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Abstract

Signaling via the adapter protein, MyD88, is important in the host defense against Cryptococcus neoformans infection. While
certain Toll-like receptors (TLRs) can enhance the clearance of Cryptococcus, the contributions of MyD88-dependent, TLR-
independent pathways have not been fully investigated. We examined the roles of IL-1R and IL-18R in vivo by challenging
C57BL/6 mice with a lethal strain of Cryptococcus. We found that the absence of IL-18R, but not IL-1R, causes a shift in the
survival curve following pulmonary delivery of a virulent strain of C. neoformans (H99). Specifically, IL-18R-deficient mice
have significantly shorter median survival times compared to wild-type mice following infection. Cytokine analysis of lung
homogenates revealed that deficiency of IL-IR, IL-18R, or MyD88 is associated with diminished lung levels of IL-1b. In order
to compare these findings with those related to TLR-deficiency, we studied the effects of TLR9-deficiency and found that
deficiency of TLR9 also affects the survival curve of mice following challenge with C. neoformans. Yet the lungs from infected
TLR9-deficient mice have robust levels of IL-1b. In summary, we found that multiple signaling components can contribute
the MyD88-dependent host responses to cryptococcal infection in vivo and each drives distinct pulmonary responses.
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Introduction

Cryptococcus neoformans is a fungal pathogen that causes life-

threatening disease preferentially in individuals with impaired

T cell function, particularly persons with AIDS [1]. The route of

infection is typically through inhalation into the lung. In most

patients, dissemination into the central nervous system is observed.

Globally, it is estimated that approximately one million people per

year acquire cryptococcal meningitis with over 600,000 attribut-

able deaths [2].

Investigations of the host responses to C. neoformans using murine

models of infection have broadened our understanding of the

signaling pathways involved in defense. Toll-like receptors (TLRs)

are innate immune receptors that are critical in the host defense

against many types of invading pathogens. Most TLRs utilize the

adaptor molecule MyD88 for signaling. Following activation via

TLRs and MyD88, innate immune cells produce cytokines and

effector molecules essential for the adaptive immune response. The

importance of MyD88 in host defense in cryptococcal infection

was demonstrated when MyD88-deficient mice exhibited de-

creased survival and increased fungal burden in the lungs

following fungal challenge [3,4]. In addition, a limited protective

role for TLR2, but none for TLR4, was found in these studies

[3,4]. Recent investigations have focused on the role of TLR9 in

cryptococcal infection. Namakura et al. found that TLR9-deficient

mice had an increased cryptococcal burden in lungs than wild-

type (WT) mice and established that following stimulation with

C. neoformans, bone marrow dendritic cells (BM-DC) from TLR9-

deficient mice produced lower amounts of IL-12p40 than those

from WT mice [5]. TLR9 has also been shown to contribute to

clearance of Cryptococcus from lungs through recruitment of effector

cells including macrophages and lymphocytes [6]. However, the

impact of TLR9 on survival during cryptococcosis has not been

described.

In addition to being utilized by the TLRs, the MyD88 adapter

molecule is required for the IL-1 and IL-18 signaling pathways

[7,8]. IL-1b and IL-18 are structurally related cytokines that are

important for the initiation of the inflammatory cascade. Both are

synthesized as pro-peptides that are cleaved by active caspase-1 for

cytokine maturation. While IL-18 has been reported to play a

protective role in models of Cryptococcus infection [9,10], the

contribution of the IL-18 receptor (IL-18R) itself has not been

specifically studied. Furthermore, published studies investigating

the contributions of TLRs and IL-18 in mice infected with

Cryptococcus use different fungal strains and outcome measures.

The goal of this study was to define the relative contributions of

the IL-18R and IL-1R signaling pathways in the pathogenesis of C.

neoformans infection in vivo.

