris

Water Maze. Measures of time learning (escape latency), length

learning (length of swimming path), abidance in the target

quadrant (% of total time), and number of target crossings were

made for each animal, and values were compared to vehicle

treated animals and tested for statistical significance (1-way

ANOVA with Bonferroni post-hoc test, where applicable). No

statistically significant changes were observed for any of the

measurements, although trends toward improvement were seen in

some tests. * p-value vs. vehicle is displayed when there was a

trend (p,0.1) in ANOVA data.’’ Where trends were seen

(ANOVA p,0.1) the p-value versus control is shown.

(DOC)

Table S3 The effect of apocynin on levels of nitro-
tyrosine in hAPP(751)SL mice. Following 4 months of

treatment with Vehicle, DM 15 mg/kg, DM 7.5 mg/kg, or

Apocynin 10 mg/kg, total protein was isolated from the brains of

hAPP mice and the levels of nitrotyrosine were determined by

ELISA (Millipore). No significant changes were observed in the

levels of nitro-tyrosine between vehicle and treated mice.

However, it is of note that the levels are very low, even in the

vehicle treated hAPP transgenic mice (statistical significance was

tested with 1-way ANOVA).

(DOC)
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