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Abstract

A unique synaptic activity-responsive element (SARE) sequence, composed of the consensus binding sites for SRF, MEF2 and
CREB, is necessary for control of transcriptional upregulation of the Arc gene in response to synaptic activity. We
hypothesize that this sequence is a broad mechanism that regulates gene expression in response to synaptic activation and
during plasticity; and that analysis of SARE-containing genes could identify molecular mechanisms involved in brain
disorders. To search for conserved SARE sequences in the mammalian genome, we used the SynoR in silico tool, and found
the SARE cluster predominantly in the regulatory regions of genes expressed specifically in the nervous system; most were
related to neural development and homeostatic maintenance. Two of these SARE sequences were tested in luciferase assays
and proved to promote transcription in response to neuronal activation. Supporting the predictive capacity of our
candidate list, up-regulation of several SARE containing genes in response to neuronal activity was validated using external
data and also experimentally using primary cortical neurons and quantitative real time RT-PCR. The list of SARE-containing
genes includes several linked to mental retardation and cognitive disorders, and is significantly enriched in genes that
encode mRNA targeted by FMRP (fragile X mental retardation protein). Our study thus supports the idea that SARE
sequences are relevant transcriptional regulatory elements that participate in plasticity. In addition, it offers a
comprehensive view of how activity-responsive transcription factors coordinate their actions and increase the selectivity
of their targets. Our data suggest that analysis of SARE-containing genes will reveal yet-undescribed pathways of synaptic
plasticity and additional candidate genes disrupted in mental disease.
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Introduction

Neuronal plasticity and memory formation require changes in

gene expression that are triggered by synaptic activity. The nature

and organization of this response is the subject of intense research,

and a number of transcription factors (TF) have been identified in

recent years as necessary for long-term memory consolidation and

storage. The Ca2+/cAMP response element-binding protein

(CREB) was initially identified as the main interlocutor in the

dialogue between the synapse and the nucleus [1]. Later studies

revealed the complexity of this process and implicated other

transcription factors, including the serum response factor SRF [2],

MEF2 [3] and Npas4 [4]. The availability of efficient methods for

gene expression analysis has also contributed with a large

collection of mRNAs, possible targets of these TF, whose

expression is modulated by activity and experience [5,6].

The large number of potential targets for these factors does not

facilitate a model that clarifies how TF establish a coordinated

response and regulate transcription for efficient remodeling of

neuronal connections. The description of a 100 bp cis-regulatory

enhancer element containing a cluster of CREB, MEF2 and SRF

binding sites suggests a mechanism that might help to explain the

selectivity and coordination of the activity-dependent transcrip-

tional response. This sequence, termed SARE, was identified in

the gene that encodes the activity-regulated cytoskeleton-associat-

ed protein (Arc) [7]. The SARE sequence is conserved in

mammalian Arc regulatory regions; it is sufficient to drive a rapid

transcriptional response following synaptic activation and to

reproduce, both in vitro and in vivo, the endogenous Arc activation

pattern [7]. Despite the novelty and potential repercussion of this

finding, the study restricted the description of this sequence to the

Arc gene and did not determine whether SARE appear in the

regulatory regions of other genes, or the specificity of this sequence

to the nervous system. We studied the broader implication of

SARE sequences in the context of the response to neuronal

activity, and validated SARE analysis as able to identify elements

of synaptic plasticity. Using the in silico tool SynoR [8], we

analyzed the SARE sequences conserved in the mammalian

genome. Comparison of mouse and human genome sequences

showed enrichment in conserved SARE clusters in the regulatory

regions of genes that are expressed specifically in neural tissues,

that are involved in neural development and homeostatic
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maintenance, and that encode mRNA targeted by FMRP. These

data support the concept that SARE sequences are true

transcriptional regulatory elements, responsible for the coordinat-

ed response of TF that convey information from the postsynaptic

compartment to the nucleus. These findings might contribute to

understanding the genetic causes of mental diseases linked to

neuronal plasticity.

Results and Discussion

We used SynoR to study the possible relationship between the

SARE regulatory region and genes related to the nervous system

[8], specifically those involved in synaptic activity and mental

processes. We sought sequence regions containing clusters of the

consensus binding sites for CREB, MEF2 and SRF (Fig. 1A) in the

human genome, and compared them to the mouse genome to

identify conserved sequences. Based on these criteria, we identified

887 genetic regions containing SARE sequences (Table S1 and

data deposited in the SynoR tool, ID: s1219104005847). The

SARE regions are assigned to the gene(s) of which they form part

or to which they are proximal, and are classified as intergenic,

intronic, utr (untranslated), cds (coding sequence), or promoter,

depending on their position within the gene (Table S1 and Fig. 1B).

Control searches for clusters containing combinations of other

unrelated TFBS yield significantly less number of regions and were

not enriched in neural biological functions (Fig. 1C and

Experimental Procedures). The original SARE sequence of the

Arc promoter is not identified in our search because it contains

only half of the CREB binding site, and its MEF2 binding

sequence shows 2 nucleotide mismatches compared to the

consensus [7]. Binding site predictions for individual TF using

matrix analysis can be conducted with the Match tool of

TRANSFAC. We have validated the presence of the SARE

cluster in more than ten of our candidates manually using this tool.