Survival, fungal burden in lungs, brain, and spleen, and lung

histopathology were compared between Cryptococcus-infected IL-

1R-, IL-18R-, and MyD88-deficient mice and wild-type mice. We

also examined chemokine and cytokine levels in lungs from these

animals to gain insights into the pathway-specific induction. Finally,

we examined TLR9 knockout mice using this same infection model
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to define its specific contribution towards MyD88-dependent patho-

genesis in a unified manner.

Results

IL-18R and MyD88 both influence host survival to C.
neoformans infection

We infected mice with a dose (26104 colony forming units, or

CFU) of the highly virulent H99 strain of C. neoformans delivered by

the intranasal (i.n.) route and monitored mice for survival for 50

days. Mice from all groups displayed evidence of disease including

staggered gait, lethargy, diminished responsiveness, and bulging

necks. Many mice lost the ability to right themselves. Typically

10–20% of WT mice survived 50 days post fungal challenge, the

time at which the experiment was terminated. These surviving

mice did not display any evidence of disease on gross inspection of

lung and brain tissue.

IL-1R knockout mice did not exhibit any significant survival

differences compared to WT mice (Figure 1A). The median

survival time was 24 days for WT mice and 25 days for IL-1R

deficient mice. In contrast, at this same dose, IL-18R knockout

mice had a significant decrease in median survival time compared

to WT mice following infection with C. neoformans strain H99

(Figure 1B). The median survival time for IL-18R knockout mice

was 22 days compared to 25 days for WT mice (P,0.0001).

MyD88-deficient mice had a decrease in median survival time

compared to WT mice following challenge with a lethal dose of

Cryptococcus, which was consistent with previously reported

findings [3,4] (Figure 1C). Median survival for MyD88 knockout

mice was 21 days compared to 26 days for WT mice.

The fungal burden in lungs, brains, and spleens was
similar between WT and IL-1R, IL-18R, and MyD88
knockout mice

We next set up a study to assess for differences in histopathology,

fungal burden, and cytokine levels between WT and knockout

strains of mice. We elected to study organs at day 12 post-infection

because this preceded the earliest observed mortality in this

infection model, which was at day 14 post-infection in MyD88-

deficient mice. We collected lungs, spleens, and brains for CFU

quantification. Lungs were also analyzed for cytokines and for

histopathology.

At day 12 post-infection, the CFU burden was minimally elevated

in the lung homogenates from IL-1R knockout mice compared to

WT mice (Figure 2A). This was observed despite the fact that the

absence of IL-1R neither enhanced nor impaired survival following

challenge with H99 at this dose. Cryptococcal levels were

significantly elevated in the brains and spleens of IL-18R knockout

mice compared to WT mice (Figure 2A). Otherwise, no differences

were significant for WT versus knockout mouse CFU burdens.

Differential induction of IL-12p40 and IL-1b was observed
in lungs from IL-1R, IL-18R, and MyD88 knockout mice

We examined a total of 23 different cytokines and chemokines

from lung homogenates at day 12 following i.n. infection of mice

with H99 using a Bio-Rad Bio-Plex assay. Of the 23 cytokines and

chemokines on the panel, 20 were significantly elevated in WT

infected mice compared to WT uninfected mice (Table 1). On

comparative analysis between infected WT mouse lungs and

infected knockout mouse lungs, IL-1b levels were outstanding as

these were markedly elevated in WT lungs and considerably

diminished in IL-1R, IL-18R, and MyD88 knockout mice

(Figure 2B). The only other cytokine besides IL-1b that was

significantly diminished in lungs from all three knockout strains

was G-CSF (Figure 2B). In contrast to IL-1b, IL-1a was

significantly diminished only in the lungs from MyD88 knockout

mice compared to WT mice. IL-12p40 levels were significantly

diminished in IL-1R and IL-18R mouse lungs. Another notable

finding was for IL-13, which was increased in IL-18R knockout

lungs compared to WT lungs.

Histopathology showed minimal differences between
lungs of WT, IL-1R, IL-18R, and MyD88 knockout mice
infected with Cryptococcus

Lung sections from WT and knockout mice 12 days post infection

were evaluated for histopathological findings (Figure 3A). Individ-

ual and clusters of fungal microorganisms were seen in both

conducting airways and alveolar spaces in addition to interstitium.

