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Abstract

Phosphorylation and transcriptional regulation events are critical for cells to transmit and respond to signals. In spite of its
importance, systems-level strategies that couple these two networks have yet to be presented. Here we introduce a novel
approach that integrates the physical and functional aspects of phosphorylation network together with the transcription
network in S.cerevisiae, and demonstrate that different network motifs are involved in these networks, which should be
considered in interpreting and integrating large scale datasets. Based on this understanding, we introduce a HeRS score
(hetero-regulatory similarity score) to systematically characterize the functional relevance of kinase/phosphatase
involvement with transcription factor, and present an algorithm that predicts hetero-regulatory modules. When extended
to signaling network, this approach confirmed the structure and cross talk of MAPK pathways, inferred a novel functional
transcription factor Sok2 in high osmolarity glycerol pathway, and explained the mechanism of reduced mating efficiency
upon Fus3 deletion. This strategy is applicable to other organisms as large-scale datasets become available, providing a
means to identify the functional relationships between kinases/phosphatases and transcription factors.
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Introduction

Living cells sense and respond to the changing environment

through efficient signaling pathways, driven by phosphorylation

events acting in concert with transcriptional regulation to transmit

and process the signals. In this process, the major players are

kinase, phosphatase, and transcription factors (TFs). A compre-

hensive understanding of the organizing principle of the signaling

network, including the molecular function of each protein, the

cooperation between different molecules, and the mechanisms by

which the pathways are selected and regulated, requires a multi-

tier description of the underlying networks.

The interactions involved in the signaling network are protein-

protein interactions between kinase/phosphatase and substrates,

and protein DNA interactions between TF and target genes.

Simply stated, the signaling network is a combination of two

fundamental networks - a phosphorylation network and a

transcriptional regulatory network. In the model organism

S.cerevisiae, the above interactions have been experimentally

characterized in a high-throughput fashion from both biochemical

and genetic perspectives. Kinase-substrate interactions were

detected by in vitro proteome chip technology, and individual

phosphorylation events were assembled into a phosphorylation

map for S.cerevisiae [1]. The protein-DNA interactions were

measured by ChIP-chip experiments (chromatin immunoprecip-

itation coupled with DNA chip) [2] [3]. These biochemical and

physical interaction maps form a static scaffold of the signaling

network through which signals flow. However, these datasets

provide limited insight with regards to the functional links within

and between pathways.

Complementary to the physical interaction datasets, genetic

approaches which study the mRNA expression levels when cells

are perturbed provide a functional view of the cellular system. In

the budding yeast, using whole genome mRNA expression as a

phenotype, the phenotypic change upon single kinase, phospha-

tase [4], or TF [5] deletion was measured, which revealed the

transcriptional changes in response to perturbations to the

signaling network. The set of up and down regulated genes forms

what is called a signature corresponding to the perturbed protein.

A set of proteins together with their signatures constitute a

functional network. We expect that integrating physical interaction

networks with functional networks will derive a better picture of

the structure and function of the signaling network.

In spite of the close relationship between phosphorylation and

transcriptional regulation, the two networks are generally

investigated separately. Many experimental and computational

approaches endeavor to disclose the pair-wise interactions of both

networks [1] [2] [6] [7] [8] [9] [10]. However, integrative studies

of the two networks are very limited. A recent study generated a

first-generation phosphorylation map for S.cerevisiae, and integrated
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the phosphorylation results with transcription factor binding data

[1]. The results demonstrated that the largest class of kinase

substrate is transcription factors, and revealed several new

regulatory modules. Another study demonstrated in the cell cycle

process, cyclin-dependent protein kinase (CDK) and transcription

factors commonly form feed forward loops to activate different

phases of the cell cycle [11]. In these studies, kinase/phosphatase

and transcription factor are connected via biochemical interac-

tions. Although such approaches have shed light on the prevalent

regulatory motifs in the signaling network, the functional link

between these regulators cannot be inferred. In this study, we

propose to link kinase/phosphatase and transcription factor by

using the transcriptome as an anchor.