These include ATF3, CUX1, CUX2, FOXP1, FOXP2, HOMER1,

LMPDH2, NRG1, NPAS4. NR4A1, PLXNA4 and SEMA6A. Simi-

larly, there might be additional SARE sequences not identified by

this search because of the analysis procedure: it first identifies

TFBS clusters in the human genome and subsequently searches for

homology to this specific sequence in mice.

The analysis showed that SARE clusters were most abundant in

intergenic and intronic regions (Fig. 1), potential areas for gene

expression control. The list of SARE-containing genes showed

genes with central roles in the nervous system such as NMDA

(Grin2a, essential for excitatory synapses), Robo2 (with major

functions in axon guidance) and Cutl/Cux2 (determinant for

cerebral cortex layer II-IV) (examples in Table 1). Classification of

genes containing SARE sequences at the GO categories using

Toppfun application (http://toppgene.cchmc.org/‘‘ToppFun’’) in-

dicated that the processes potentially affected by SARE regulation

are clearly related to the nervous system (Table S2). This analysis

yielded several enriched GO categories, out of 112 significantly

enriched GO biological processes, 21 (18,75%) of them related to

neural functions (Table 2). All of these categories are specifically

related to nervous system development and maintenance, and

many showed significant greater enrichment than other categories

(Table 2 and Table S2). In accordance with our hypothesis, this

prevalence of neural functions supports potentially important,

selective action of SARE-mediated mechanisms in the nervous

system. Next, SARE containing genes were grouped into two main

categories representing potential distal and proximal regulatory

sequences: intergenic; and intragenic, cds, promoter and utr

regions (Table S2) and GO analysis was performed separately with

these two groups. Both groups showed similar enrichment in

neural functions; therefore it did not favor proximal or distal

regulatory regions as more relevant to plasticity.

The analysis of genes containing the SARE cluster appeared an

appropriate approach for identification of mechanisms of homeo-

stasis, plasticity and activity-dependent remodeling in the nervous

system. This study disclosed a large number of genes known to

participate in plasticity and synaptogenesis (examples in Table 1);

Homer1 is an example in this category. Homer genes encode

scaffolding proteins that bind Ca2+ signaling proteins and target

them to their correct subcellular localization [9,10]; they are

essential for dynamic regulation of the synapse, synaptic plasticity,

and spatial learning [11,12]. Coincident expression of experience-

triggered Homer and Arc proteins is found in hippocampal and

cortical neurons [13], which supports simultaneous activation, as

predicted by our analysis. We also identified axonal guidance

molecules (Table 1 and Table S1), including PlxnA4 and its ligand

Sema6A [14] as molecules potentially regulated by SARE. The

semaphorin and plexin receptor families, together with neuropi-

lins, are crucial during nervous system development and homeo-

stasis, and mark the pathway for axon growth [14]. These proteins

also control synaptogenesis, axon pruning, the density and

maturation of dendritic spines and are implicated in a number

of developmental, psychiatric and neurodegenerative disorders

[15]. As for the axon guidance cues, we found a number of genes

that encode cytoskeletal remodeling molecules at the synapse

(Table 1). For example, ankyrins link integral membrane proteins

to the underlying spectrin-actin cytoskeleton; they have key roles

in activities such as cell motility, activation, proliferation, contact,

and maintenance of specialized membrane domains. They might

be involved in bipolar disorder and other mental alterations [16].

Less anticipated were SARE-containing genes not previously

implicated in plasticity or structural maintenance of the synapse; in

this category, we found neuronal subtype-specific TF such as Cux1

and Cux2 [17], Zic2 [18] and Sox6 [19,20] (Table 1 and Table S1).

Cux TF expression is restricted to neurons of layers II-III and IV

of the cerebral cortex. During development, Cux regulate

dendritic branching, spine morphogenesis and synapse maturation

[17]. Cux expression is maintained through adulthood, but

nothing is yet known of their function in mature neurons.

Whereas Cux functions could be associated with plasticity at the

postsynaptic site [17], Zic2 might act on the presynaptic terminal,

as it is associated with axon development in retinal ganglion cells;

Sox6, in turn, is described as essential for neuronal differentiation

[19,20]. These observations suggest that activity-dependent

mechanisms act on pathways specific to neuronal subtypes.

To test the relevance of our findings and the predictive

capability of our gene set to identify genes up-regulated upon

neuronal activation we searched for experimental confirmation.

Several studies of gene expression changes induced by neuronal

activation have been reported and made useful available

contributions. Many of them analyze the effects of the gabaergic

inhibitor bicuculline to trigger neuronal excitatory response. We

therefore compare the list of SARE containing genes with those of

genes which expression was modify in studies analyzing the in vivo

effects of infusion of bicuculline into the accessory olfactory bulb

[21]; in vitro bicuculline treatment of cortical cells [22]; and

hippocampal neuronal cultures [23]. This allowed us to extend our

validation to several neuronal types. In all three cases, the

comparison revealed a highly significant enrichment between the

SARE containing genes and those up-regulated upon neuronal

activation, but none or of lower statistical significance, when

compared to the list of genes that are down-regulated (Table 3).