However, fungal microorganisms were more abundant in the

alveolar spaces in proximity to the conducting airways. Associated

inflammatory cells were composed of both acute (neutrophils and

lesser number of eosinophils) and chronic inflammatory cells

(histiocytes, foamy macrophages, few multinucleated giant cells,

and lymphocytes). A significant increase in the number and size of

Figure 1. Survival of C57BL/6 wild-type, IL-18R knockout, IL-1R knockout, and MyD88 knockout mice following infection with C.
neoformans. Mice were infected i.n. with 26104 C. neoformans organisms and were monitored for signs of disease and euthanized when the signs of
disease were severe. (A) No difference in survival was observed following infection of wild-type (n = 24) and IL-1R knockout (n = 21) mice with C.
neoformans. Data are combined from two independent experiments, each with similar results. (B) The survival curves were significantly different
between IL-18R knockout mice (n = 17) and wild-type mice (n = 32), P,0.0001. The data are combined from three independent experiments, each of
which had similar results. (C) MyD88 knockout mice (n = 7) had a trend towards diminished survival compared to wild-type (n = 12), P = 0.058.
doi:10.1371/journal.pone.0026232.g001

MyD88-Dependent Receptors in Cryptococcosis
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lymphoid aggregates in the interstitium around bronchiolovascular

bundles was noted in lung sections (see arrows in Figure 3A).

Scattered foci of dense neutrophilic infiltrates were noted in areas

containing dense populations of fungal microorganisms in all

groups. No goblet cell hyperplasia was seen in the conducting

airways.

Lung sections from WT and knockout mice 12 days post

infection were scored for fungal burden, colony size and alveolar

morphology, extent of inflammation, and the degree of bronchus-

associated lymphoid tissue expansion (BALT) expansion, as

previously described [3]. Scoring was performed in a blinded

fashion by a pathologist on a scale from 0 to 3, with 0 being

minimal, 1 mild, 2 moderate, and 3 severe. With the exception of

BALT expansion, which was significantly diminished for MyD88

knockout mice, WT and knockout mice had similar pathologic

findings including the extent and severity of inflammation

(Figure 3B).

Evaluation of TLR9 deficient mice following cryptococcal
infection

In addition to IL-1R and IL-18R, TLR9 uses the adaptor

MyD88 for its signaling. Because TLR9 reportedly plays a

protective role in cryptococcal infection [5,6], we wanted to

confirm its protective role in our infection model. We infected

TLR9 knockout mice with 26104 CFU of H99 by i.n. inoculation

and monitored for survival. TLR9-deficient mice did indeed

exhibit significant differences in survival curves compared to WT

mice (Figure 4). In two independent combined experiments,

median survival was 26 days for WT mice versus 22 days for

TLR9 knockout mice. In two additional independent experiments,

Figure 2. Mice were infected i.n. with 26104 C. neoformans organisms and euthanized 12 days post-infection. (A) Fungal burden of
C57BL/6 wild-type (n = 10), IL-1R knockout (n = 5), IL-18R knockout (n = 6), and MyD88 knockout (n = 6) mice after infection with C. neoformans.
Numbers of CFU in the lungs, brain, and spleen were determined, with results expressed as log10 CFU per gram of tissue and as individual data points
for each animal. Bars represent the mean values and the dotted line indicates the lower limit of detection. *, P,0.05 and **, P,0.01 compared with
wild-type mice. (B) Cytokine levels in the lungs of wild-type and knockout mice after infection with C. neoformans. Cytokines were measured by Bio-
Plex assay. Lung cytokine levels were also determined in uninfected mice to establish baseline levels. Data are expressed as picograms of cytokine per
gram of lung. Results are means 6 SEM. *, P,0.05, **, P,0.01, and ***, P,0.001 compared with wild-type infected mice.
doi:10.1371/journal.pone.0026232.g002