In order to integrate the heterogeneous networks, a prerequisite

is to understand the property of individual networks and to address

the commonalities and distinctions between them. To explain

heterogeneous networks in a unified framework, we performed a

systems approach by studying network motifs in different

networks. The results show that the phosphorylation and

transcriptional regulatory networks employ different network

motifs to achieve their unique functions. This finding supports

the idea that network motifs are building blocks of cellular systems.

Inspired by the above analysis, we defined a hetero-regulatory

similarity score to integrate the phosphorylation network and

transcriptional regulatory network and to identify hetero-regula-

tory modules through the integrative approach. The predicted

modules successfully recovered the MAPK pathways in S.cerevisiae,

and also shed light on the cross-talks between different MAPK

pathways. The utility of this integrative approach is also confirmed

through two novel findings that come out of an in-depth

examination of the heterogenous regulatory modules. This

includes predicting novel function of transcription factor Sok2

and presenting an explanation for the reduced mating efficiency

that results upon deletion of Fus3.

Results

Co-functional prediction suggests distinct regulatory
pattern between the phosphorylation and transcriptional
networks

Since various networks of phosphorylation and transcriptional

regulation are available, a straightforward question is to test how

well different datasets can recapitulate current biological knowl-

edge. We used five datasets to predict co-functional gene pairs, and

assessed the accuracy by comparing the predictions with a gold

standard dataset (see Materials and methods). The datasets

covered both genetic and biochemical aspects of phosphorylation

network and transcriptional regulatory networks, including KPFN

(functional networks derived from a microarray study of kinase/

phosphatase single deletion strains [4]), TFFN (functional

networks derived from TF single deletion strains [5]), KBN

(biochemical networks derived from in vitro protein chip [1]), KPIN

(physical networks of kinase/phosphatase interaction [10]), and

TFBN (TF binding network derived from ChIP-chip experiments

[12] [13]). Except for KPIN, the other networks are directed. In

each network, the similarity between regulators is calculated by the

Pearson correlation coefficient of their interaction profiles, which

measures the extent two regulators share common targets. It is

expected that highly correlated pairs are co-functional, however

the prediction accuracy varies a lot across the five networks

considered (Figure 1 A, B). In phosphorylation network, functional

networks (KPFN) are more predictive than biochemical or

physical interaction networks (KPIN, KBN); while in the

transcriptional regulatory network the opposite is true.

Apart from our observation, in transcriptional regulatory

network, it has been pointed out in literature that TF signatures

overlap poorly with their corresponding binding targets [5],

possible explanations of which include protein-protein interactions

between TFs [14], homology relationships [14], and indirect

transcriptional regulation [5]. Our data and other studies indicate

a substantial discrepancy between the biochemical networks and

functional networks; explaining this contradictory behavior is an

interesting question that we will address below.

We present a simple model to explain the difference in genetic

signature and biochemical interaction profile. If two regulators act

in a linear pathway (Figure 1C), the deletion of either one will cause

the same effect, thus lead to similar signatures. However, their

binding targets may vary. In contrast, if two regulators work in

parallel (Figure 1D) and they bind to the same targets, the deletion of

either one will have no effect on the expression level of target genes

due to genetic buffering. As a result, they have similar biochemical

interaction profiles but distinct signatures. Hence, we hypothesize

that the regulatory motifs in the phosphorylation and transcriptional

regulatory networks are different, with phosphorylation networks

being abundant with linear pathways and transcriptional regulatory

network abundant with parallel pathways.

Phosphorylation network and transcriptional network
differ in motif usage

To validate our hypothesis that phosphorylation network and

transcriptional regulatory network are abundant with different

motifs, we examined the network motifs of KBN, TFBN, and their

combination. We excluded KPIN because it lacks the direction

between two kinase. In these networks, nodes represent regulators

and targets, and the edges are directed, representing the physical

binding of a regulator to certain targets. In order to investigate the

cooperative pattern between regulators, we enumerated three

node motifs with the restriction that the two regulators have a

direct or indirect regulation on the target gene. By calculating the

occurrence of the motifs and contrasting with randomly shuffled

networks (see Materials and methods), the significance of network

motifs is evaluated (Figure 2).