Several of the SARE genes, such as Homer, Atf3, Klf6 and Bdnf are

common to two or the three studies, and may represent a general
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pan-neuronal response, while unique ones might represent tissue-

specific responses. These significant overlapping validate our

results with external independent data. We next took the reverse

approach and tested the predictive capability of our study by

testing the expression of genes picked from our list upon neuronal

activation. Cells from E18 mouse cortex were dissociated, neurons

were cultivated and neuronal activity triggered using bicuculline

[7]. RNA was obtained and transcript expression of twelve SARE

containing genes, including Arc, analyzed by using quantitative

real time RT-PCR (Q-PCR) (Fig. 2A). Up-regulation of Arc gene

demonstrated efficient neuronal activation and, also expected, the

levels of the S-isoform of Homer1 were increased [24,25]. Six more

genes showed up-regulation when neurons were activated. Atf3,

Impdh2, and Npas4 up-regulation in cortical cells was in agreement

with our own analysis of the raw data obtained from gene

expression arrays reported by other investigators [22], and further

confirmed our comparison with external sources (Table 3).

Interestingly, up-regulation of Cux1, Cux2, and PlxnA4, genes not

suspected to be regulated by activity, again confirmed the

predictive capacity of our study. Four genes, Lmo4, Robo1, Robo2

and Klf6 did not show significant changes. This can be ascribed to

the almost certain possibility of a number of false positive in our

list, to the fact that other splicing variants might be affected, or to

the possibility that subsets of genes may respond differently

depending on the stimulus that triggers neuronal response.

Next, the sequence corresponding to two of these SARE

sequences were cloned upstream of a minimal promoter into

vectors containing luciferase reporters to test their ability to

activate transcription in response to neuronal activity. Cells from

E18 mouse cortex were transfected with reporter constructs,

neuronal activity triggered using bicuculline [7], and luciferase

activity compared to control tetrodotoxin (TTX) treated neurons.

Figure 1. SARE sequences are found in intergenic and intronic genetic regions. Scheme showing consensus TFBS for SARE sequence and
the SARE sequenced found in the promoter of SOX14 (top). For the SynoR search, random relative position of the three TFBS was permitted. Table
shows the number and percentages of SARE sequences classified according to their position within the genes and the diagram represents the
distribution of each category.
doi:10.1371/journal.pone.0053848.g001
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These experiments demonstrated that these novel identified SARE

sequences replicate the promoter activity of the SARE sequence

corresponding to the Arc gene and significantly increase

transcription upon depolarization (Fig. 2B).

Our analyses thus point to overlooked pathways that might

participate in activity-dependent regulatory mechanisms and, by

extension, suggests the identification of genes potentially linked to

mental diseases caused by plasticity defects [26,27,28]. This is the

case of genes reported as candidates for autism in which we found

Table 1. SARE regulation affects several aspects of neuron function.

Gene symbol Name Human gene ID Type

Synaptogenesis-Plasticity

SYNCRIP synaptotagmin binding, cytoplasmic RNA interacting protein 10492 utr

HDAC5 histone deacetylase 5 10014 utr

HOMER1 homer homolog 1 (Drosophila) 9456 promoter

KALRN kalirin, RhoGEF kinase 8997 utr

NCAM1 neural cell adhesion molecule 1 4684 intron

NRG1 neuregulin 1 3084 intron

NRXN1 neurexin 1 9378 intron

SCN3A sodium channel, voltage-gated, type III, alpha subunit 6328 utr

SEPT7 septin 7 989 utr

Citoesqueletal-synaptic proteins

ANK3 ankyrin 3, node of Ranvier (ankyrin G) 288 utr

CAMK1D calcium/calmodulin-dependent protein kinase ID 57118 intron

MAP2K5 mitogen-activated protein kinase kinase 5 5607 intron

NR4A1 nuclear receptor subfamily 4, group A, member 1 3164 intron

RABGAP1L RAB GTPase activating protein 1-like 9910 intron

RAPGEF2 Rap guanine nucleotide exchange factor (GEF) 2 9693 intron

RAPGEF6 Rap guanine nucleotide exchange factor (GEF) 6 51735 intron

RASSF8 Ras association (RalGDS/AF-6) domain family (N-terminal) member 8 11228 utr

RASGEF1C RasGEF domain family, member 1C 255426 intron

RHOQ ras homolog gene family, member Q 23433 utr

Axon guidance and maintenance

CRIM1 cysteine rich transmembrane BMP regulator 1 (chordin-like) 51232 intron

DCC deleted in colorectal carcinoma 1630 intron

EPHB1 EPH receptor B1 2047 promoter

NRG1 neuregulin 1 3084 intron

PLCXD3 phosphatidylinositol-specific phospholipase C, X domain containing 3 345557 intron