MyD88-Dependent Receptors in Cryptococcosis
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WT (n = 12) and TLR9 knockout mice (n = 12) were infected with

the same dose of H99. Mice were sacrificed at day 12 post

infection and organs processed for assessment of fungal burden,

cytokines, and histopathology. Overall, no significant differences

were observed for CFU values for lung, brains, or spleens in WT

versus TLR9 knockout animals (Figure 5A). Of the 23 cytokines

and chemokines detected on the Bio-Plex panel, eight specific

cytokines and chemokines were elevated in lungs from infected

animals, but no significant differences were observed for WT

versus TLR9 knockout animals (see Table 2). Finally, no global

differences in lung pathology were observed between lungs of WT

and TLR9 knockout mice at day 12 following infection with H99

when the same scoring criteria were applied as for the previous

experiment (Figure 6A and B).

Discussion

Previous studies have shown that MyD88 and certain TLRs

contribute to host protective responses in cryptococcal infection.

MyD88 knockout mice had significantly reduced survival

compared with WT C57BL/6 mice after pulmonary and

intravenous challenge with C. neoformans and TLR2 knockout

mice died significantly sooner following pulmonary challenge but

not intravenous challenge [3,4]. TLR4 has been shown to

recognize cryptococcal capsular polysaccharide [11]. However,

no strong phenotype for TLR4 has been observed in survival

models using Cryptococcus [3,4,12]. Furthermore, the impact of

TLR9 has not been demonstrated in survival studies but has been

shown to influence clearance of the organism from lungs [5,6].

Here we sought to establish the contributions of many of the

receptors that utilize MyD88-dependent signaling pathways. We

elected to intranasally inoculate mice with a highly virulent strain

of Cryptococcus, H99, at a dose that kills WT C57BL/6 mice at

an average time of 25–26 days. We confirmed that MyD88

knockout mice have reduced median survival time compared to

WT mice and demonstrated that TLR9 knockout mice also have a

significantly reduced median survival time compared to WT mice

using this model. However, we found that neither TLR2 knockout

nor TLR2/TLR4 double knockout mice exhibited differences

in survival compared to WT mice using this infection model

(unpublished data).

In our studies with IL-18R and IL-1R knockout mice, several

observations were notable. First, IL-18R contributes to the

protective response driven by MyD88, as demonstrated by the

decreased median survival time in IL-18R knockout mice

compared to WT mice. This corroborates with previously reported

data demonstrating a protective role for IL-18 [9]. Secondly, IL-

1R does not contribute to the overall survival in this infection

model. Third, very high levels of IL-1b are induced in lungs of

WT mice infected with H99 but IL-1b levels were markedly

reduced in IL-1R, IL-18R, and MyD88 knockout mouse lungs,

suggesting that expression of each of these molecules contributes

substantially to IL-1b production. Nevertheless, diminished levels

of pulmonary IL-1b do not necessarily correlate with survival

outcomes, as evidenced by the similar survival curves for WT and

IL-1R knockout mice. Also, while TLR9 knockout mice had a

survival disadvantage, the levels of IL-1b were equal to those of

WT mice.

Modestly diminished levels of IL-12p40 were observed in the

lungs from IL-1R and IL-18R knockout mice at day 12 post-

infection, suggesting that a reduced Th1 response contributed to

the decreased survival of these knockouts during infection. The

resolution of pulmonary C. neoformans infection in experimental

murine models has been associated with the induction of Th1-type
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cytokine responses [13]. The cytokine IL-12p40, which is a

subunit for both IL-12 and IL-23, plays a critical role in host

defense through the induction of IFNc and subsequent develop-

ment of Th1 cells [14]. In addition, IL-23 is important for the

promotion of IL-17 production and driving Th17 responses, which

participate in host immune responses following cryptococcal

infection [15,16,17]. A cooperative relationship between IL-18

and IL-12p40 has been described in Cryptococcus infection

[9,10,18], so the diminished levels of IL-12p40 in IL-18R

knockout mice are not surprising. Likewise, levels of the Th17

cytokine IL-17 were low but detectable in infected lungs at day 12.