Our data demonstrates phosphorylation network and transcrip-

tional regulatory network utilize different network motifs. The

motif ‘‘regulator chain’’ is only enriched in phosphorylation

network. Based on the linear regulatory model (Figure 1C), it can

be inferred that KPFN is more predictive of co-function than

KBN, which coincides with our observation. The ‘‘bi-input’’ motif

is also enriched in phosphorylation network, resulting in a genetic

buffering effect of phosphorylation events [4]. In transcriptional

regulatory networks ‘‘feed forward loop’’ (FFL) motif was

enriched, which have already been widely discussed [2] [15]

[16]. The motifs with loop structure within regulators (bi-

component loop1, bi-component loop2) are also enriched in

transcriptional regulatory networks. In these motifs, two TFs

transcribe each other, and generate a bi-stable system, which

switches between two alternative states [17] [2]. The two motifs

tend to characterize an important mode in transcriptional

regulation. TFs cooperate to regulate a set of genes (bi-component

loop 2), but their functions are not completely redundant (bi-

component loop 1). For example, Ste12 and Tec1 are two TFs that

co-regulate genes in filamentous pathway (for example, Kss1), but

only Ste12 activates genes in mating pheromone pathway (for

example, Ste3) (Figure 2). In this case, the resultant signatures are

divergent but their binding profiles overlap with each other on the

co-regulated genes (Figure S1). This phenomenon is termed mixed

epistasis in phosphorylation network [4], where two kinase partly

buffer each other, and also have unique functions themselves. We
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demonstrate that this definition can also be extended to

transcriptional network according to the enriched bi-component

loops. Because of the enriched buffering relationships in

transcriptional regulatory networks, TFBN is more predictive of

co-function than TFFN, which is also consistent with our

observation. In the combined network, the enriched motif is

FFL, which couples phosphorylation with transcription. A

previous study showed that FFL formed by kinase CDK1 and

transcriptional factors was important to drive temporal transcrip-

tional responses in cell cycle regulation [11].

It is noted that the motifs enriched in the phosphorylation

networks are completely disjoint from those in the transcriptional

regulatory networks, which suggests the two networks are structurally

quite different. Our results also support the idea that motifs are

Figure 1. Co-function prediction using different datasets suggests distinct regulatory pattern in phosphorylation network and
transcriptional network. Shown is the fold change of prediction accuracy using different datasets compared with random levels (the fraction of
co-function gene pairs in relevant network). (A) Comparison in phosphorylation networks, KPFN (functional network derived from a microarray study
of kinase/phosphatase single deletion strains), KBN (biochemical network derived from in vitro protein chip), and KPIN (physical network of kinase/
phosphatase interaction). (B) Comparison in transcriptional regulatory networks, TFBN (transcription factor binding network derived from ChIP-chip
experiments) and TFFN (functional networks derived from transcription factor single deletion strains). (C) A linear regulatory model. Regulators R1
and R2 function in a linear regulatory pathway, and T1 and T2 are their targets. R1 and R2 share similar profiles in functional network, but disparate
profiles in physical network. (D) A parallel regulatory model. Regulators R1 and R2 function in a parallel regulatory pathway, and T1 and T2 are their
targets. R1 and R2 share similar profiles in physical network. However, they have no interaction in functional networks due to genetic buffering. Grey:
unobserved data; Green: functional interaction; Blue: physical interaction; Black: no interaction.
doi:10.1371/journal.pone.0033160.g001
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indeed building blocks of biological networks, and different usage of

network motifs carries out distinct function. Except for motif usage,

the difference might also be due to different global topological

features of KBN and TFBN. However, this possibility is not strongly

supported as in both KBN and TFBN the degree distributions obey a

power law form (Figure S2), and their edge densities are at

comparative levels (0.035 in KBN vs. 0.030 in TBN).

Hetero-regulatory modules couple phosphorylation with
transcriptional regulation

Comprehensive techniques that individually analyze phosphor-

ylation network and transcriptional regulatory network have been

extensively studied [1] [11], however, an integrative method is still

lacking in literature. To our knowledge, this is the first attempt to

systematically address the problem of identifying signaling

modules through integration of the two networks. We now

describe the basic procedures in identifying hetero-regulatory

modules (HeR module). Briefly, we first define the hetero-

regulatory similarity score (HeRS score) that measures the co-

function potential of one kinase/phosphatase(KP) and one TF.