PLXNC1 plexin C1 10154 intron

PLXNA4 plexin A4 91584 intron

RGMA RGM domain family, member A 56963 intergenic

ROBO1 roundabout, axon guidance receptor, homolog 1 (Drosophila) 6091 intergenic

SEMA6A sema domain, TM and cytoplasmic domain, (semaphorin) 6A 57556 promoter

Transcription factors

CUX1 cut-like homeobox 1 1523 intron

CUX2 cut-like homeobox 2 23316 intron

FOXP1 forkhead box P1 27086 intron

FOXP2 forkhead box P2 93986 intron

PAX6 paired box 6 5080 intron

PHOX2B paired-like homeobox 2b 8929 utr

RUNX2 runt-related transcription factor 2 860 utr

SOX6 SRY (sex determining region Y)-box 6 55553 intron

ZIC2 Zic family member 2 7546 utr

ZNF292 zinc finger protein 292 23036 utr

Examples of genes containing SARE sequences according to function, extracted from the list of 827 genes identified.
doi:10.1371/journal.pone.0053848.t001

SARE Coordinate Transcription during Plasticity

PLOS ONE | www.plosone.org 4 January 2013 | Volume 8 | Issue 1 | e53848



SARE sequences, such as, NRXN1 and 2 [29], FOXP1 [30],

FOXP2 [30,31], GRID2 [32], KCNMA1 [33] and others (http://

gene.sfari.org) [34] (see Table S1).

Validation of our prediction nonetheless required evaluation of

true enrichment of genes involved in cognitive dysfunction. Fragile

X syndrome (FXS) is a well-characterized form of autism, caused

by loss of function of the Fragile X mental retardation protein

(FMRP), which regulates local translation and plasticity at pre-

and postsynaptic sites [28,35]. Based on a recent extensive list of

genes targeted by FMRP, from which the authors extract a

stringent set of 842 reliable targets [36], we hypothesized that the

list of SARE-regulated genes will be enriched in FMRP targets.

Comparison of SARE-containing genes (including those contain-

ing SARE clusters at intergenic locations) with the stringent list of

FMRP targets resulted in 70 genes common to both (8.5%

overlap), an enrichment of biological relevance (p = 4.3909–13; see

Methods) (Table 4). The relationship between the SARE-

containing genes and FMRP targets thus strongly supports SARE

involvement in activity-dependent regulation. In addition, it

suggests that mutations in SARE or SARE-containing genes and

pathways can contribute to mental retardation, autism spectrum

disorders and other psychiatric diseases.

Correct function of nervous system networks and subnetworks is

possible thanks to the extraordinary spatial and temporal

coordination of gene expression that is guided by the TF subset

expressed by each neuronal population. Our findings suggest that

cooperation between CREB, SRF, and MEF2 transcription

factors at the SARE region is one of the precisely regulated

mechanisms that govern the transcriptional program of activated

neurons. This transcriptional cooperation might also apply to

other TF to initiate an appropriate, specific transcriptional

response in other biological processes. This study also highlights

the value of the development and use of computational tools and

databases for the comprehensive analysis of biological events. We

identified a subset of genes whose transcription is potentially

regulated by the SARE cluster after synaptic activation. Most of

these genes are directly related to nervous system development and

maintenance; several of them are reported at the synapse, some

are mutated in human mental disorders, and many form part of

FMRP-regulated mechanisms. The identification and functional

analysis of SARE-containing genes provided here is thus a useful

for implicating new candidate genes in plasticity, memory, and

mental retardation, and suggests new approaches to the study of

mental disorders in which synaptic activity might have a central

role.

Methods

Genome Sequence Analysis
In silico analyses were performed using SynoR (Identifying

synonymous regulatory elements in vertebrate genomes), a tool

described by Ovcharenko and Nobrega [8]. SynoR is available at

the National Center for Biotechnology Information (NCBI)

DCODE.org Comparative Genomics Developments (http://

synor.dcode.org/), and performs de novo identification of synony-

mous regulatory elements (SRE) using known patterns of

transcription factor binding sites (TFBS) in active regulatory

elements (RE) as seeds for genome scans. The search was

performed on the human genome assembly (hg18; July 2007

NCBI Build 36.1) and compared to the mouse genome assembly

(mm9; July 2007NCBI Build 37). ECBR Browser performs whole

genome Blastz-based alignments using the TFBS data of the

transcription factors under study from the TRANSFAC Profes-

sional database. The TFBS studied were those of CREB

(CREB_01, CREBP1_01, CREBP1CJUN_01, CREB_02,

CREB_Q2, CREB_Q4, CREBP1_Q2, CREB_Q3,

CREB_Q2_01, CREB_Q4_01, CREBATF_Q6), MEF2

(MEF2_01, MEF2_02, MEF2_03, MEF2_04, MEF2_Q6_01)

and SRF (SRF_01, SRF_Q6, SRF_C, SRF_Q4, SRF_Q5_01,

SRF_Q5_02). The maximum distance between two adjacent

TFBS was set at 125 base pairs. Random relative position of TFBS

was allowed. To test for the significance of the results, we

performed analysis of several TFBS combinations. A search for

clusters combining TFBS for ZIC2, BRCA and PAX1 yields only

1 cluster indentified by SynoR, combination of ACAAT, Bach1,

Lbp1 gives 50 clusters. Combination of TF related to the nervous

system, EGR1, MEF2, NF-kB results on 244 clusters identified.

Substitution of any of the TFBS from our particular search of

MEF2, CREB and SRF significantly decreased the number of

identified clusters. For example, substitution of CREB for ZIC2,

i.e. search for MEF2, SRF and ZIC2 gives 142, compared to 842.