There was a trend, albeit not significant, towards diminished IL-17

levels for both IL-1R-deficient and IL-18R-deficient infected mice

in comparison to wild-type infected mice (see Table 1). IL-17

might peak in lungs at times other than day 12 post-infection, so

the possibility exists that greater differences could be observed

between wild-type and knockout mice.

We also found that IL-18R deficient mouse lungs have

significantly elevated levels of IL-13 at day 12 following infection.

IL-13 is cytokine produced by activated CD4+ lymphocytes, so the

increase may reflect a shift towards a Th2 response, which has

been associated with increased mortality [19]. Other cytokines and

chemokines associated with Th2 responses (e.g., IL-4, IL-5, and

IL-10) did not differ between wild-type and knockout mouse lungs

at day 12 in the experiments described here. However, the levels of

these cytokines and chemokines were quite low and the possibility

that they might peak in the lungs at a time other than day 12 post-

infection cannot be excluded.

C. neoformans strain H99 is highly virulent in mouse models with

central nervous system dissemination observed relatively early

following pulmonary challenge. Perhaps because H99 is so virulent,

significant differences in survival between mouse strains challenged

with C. neoformans have been generally difficult to demonstrate. Giles

et al. investigated the role of surfactant protein A (SP-A), a putative

mediator of host defense against Cryptococcus [20]. While they

were able to demonstrate that SP-A binds to Cryptococcus, SP-A-

deficient and wild-type mice infected via intranasal inoculation with

C. neoformans H99 demonstrated no differences in lung CFU nor

overall susceptibility to infection. In a similar infection model,

McQuiston et al. assessed the role of sphingosine kinase 1 (SK1)

in the host response to Cryptococcus infection [21]. Following

intranasal challenge of C57BL/6 wild-type mice and SK1 knockout

mice with C. neoformans H99, no significant differences in either

survival or fungal burden in brain, liver, or spleen were observed

between the two groups. Finally, Zhang et al. studied the impact of

IL-4/IL-13 deletion on murine cryptococcosis [17]. They com-

pared wild-type Balb/C mice versus IL-4/IL-13 double knockout

mice challenged intratracheally with C. neoformans H99. While

fungal burden was significantly diminished in the lungs of knockout

mice, deletion of IL-4/IL-13 was insufficient to prevent CNS

dissemination and the overall survival of the knockout mice was not

statistically significant in comparison to wild-type mice. Given this

context, the survival differences described in our study, while not

dramatic, are nevertheless impressive.

The inflammatory response can be deleterious in cryptococco-

sis. Cryptococcosis is frequently associated with the immune

reconstitution inflammatory syndrome (IRIS) in patients with

AIDS on antiretroviral therapy [22]. In the murine infection

model used for our studies, considerable evidence of inflammation

was observed through lung histopathology and cytokine levels, but

enhanced or diminished inflammation did not appear to correlate

with survival with any of the knockout strains of mice tested. The

host inflammatory response may not directly correspond with a

significant decrease in survival. Survival might instead correlate

with dissemination outside the lung and the subsequent develop-

ment of meningoencephalitis.

One observation was the paucity of BALT in lungs from

MyD88 knockout mice infected with Cryptococcus. The presence

of BALT is indicative of an immune response in mice but is not

specific as it has been associated with either CD4 or CD8 cell

recruitment in rodent models of infection [23,24]. The significance

of this isolated finding in our study is unclear. In our previous

study, we did not observe any specific differences in inflammatory

responses between WT and MyD88-deficient mice infected with

C. neoformans. However, in that study, we used a different strain

(serotype A 145) and examined lungs at a different time point

following infection [3].

In our infection model, no single cytokine specifically correlated

with survival advantages or disadvantages. This emphasizes the

complexity of signaling, cytokine and chemokine production, and

host inflammatory cell recruitment and response during crypto-

coccal infection. The differential pattern of cytokine production in

WT versus knockout mouse lungs following cryptococcal infection

may be reflective of different types of cells that are recruited to the

lungs.