Then for each pair of TF-(Kinase/Phosphotase), we use their

HeRS score as the entry of the HeRS matrix (Figure 3A–B), which

represents the similarity between TFs and Kinase/Phosphotase.

Through clustering the HeRS matrix, we can identify hetero-

Figure 2. Motif enrichment analysis reveals different motif usage in the phosphorylation and transcriptional regulatory networks.
Five regulatory motifs were investigated in three networks, phosphorylation network, transcriptional regulatory network, and the combined network.
Node A and B represent the regulators (kinase/phosphatase or transcription factor), and node C represents the target gene. In the combined network,
node A represents kinase/phophatase and node B represents a transcription factor. P-values and Z-scores are calculated based on a randomly
shuffling process (see Materials and methods). For the enriched motifs, an example from the corresponding network is provided.
doi:10.1371/journal.pone.0033160.g002
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regulatory modules in which TFs and Kinases/Phosphotases share

similar targets (Figure 3C).

The HeRS score is defined as the Pearson correlation coefficient

of the signature profile of a kinase/phosphatase and the binding

profile of a TF. Assuming that the transcriptional response to

deletion of a kinase/phosphatase is mediated by TFs that function

in the same pathway, a high correlation is expected for

heterogeneous regulators within pathway. The definition is

inspired by the above network motif analysis. In phosphorylation

network, where linear regulatory model applies (Figure 1C), the

signature profile better characterizes the regulatory role of a

kinase/phosphatase than its binding profile. Conversely, tran-

scriptional regulatory network is enriched with parallel regulatory

model (Figure 1D). As a result, a regulatory target of a TF is often

missing in its signature, but present in the binding profile.

Among the large scale datasets available, we choose KPFN

(which provides the signature profile of the kinase/phosphatase)

and TFBN (while provides the binding profile of the TF) for

integration according to the following reasons: (1) KPFN achieves

the best accuracy in predicting co-functional pairs among the

phosphorylation datasets, and TFBN is the best among transcrip-

tional regulatory datasets; (2) The transcriptome can serve as an

anchor in coupling phosphorylation events with transcriptional

regulation, since any change in the transcriptome can be traced

back to transcriptional regulation. Among the large scale datasets

available, only KPFN characterizes the phosphorylation network

Figure 3. Strategy of identifying hetero-regulatory (HeR) modules. (A) Calculation of hetero-regulatory similarity (HeRS) score, which is the
Pearson correlation coefficient of the functional profile of a kinase and the physical binding profile of a transcription factor. (B) Hierarchical clustering
of hetero-regulatory similarity (HeRS) matrix. (C) A toy example of hetero-regulatory module, which is composed of a group of kinases/phosphatases,
a group of transcription factors, and their target genes.
doi:10.1371/journal.pone.0033160.g003
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at transcriptome level, while KBN and KPIN are at proteome

levels. (3) The signature of a TF is usually reduced compared to

the actual regulatory targets due to buffering effect. As a result,

inference based on TFFN without considering its cellular context

can be misleading. Conversely, the binding profile is an unbiased

set of potential target genes, and is demonstrated to be a better

representative of the transcription factor’s function. In addition, a

comparison between TFFN and TFBN was conducted, and the

HeRS score based on TFBN is proved more accurate in predicting

co-functional heterogeneous pairs than that based on TFFN

(Figure S3).

Next, we identified hetero-regulatory modules (HeR module)

using a clustering approach. A hetero-regulatory module is a set of

kinases/phosphatases (KPs) and transcription factors which share

targets at the transcriptome level. Mathematically, a cluster of KPs

and a cluster of TFs form a HeR module if they have high HeRS

scores with each other. Biologically, a HeR module is a set of

functionally relevant KPs and TFs, in which KPs transmit signals

among each other and regulate the transcriptome through TFs. In

another word, a HeR module is a set of regulators, and it is very

different from co-regulated gene modules derived from common

cluster analysis of microarray datasets, which is a set of co-

regulated targets.