Gene Annotation and Analysis of Gene Ontolog
The list of SARE genes obtained from SynoR was updated

using Toppfun application from Toppgene suit Cincinnati

Children’s Hospital Medical Center (http://toppgene.cchmc.

org/‘‘ToppFun’’) and manually curated. A small number of genes

were not annotated in NCBI but appeared annotated in other data

Table 2. Classification of SARE-containing genes at GO
indicated significant enrichment of processes related to the
nervous system.

GO: Biological Process

Rank ID Name P-value

2 GO:0030182 neuron differentiation 1,76E-11

4 GO:0048699 generation of neurons 1,52E-10

5 GO:0022008 neurogenesis 2,28E-10

9 GO:0048812 neuron projection morphogenesis 2,87E-09

10 GO:0007409 axonogenesis 3,40E-09

13 GO:0048666 neuron development 6,43E-09

16 GO:0031175 neuron projection development 2,28E-08

28 GO:0007411 axon guidance 2,75E-07

31 GO:0007417 central nervous system development 3,49E-07

45 GO:0035295 tube development 9,04E-06

58 GO:0045664 regulation of neuron differentiation 1,27E-04

73 GO:0030900 forebrain development 1,74E-03

74 GO:0007420 brain development 1,75E-03

83 GO:0021772 olfactory bulb development 5,05E-03

84 GO:0031290 retinal ganglion cell axon guidance 5,46E-03

87 GO:0021889 olfactory bulb interneuron differentiation 6,39E-03

91 GO:0021988 olfactory lobe development 7,48E-03

96 GO:0007423 sensory organ development 1,29E-02

97 GO:0021537 telencephalon development 1,30E-02

111 GO:0001654 eye development 4,50E-02

112 GO:0021891 olfactory bulb interneuron development 4,54E-02

The analysis yielded 112 significantly enriched GO biological processes. The
table shows the 21 categories with significantly high fold enrichment that are
related to nervous system development and maintenance. Rank indicates the
position within the list of the total 112 when ordered from higher to lower
enrichment. Neural functions are ranked in the higher positions.
doi:10.1371/journal.pone.0053848.t002
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Figure 2. Up-regulation of the mRNA of SARE containing genes and promoter activation in response to neuronal activity. A)
Upregulation of SARE identified candidates in primary cortical neurons. Primary neurons from E18 cortex were cultivated for 16 days before triggering
neuronal activation with 4AP/bicuculline. RNA was obtained and transcript expression of SARE containing genes analyzed by quantitative real time
RT-PCR (Q-PCR). Expression of each gene is normalized to the expression in control cells. Arc up-regulation demonstrated efficient neuronal
activation. * indicates p,0,5 **,0,1, ***,0,05 (t-Student test). B). Novel SARE sequences activate transcription in response to neuronal activity. Mouse
genomic sequence containing SARE regulatory regions (see below) corresponding to those identified for the Cux1 and Cux2 genes were cloned into
the pGL4.23 luciferase vector (Promega). Neurons obtained from E18,5 cortex were co-transfected with the indicated firefly luciferase reporter
construct and internal control Renilla luciferase plasmid at a ratio of 4:1. Neuronal activity was trigered with 4AP/bicuculline before measuring
transcription of the reporters. Relative expression of each reporter constructs was determined by normalizing the activity of each reporter to its
activity on TTX treated neurons. Data represent mean and standar deviation of results obtained in three different experiments. * indicates p,0,01,
**,0,001 (t-Student test).
doi:10.1371/journal.pone.0053848.g002
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bases (Shaded genes on STableI). GO analysis was performed

using Toppfun shown in table S2. Similar significant enrichment

of nervous system related functions of GO categories were

obtained from the SynoR application.

Gene Expression Data Sets of Bicuculline Treatments
Experimental datasets were obtained from [23–24] as processed

datasets. Unprocessed data from [22] was analyzed using GeoR2

(http://www.ncbi.nlm.nih.gov/geo/geo2r/). Gene annotation

was updated using Toppfun application for all three datasets.

Primary Neurons Culture and Bicuculline/4-amino-
pirydine Induction

Neurons from E18 embryo cortex were trypsinized using

0,25 mg/ml trypsin (SIGMA-Aldrich) in EBSS (Gibco, Invitrogen,

Carlsbad, CA) 3.8% MgSO4 (Sigma-Aldrich, St. Louis, MO),

penicillin/streptomycin (Gibco, Invitrogen, Carlsbad, CA). The

reaction was stopped and cells were mechanical dissociated in

EBSS media complemented with 0,26 mg/ml Trypsin inhibitor,

0,08 mg/ml DNAse, and 3,8% MgSO4 heptahydrate (all from

Sigma-Aldrich, St. Louis, MO). Dissociated cells were seeded onto

24 well Poly-D-Lys (Sigma-Aldrich, St. Louis, MO) coated plates

in neurobasal media supplemented with B27 complement 16,

glutamax 16 and penicillin/streptomycin (Gibco, Invitrogen,

Carlsbad, CA). 500 ml media were replaced every 2 days until

16 days (DIV 16). 12 h before inducing neuronal activity cells were

incubated with 2 mM tetrodotoxin (TTX) (Alomone-labs, Jerusa-

lem, Israel). Then media was replaced with media containing with

4-aminopyridine (4AP) 100 mM, strychnine 1 mM, glycin 100 mM

and bicuculline 30 mM (Sigma-Aldrich, St. Louis, MO ), and RNA

was extracted after 5 h using the Qiagen RNeasy Kit as described

in the manufacture handbook (Qiagen).