Figure 4. Survival of C57BL/6 wild-type and TLR9 knockout
mice following infection with C. neoformans. Mice were infected
i.n. with 26104 C. neoformans organisms and were monitored for signs
of disease and euthanized when the signs of disease were severe. TLR9
knockout (n = 11) mice had a significantly different survival curve
compared to wild-type mice (n = 22), P,0.01. Data are combined from
two independent experiments with similar results.
doi:10.1371/journal.pone.0026232.g004

Figure 3. Histopathological images of lungs of wild-type, IL-1R knockout, IL-18R knockout, and MyD88 knockout mice 12 days
following challenge with 26104 C. neoformans organisms i.n. (A) Histological samples were prepared as described in Methods. Images of H & E
stained slides were taken under the light microscope at 20X power objective. Moderate to severe BALT expansion is noted in the lung sections of
wild-type (n = 10) and IL-1R knockout mice (n = 5) compared to MyD88 knockout (n = 6) or IL-18R knockout mice (n = 6). The arrows point to expanded
BALT in the lung sections of wild-type and IL-1R knockout mice. (B) Histopathological assessment of lungs from wild-type and knockout mice after
infection. Sections were scored blind by a pathologist for the indicated observations on a scale from zero (none seen) to three (severe or maximal).
**, P,0.01 compared with wild-type infected mice.
doi:10.1371/journal.pone.0026232.g003
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Multiple factors impact survival following intranasal delivery

of this dose of H99, including a combination of central nervous

system disease and pulmonary disease. Our experimental findings

suggest that IL-18R and TLR9 significantly contribute to MyD88-

dependent host defense in cryptococcal infection. Further studies

on the processing of the active form of IL-18 during cryptococcal

activation are warranted.

Materials and Methods

Ethics statement
Experimental protocols involving animals were approved by the

University of Massachusetts Medical School Institutional Animal

Care and Use Committee. Mice were euthanized if they exhibited

severe clinical signs of disease including listlessness, hunched

posture, poor body condition, difficulty ambulating including

ataxia, rough hair coat, failure to groom, increased respiratory

rate, and difficulty breathing.

Mice
IL-1R knockout and IL-18R knockout mice on the C57BL/6

background were purchased from the Jackson Laboratory

(Bar Harbor, ME) and bred at the University of Massachusetts

Medical School. MyD88 knockout, TLR9 knockout, TLR2

knockout, and TLR2/TLR4 double knockout mice were obtained

as a gift from Dr S. Akira (Osaka University, Japan). All WT

control C57BL/6 mice were age-matched and were purchased

from Jackson Laboratory. Single nucleotide polymorphism-based

genome scanning analysis of all knockout strains confirmed that

the C57BL/6 background was $94% (Jackson Laboratory).

Mice were between 8 and 12 weeks old upon infection. Mice

were bred and housed in the animal facility at the University of

Massachusetts Medical School.

Inoculation of mice
C. neoformans strain H99 [25], obtained from J. Heitman (Duke

University Medical Center), was used in all experiments.

Pulmonary C. neoformans infections were initiated by intranasal

delivery as previously described (8, 9). Briefly, mice were

anesthetized with 2% isoflurane and then given a yeast inoculum

of 26104 colony forming units (CFU) of C. neoformans strain H99 in

30 ml of sterile PBS pipetted directly into the nares. The inocula

used were verified by quantitative culture on Sabouraud-dextrose

agar.

Preparation of mouse organs
In certain experiments, mice were sacrificed at day 12 post-

infection. Mice were fully anesthetized with isoflurane, then

exsanguinated by cardiac puncture. The lungs were removed and

the left lung was fixed in 10% buffered formaldehyde for 24 h. One

half of the right lung, the brain, and spleen were each homogenized

in 0.5 ml of sterile saline and aliquots were diluted and plated onto

Sabouraud-dextrose agar plates. The remaining half of the right

lung was stored at 280uC until cytokine analysis was performed.