Given the hetero-regulatory matrix, in which the element (i, j)

represents the hetero-regulating similarity of kinase i and TF j,

KPs and TFs are clustered separately by hierarchical clustering. In

a HeR module, heterogeneous regulators stand for the corre-

sponding KPs and TFs. The target set of a HeR module is

naturally derived, composed of genes that are present in the

signature of a KP and bound by a TF in this module (Figure 3A).

We applied the procedure to identify HeR modules through

integration of KPFN and TFBN in S.cerevisiae (see Materials and

methods, Figure S4, Table 1), and evaluated the results. To our

delight, the HeR modules can be neatly mapped to MAPK

pathways. The structure and function of MAPK pathways, as well

as its complexity, is well studied in S.cerevisiae. Therefore, we take it

as a model system to illustrate how HeR modules shed light on the

structure and functions of signaling pathways, the cross talk

between pathways, and how new functional links are inferred.

Hetero-regulatory modules can recover the structure and
function of known signaling pathways

By linking phosphorylation events with transcriptional regula-

tion, HeR modules recover several MAPK pathways known in

S.cerevisiae, including filamentous growth (FG) pathway, mating

pheromone (MP) pathway, cell wall integrity (CWI) pathway, and

high osmolarity glycerol (HOG) pathway, mainly due to the high

HeRS scores between the KPs and TFs in the MAPK pathways

(Figure 4A). For example, Ste7, Ste11, and Ste20 are shared kinase

in the upstream of FG and MP pathway, and they form a tight

cluster with TFs Ste12, Tec1, Mcm1, and Dig1, which also

function in the two pathways. Kinase Fus3 is an inhibitor of the

FG pathway, and it forms a HeR cluster with main FG pathway

TFs, Tec1 and Ste12. Similarly, kinase in the HOG pathway,

Hog1, Pbs2, and Ssk2, are clustered with TFs Hot1 and Sko1.

These TFs are involved in osmotic stress response. In another

example, our method places TF Rlm1 in the same cluster with

kinase Bck1 and Slt2, which are MAPKKK and MAPK in the

CWI pathway, respectively. The high HeRS score suggests Rlm1

is a major TF in the CWI pathway. This is consistent with the

finding that CWI pathway stimulates expression of cell wall

biosynthesis genes via phosphorylation of TF Rlm1 [18]. These

examples show the advantage of HeRS score in coupling

phosphorylation network with transcriptional regulatory network,

and the efficiency of HeR modules in pathway identification.

Besides linking hetero-regulators, a target set is assigned to a

HeR module, which provides the capacity to predict the cellular

function of the corresponding module. The target set of one HeR

module includes all targets regulated by at least one kinase/

phosphotase and at least one TF in this module. For the MAPK

related HeR modules, we investigated the functional distribution

of their target sets. In most cases the abundant function of the

target set is consistent with that of the hetero-regulators (Figure 4B).

For example, 56% of the target genes with known function in the

MP module are annotated with ‘‘mating’’; all target genes in the

CWI module are annotated with ‘‘cell wall’’. In addition, the

kinase in HOG pathway (Hog1, Pbs2, Ssk2) form three HeR

modules with different TFs, each representing different functional

aspects of the HOG pathway, and the target genes are also

enriched with relative functions. For ‘‘HOG Kinase - MP TFs’’

module, 33% of the target genes are annotated with ‘‘mating’’, for

‘‘HOG Kinase - CWI TFs’’ module, 67% of the target genes are

annotated with ‘‘cell wall’’, for ‘‘HOG Kinase - HOG TFs’’ module,

50% of the target genes are annotated with ‘‘stress response’’.

HeR modules reveal the cross-talk between pathways
Many components are shared across different MAPK pathways,

but cells maintain the specificity in response to signals. The

mechanism to suppress erroneous cross-talk between pathways is

not very clear in spite of intensive study on this subject.