Luciferase Reporter Assays
Mouse genomic sequence containing SARE regulatory regions

(see below) corresponding to those identified for the Cux1 and

Cux2 genes were cloned into the pGL4.23 luciferase vector

Table 3. The number of SARE containing genes is significantly enriched on genes up-regulated upon bicuculline triggering of
neuronal activity.

Comparative analysis with reported studies

SARE-Bic AOP ref [21] SARE-Bic Hip ref [23] SARE-Bic Ctx ref [22]

# of upregulated genes (211 genes) (90 genes) (229 genes)

Atf3 Atf3 Arc

Bdnf Bdnf Atf3

Celf2 Edil3 Bdnf

Clic4 Erc2 C10orf140

Eif1 Inhba Fbxo33

Epb41l1 Ism1 Homer1

Hdac5 Nkain2 Impdh2

Hdac9 Odz1 Kcnj2

Homer1 Pax1 Klf6

Up-regulated genes Inhba Ppfia2 Mex3b

Klf6 Nefl

Lingo1 Nhlh2

Lmo4 Npas4

Nemf Nr4a1

Pcdh17 Rasgef1b

Ppm1b

Rcan2

Smg7

Tsc22d2

p-value 4,87E-05 0.00066422 0.003991

# of downregulated genes (36 genes) (44 genes) (23 genes)

Bahcc1 Dock5

Down-modulated genes Ranbp2 Fam5b

Slit3

Trpc7

p-value 0.20867 0.042004 0.46753

Comparative analysis of the list of SARE containing genes with three independent studies reporting mRNA changes in gene expression in the accessory olfactory bulb
[21]; cortical cells [22]; and hippocampal neuronal cultures [23]. The table shows the lists of the SARE genes that were found to be up-regulated (upper part), or down-
modulated (lower part) in each study. P-values for random coincidence are shown. Not significance coincidence was observed when compared to genes that are down-
regulated.
doi:10.1371/journal.pone.0053848.t003
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Table 4. FMRP targets containing SARE sequence genes.

FMRP targets containing SARE sequence

Gene Symbol mm9 Symbol Entrez Gene ID RefSeq ID Description

ANK3 Ank3 11735 NM_146005.3 ankyrin 3, node of Ranvier (ankyrin G)

APP App 11820 NM_007471.2 amyloid beta (A4) precursor protein

ARID1B Arid1b 239985 NM_001085355.1 AT rich interactive domain 1B (SWI1-like)

ATN1 Atn1 13498 NM_007881.4 atrophin 1

ATP2A2 Atp2a2 11938 NM_001110140.2 ATPase, Ca++ transporting, cardiac muscle, slow twitch 2

ATXN1 Atxn1 20238 NM_009124.5 ataxin 1

BAI1 Bai1 107831 NM_174991.3 brain-specific angiogenesis inhibitor 1

BCAN Bcan 12032 NM_007529.2 brevican

BIRC6 Birc6 12211 NM_007566.2 baculoviral IAP repeat-containing 6

CADPS Cadps 27062 NM_012061.3 Ca++-dependent secretion activator

CTNND2 Ctnnd2 18163 NM_008729.2 catenin (cadherin-associated protein), delta 2

CUX1 Cux1 13047 NM_009986.3 cut-like homeobox 1

CUX2 Cux2 13048 NM_007804.2 cut-like homeobox 2

DIP2B Dip2b 239667 NM_172819.2 DIP2 disco-interacting protein 2 homolog B (Drosophila)

EPB41L1 Epb4.1l1 13821 NM_001003815.2 erythrocyte membrane protein band 4.1-like 1

FAM5B 6430517E21Rik 240843 NM_207583.1 family with sequence similarity 5, member B

FOXK2 Foxk2 68837 NM_001080932.1 forkhead box K2

GABBR1 Gabbr1 54393 NM_019439.3 gamma-aminobutyric acid (GABA) B receptor, 1

GNB1 Gnb1 14688 NM_008142.3 guanine nucleotide binding protein (G protein), beta polypeptide 1

GRIK3 Grik3 14807 NM_001081097.2 glutamate receptor, ionotropic, kainate 3

HDAC5 Hdac5 15184 NM_001077696.1 histone deacetylase 5

HIPK2 Hipk2 15258 NM_001136065.1 homeodomain interacting protein kinase 2

HIPK3 Hipk3 15259 NM_010434.1 homeodomain interacting protein kinase 3

IDS Ids 15931 NM_010498.2 iduronate 2-sulfatase

KALRN Kalrn 545156 NM_001164268.1 kalirin, RhoGEF kinase

KCND2 Kcnd2 16508 NM_019697.3 potassium voltage-gated channel, Shal-related subfamily, member 2

KCNH7 Kcnh7 170738 NM_133207.2 potassium voltage-gated channel, subfamily H (eag-related), member 7

KCNMA1 Kcnma1 16531 NM_010610.2 potassium large conductance calcium-activated channel