Cytokines
Frozen lungs were thawed on ice and homogenized in 0.2 ml of

PBS. Homogenates were spun down at 20,000 g for 10 min at 4uC.

Supernatants from lung homogenates were analyzed using the Bio-

Plex system and a Luminex 100TM analyzer (Bio-Rad) according to the

Figure 5. Mice were infected i.n. with 2104 C. neoformans organisms and euthanized 12 days post-infection. (A) Fungal burden of
C57BL/6 wild-type (n = 12) and TLR9 knockout (n = 12) mice after infection with C. neoformans. The numbers of CFU in the lungs, brain, and spleen
were determined. Data are expressed as log10 CFU per gram of tissue. The results are expressed as individual data points for each animal and the bars
represent the mean values. The dotted line indicates the lower limit of detection. Data are combined from two independent experiments with similar
results.
doi:10.1371/journal.pone.0026232.g005

Table 2. Chemokines/cytokines increased in lungs of wild-type and TLR9 knockout mice infected with C. neoformans.

IL-1a IL-1b IL-4 IL-6 IL-12p40 KC MCP-1 MIP-1a

Uninfected N = 7 77.9 (624.4) 793 (6105) 2.6 (61.1) 7.7 (61.2) 330 (686) 63.5 (63.2) 141.8 (627.4) 40.8 (622.9)

WT N = 12 325.5 (681.0) 9761 (62869) 277.1 (664.6) 91.4 (630.4) 1191 (6308) 232.4 (627.6) 801.9 (6201.7) 487.7 (6149.3)

TLR9 KO N = 12 261.6 (682.0) 7236 (62383) 166.9 (629.4) 84.4 (633.4) 785 (6177) 165.8 (626.1) 592.7 (6130.0) 394.0 (6120.9)

Cytokines were measured by Bio-Plex assay from lungs harvested 12 days post-infection. Values are expressed in pg/g lung as means 6 S.E.M. All cytokines included in
the table are significantly elevated in wild-type infected lungs compared to wild-type uninfected lungs (P,0.05). No significant differences were observed between
values for wild-type and TLR9 knockout lungs. Data are the combined results from two independent experiments.
doi:10.1371/journal.pone.0026232.t002
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manufacturer’s instructions. Results are expressed as points for each

mouse sample in picograms and are normalized to the organ weight.

Pathology
Fixed tissue samples were embedded in paraffin for sectioning.

Organs were processed for hematoxylin and eosin (H&E) staining

using standard protocols. Cross sections were observed by light

microscopy. Sections were read in a blinded fashion by a

pathologist (A. Akalin) and scored for the degree of fungal

infiltration and inflammation.

Statistical Analysis
All analyses were performed using GraphPad Prism. Survival

data was analyzed using the log-rank test. Data for samples from

wild-type, IL-1R knockout, IL-18R knockout, and MyD88

knockout mice were analyzed by one way ANOVA with Dunnett’s

multiple comparison test. Statistical comparisons were made for

samples from wild-type and TLR9 knockout mice utilizing the

Student’s t test. P values of ,0.05 were considered significant.

Statistical calculations involving CFU were performed on log10-

transformed values.

Figure 6. Histopathological findings in the lungs of wild-type and TLR9 knockout mice 12 days following challenge with 2104 C.
neoformans organisms i.n. (A) Histological samples were prepared as described in Methods. Images of H & E stained slides were taken under the
light microscope at 20X power objective. No differences were seen in lungs with respect to cryptococcal burden and inflammation between infected
wild-type and TLR9 knockout mice. (B) Histopathological assessment of lungs from wild-type and knockout mice after infection (n = 5 per group).
Sections were scored blind by a pathologist for the indicated observations on a scale from zero (none seen) to three (severe or maximal). The arrows
point to expanded BALT in the lung sections.
doi:10.1371/journal.pone.0026232.g006
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