In our prediction, the HOG kinase cluster (Hog1, Pbs2, Ssk2)

forms hetero-regulatory modules with several TF clusters besides

HOG pathway TFs. These TF clusters are involved in

FG(Tec1, Ste12), MP(Ste12) and CWI(Rlm1) pathways

separately(Figure 4A–C), which suggests the cross talk between

the HOG pathway and these other pathways. To further

investigate in more detail these HOG related HeR modules, we

examined the target set of the HOG kinase (Hog1, Pbs2, Ssk2).

When the HOG kinase are deleted, most of the up-regulated genes

are annotated in the MP or FG pathway, while the down-

regulated genes are mostly annotated in HOG or CWI pathway.

The up-regulated genes can only be bound by MP/FG TFs

(Ste12, Tec1), while the down-regulated genes are mainly bound

by HOG TFs or CWI TFs. These observations suggest that HOG

kinase suppresses the cross talk between the HOG pathway and

the MP/FG pathway by inhibiting TF activity of Ste12 and Tec1,

and induces cross-talk between the HOG and CWI pathways

through the activation of Rlm1(Figure 4C).

In fact, there are some experimental evidences supporting our

inference. A recent study demonstrated the HOG signaling

probably indirectly interrupts signaling transduction in the FG

pathway between phosphorylation of Kss1(the MAPK in FG

pathway) and activation of Tec1 [19] [20]. Plus, the HOG and

MP pathways are likely insulated from each other by specific

scaffolds, although whether this is sufficient to prevent inappro-

priate cross-talk is not clear [20]. Ultimately, it has been found that

the HOG pathway could also induce Slt2 through the transcrip-

tional factor Rlm1, which induced the cross talk between the

HOG and the CWI pathways [21].

A similar analysis revealed cross-talk between the MP and FG

pathways based on two relevant HeR modules((KP: Ste7, Ste11,

Ste20; TF:Ste12, Tec1), (KP: Fus3; TF: Ste12, Tec1)). All kinase in

these two HeR modules participate in the MP pathway. It is found

that the deletion of STEs (Ste7, Ste11, Ste20) mainly induced

down-regulation of MP pathway genes, and the deletion of Fus3

caused the up-regulation of FG pathway genes. In addition, TF

Ste12 binds to almost all targets of the two HeR modules, but
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Tec1 mainly binds to targets of Fus3. Mcm1, a MP pathway-

specific TF, also forms a HeR module with the STE kinase (KP:

Ste7, Ste11, Ste20; TF: Mcm1, Dig1), and it mainly binds to

targets of STEs. (Figure 5). These results indicate that MP kinase

Fus3 suppresses the cross talk between the MP and FG pathways

by suppressing Tec1, and Ste12 is the common TF of both

pathways.

The above analysis also coincides with experimental findings.

STEs could regulate both MP and FG pathways. However, in

non-inducing conditions, the MP pathway is activated, while the

FG pathway is suppressed. The specificity is decided by Fus3. Fus3

activates the MP specific genes and inactivates the FG pathway by

suppressing Tec1, which is the major TF in the FG pathway.

Hence, deletion of STE kinase will only influence genes in the MP

pathway but not those in the FG pathway. When Fus3 is knocked

out, another kinase, Kss1, will become up-regulated and could

partially take over the role of Fus3 to activate Ste12. However, it

will not inactivate Tec1 as Fus3 does. As a result, the expression of

the MP pathway genes is not sensitive to Fus3 deletion, while FG

pathway genes are activated since Tec1 is activated. [18] [20].

Novel function of Sok2 can be inferred from HeR
modules

We have demonstrated that hetero-regulators in the same

signaling pathway tend to have a high HeRS score, and HeR

modules map well to known pathways. Conversely, a high HeRS

score can indicate a co-pathway relationship of the corresponding

hetero-regulators. Here, we take TF Sok2 as an example to

illustrate how to predict gene functions based on HeR modules.

Sok2 forms a HeR module with known HOG TFs and HOG

kinase (Figure 4A, Table 1), and it binds to many genes in the

HOG pathway (Figure 4B). These data predicts Sok2 as a

potential TF in the HOG pathway. Although no previous study

has reported Sok2’s function in HOG pathway, there is indirect

evidence to support this claim.