LINGO1 Lingo1 235402 NM_181074.4 leucine rich repeat and Ig domain containing 1

LRRC7 Lrrc7 242274 NM_001081358.1 leucine rich repeat containing 7

MAGI2 Magi2 50791 NM_015823.2 membrane associated guanylate kinase, WW and PDZ domain containing 2

MFHAS1 Mfhas1 52065 NM_001081279.1 malignant fibrous histiocytoma amplified sequence 1

MIB1 Mib1 225164 NM_144860.2 mindbomb homolog 1 (Drosophila)

MYT1L Myt1l 17933 NM_001093775.1 myelin transcription factor 1-like

NCAM1 Ncam1 17967 NM_001081445.1 neural cell adhesion molecule 1

NFIX Nfix 18032 NM_001081981.1 nuclear factor I/X (CCAAT-binding transcription factor)

NPAS2 Npas2 18143 NM_008719.2 neuronal PAS domain protein 2

NRXN1 Nrxn1 18189 NM_020252.2 neurexin 1

NRXN2 Nrxn2 18190 NM_020253.2 neurexin 2

NRXN3 Nrxn3 18191 NM_172544.3 neurexin 3

NTRK3 Ntrk3 18213 NM_182809.2 neurotrophic tyrosine kinase, receptor, type 3

ODZ2 Odz2 23964 NM_011856.3 odz, odd Oz/ten-m homolog 2 (Drosophila)

OGDH Ogdh 18293 NM_010956.3 oxoglutarate (alpha-ketoglutarate) dehydrogenase (lipoamide)

PCDH7 Pcdh7 54216 NM_001122758.1 protocadherin 7

PCDH9 Pcdh9 211712 NM_001081377.1 protocadherin 9

PHACTR1 Phactr1 218194 NM_198419.3 phosphatase and actin regulator 1

PLXNA4 Plxna4 243743 NM_175750.3 plexin A4

PPARGC1A Ppargc1a 19017 NM_008904.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha
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(Promega). The SARE sequence for Cux1 is

CTGGCCGAATCTGGCTGCCTGGCGTCCTGTGAGT-

TAATTATAGCTCTGTTAACAGAGCAGGGAACAGGGAA-

CACTTGCAGTGACGGAGAT. The sequence for Cux2

TTAAATAAAGCTGTCACGACTCTTCCATCAGGAGG-

GATGGGCTCCAAACATGAGAGTTTCCAGAGCCGT-

GACTATAACAGGAGTGGAAATTTATCCCTTCTAAT-

TATGTAATTGCATAATTTTAGGTAGCATTGGAAAT-

TATGTAA. E18,5 neuronal cells cultured for 8 days were co-

transfected with the corresponding firefly luciferase reporter

constructs and internal control Renilla luciferase plasmid, at a

ratio of 4:1 using lipofectamine 2000 (Invitrogen). Neuronal

response was trigger using bicuculline/4-amino-pirydine as

described above. Control cells Luciferase and Renilla activity

was measure using the Dual-Luciferase Reporter Assay System

(Promega) and following the manufacture protocol. Relative

expression of each reporter construct was determined by

normalizing the ratio of reporter activity to the activity on TTX

treated neurons.

Q-PCR Analysis
1 mgr of total RNA was reverse transcribed with random

primers (Invitrogen-Life Technologies, Carlsbad CA) and the

superscript reverse transcriptase (New England BioLabs, Beverly,

MA). PCR reaction mixtures containing DNA Master Sybr green

I mix (Applied Biosystems, Foster City, CA) were incubated at

95̊C for 5 min followed by 40 PCR cycles (5 s at 95uC, 45 s at

60uC, 90 s at 68uC) in an Abi-prism 7000 detector (Applied

Byosystems). Primers for Robo 1(forward GACCTGATCGTCTC-

CAAAGGA; reverse TTGTCGGTCTCCACTCTTTCC); Robo2

(forward TGATGGATCTCGTCTTCGTCA; reverse

GTCGGCCCTCTGCTTTACAG); Cux1 (forward

GGGGCTTTTTATCTGCCATC; reverse

CCCCCTTCCTGGTTTAAGAAG); Cux2 (forward

CTGTCCTTCATTGCACAACC; reverse TTCGGAGGTG-

GACTTGAAAC); Atf3 (forward TCCTGGGTCACTGG-

TATTTG; reverse ATGGCGAATCTCAGCTCTTC); Impdh2

(forward CTCCAAAGATGCCAAGAAGC; reverse TGGGAA-

GAGTCCAAAACCAC); Npas4 (forward ACCTGAGCAAG-

GATTTGGTG; reverse TTGGTGTCAGCTGTTCTTGG);

Klf6 (forward CACCCACGACCAAATTTACC; reverse

TGGAAATGACGGAGGAACTC); Homer1-S (forward

GAAAGCTTTACCACAGGCCTAC; reverse TCAATGCTAA-

CAGGCTCGTG); Arc (forward TGTTGACCGAAGTGTC-

CAAG; reverse AAAGACAGGCCTTGATGGAC), Lmo4 (for-

ward ACATTGGCACGTCCTGTTAC; reverse

TCACTTGCAGGAATCGACTG) and PlxnA4 (forward TGAG-

GACAACCCCAAGTGTTA; reverse ACGCGAT-

CAGCCTGTTTTCT) were tested. The results were normalized

as indicated by the parallel amplification of b-actin (forward

GGCTGTATTCCCCTCCATCG; reverse CCAGTTGGTAA-

CAATGCCATGT).

Table 4. Cont.

FMRP targets containing SARE sequence

Gene Symbol mm9 Symbol Entrez Gene ID RefSeq ID Description

PRICKLE2 Prickle2 243548 NM_001081146.1 prickle homolog 2 (Drosophila)

PTCH1 Ptch1 19206 NM_008957.2 patched homolog 1 (Drosophila)

PTPRG Ptprg 19270 NM_008981.3 protein tyrosine phosphatase, receptor type, G

PUM2 Pum2 80913 NM_030723.1 pumilio homolog 2 (Drosophila)

R3HDM2 R3hdm2 71750 NM_027900.3 R3H domain containing 2

RAPGEF2 Rapgef2 76089 NM_001099624.2 Rap guanine nucleotide exchange factor (GEF) 2

SASH1 Sash1 70097 NM_175155.4 SAM and SH3 domain containing 1

SLITRK5 Slitrk5 75409 NM_198865.1 SLIT and NTRK-like family, member 5

SMARCA2 Smarca2 67155 NM_011416.2 SWI/SNF related, matrix associated, actin dependent regulator of chromatin

SMG1 2610207I05Rik 233789 NM_001031814.1 SMG1 homolog, phosphatidylinositol 3-kinase-related kinase (C. elegans)

SPRED1 Spred1 114715 NM_033524.2 sprouty-related, EVH1 domain containing 1

TANC2 Tanc2 77097 NM_181071.3 tetratricopeptide repeat, ankyrin repeat and coiled-coil containing 2

TCF4 Tcf4 21413 NM_013685.2 transcription factor 4

TRIO Trio 223435 NM_001081302.1 triple functional domain (PTPRF interacting)

TRIP12 Trip12 14897 NM_133975.4 thyroid hormone receptor interactor 12

VPS13D Vps13d 230895 NM_001128198.1 vacuolar protein sorting 13 homolog D (S. cerevisiae)

ZEB2 Zeb2 24136 NM_015753.3 zinc finger E-box binding homeobox 2

ZNF365 Zfp365 216049 NM_178679.2 zinc finger protein 365

ZNF462 Zfp462 242466 NM_172867.3 zinc finger protein 462

ZNF521 Zfp521 225207 NM_145492.3 zinc finger protein 521

ZNF536 Zfp536 243937 NM_172385.2 zinc finger protein 536

ZNF827 Zfp827 622675 NM_178267.3 zinc finger protein 827

The list of genes identified as containing SARE sequences was compared to a list of 842 reliable FMRP targets. This resulted in an overlap of 70 genes common to both
lists. This represent a significant enrichment of p = 4.39096.93e-13, far from the expected random distribution of coincidences between the genome and the mouse
nervous system transcriptome (see Experimental Procedures).
doi:10.1371/journal.pone.0053848.t004
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Statistical Analysis
Probability of overlap between the FMRP target gene, and the

SARE-containing gene lists was based on a binomial function,

considering the size of the human genome as 28000 genes; the

mouse nervous system transcriptome as 12000 transcripts and the

total number of all genes associated to one or more SARE cluster

is 827. We calculated the density function that describes the

probability of having a number of genes within the transcriptome,

with the binomial X = B(n1 = 827, p = 12/27) We then obtained

the density function Y, which describes the probability of having a

number of coincidences between both lists, with a new binomial

Y~
Pn1

i~0 B n2~842, p~
i

12000

� �
|X ið Þ (n = total number of

FMRP targets). This probability distribution yielded a p value of

4.3909e-13 for Y(70) (for 70 coincidences). Equal analysis was

performed to calculate the significance of overlapping between

datasets from experimental data of bicuculline modulated genes

and the SARE containing genes list.

Supporting Information

Table S1 SARE sequences conserved in human and
mouse assigned to genes according to proximity. Using

SynoR, we searched for regions containing clusters of the

consensus binding sequences for SRF, MEF2 and CREB in the

human genome and compared it to the mouse genome to identify

conserved sequences. Based on these criteria, we identified 887

genetic regions with conserved SARE sequences that are assigned

to the proximal genes: 530 clusters were found on intragenic

regions and 357 in intergenic, (data deposited in the SynoR tool,

ID nu s1219104005847). Additional tab (OtherTFclusters) show

results from the analysis of other TFBS combinations and graphics

showing the relative low number of clusters identified and their

lower relation to neuronal functions.

(XLSX)

Table S2 Gene Ontology analysis of SARE-containing
genes. GO analysis of all genes containing the SARE cluster

performed by Toppfun application. Additional tab on table shows

the 21 GO categories out of the total 112 enriched GO categories

of biological functions related to nervous system and the same

analysis performed on subsets of SARE containing genes grouped

as intergenic (distant regulated genes) or intronic, promoter, CDS

and utr (closely regulated genes). Most of the functions seem to be

regulated by both distant and close SARE, but some of them are

specific to each category (light shaded blue).

(XLSX)
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