First, in our analysis, Msn2, Sok2, and HOG TFs (Hot1 and

Sko1) form a TF cluster (Figure 4A), and the HeRS scores between

Sok2 and HOG kinase are greater than that of the Msn2 and

HOG kinase. Since Msn2 is the substrate of Hog1 [22], the above

data indicates close relationship between Sok2 and HOG

pathway. Plus, in meiosis and mitosis, Sok2 associates with

Msn2/4, and they are co-regulated in the cAMP-dependent

protein kinase signal transduction pathway [23]. These observa-

tions suggest that Sok2 and Msn2/4 may also be co-regulated in

HOG pathway. Second, a recent comprehensive phenotypic

analysis has found that the deletion of Sok2 caused a decrease in

the hyperosmotic stress resistance of cells [24]. This provides direct

evidence that Sok2 is involved in HOG pathway.

Both our results and experimental data suggest Sok2 has an

extensive interaction with HOG pathway, and may be a novel

transcription factor in this pathway.

A potential feedback loop in mating pathway is
predicted

Fus3 and Kss1 are paralogs, and they are redundant MAPKs in

the MP pathway. Previous studies reported that the redundancy of

Table 1. The predicted HeR modules.

HeR Modules Kinase/Phosphotase Corr:K/P TFs Corr:TF Ave. Score

1 BCK2/SLT2 0.73 Rlm1 - 0.08

2 BCK2/SLT2 0.73 Nrg1 - 0.07

3 Chk1 - Adr1/Hsf1 0.79 0.11

4 Cka1 - Ppr1/Cat8 0.99 0.14

5 Cla4 - Met28/Met31 0.91 0.09

6 Cmk1/Cmk2/Rim15 0.86 Zap1/Rgm1 0.87 0.09

7 Cmk1/Cmk2/Rim15/Ssk22 0.79 Zap1 - 0.09

8 Dun1/Elm1 0.82 Hot1/Sko1 0.86 0.09

9 Dun1/Elm1 0.82 Cad1 - 0.07

10 Fus3 - Tec1/Ste12 0.915 0.11

11 Hog1/Pbs2/Ssk2 0.82 Tec1/Ste12 0.915 0.07

12 Hog1/Pbs2/Ssk2 0.82 Sok2/Sko1/Hot1 0.86 0.11

13 Hog1/Pbs2/Ssk2 0.82 Rlm1 - 0.07

14 Ire1 - Adr1/Hsf1 0.79 0.11

15 Kin3 - Tec1/Ste12 0.915 0.08

16 Mih1 - Yhp1/Gsm1 0.75 0.09

17 Sky1 - Met28/Met31 0.91 0.07

18 Ste20/Ste11/Ste7 0.8 Ste12/Tec1 0.915 0.07

19 Ste20/Ste11/Ste7 0.8 Mcm1/Dig1 0.72 0.07

20 Yck3 - Arg80/Arg81 0.75 0.08

Kinase/Phosphotase: Kinases or phosphotases in the HeR module.
Corr:K/P: Average correlation coefficient � of the kinases/phospotases in one cluster.
TFs: TFs in the HeR module.
Corr:TF: Average correlation coefficient � of the TFs in one cluster.
Ave. Score: Average HeRS score of the HeR module.
*: The clustering process is performed using Cluster 3.0.
doi:10.1371/journal.pone.0033160.t001
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Fus3 and Kss1 is partial, since deletion of Fus3 resulted in a 10%

reduction in mating efficiency compared to the wild type level, but

the deletion of Kss1 has virtually no effect [25] [26]. The

phenomenon of partial redundancy is lacking in explanation, while

an in-depth examination of the HeR module reveals the missing

link.

Two HeR modules are related to the MP pathway, HeR

module FUS3 (KP: Fus3; TF: Tec1, Ste12) and HeR module STE

(KP: Ste20, Ste11, Ste7; TF: Tec1, Ste12). As analyzed above,

genes in MP pathway should be down-regulated upon deletion of

the STE kinase, but not sensitive to the deletion of Fus3. When we

compared the target sets of Fus3 and STE, all genes behave as

expected except for MF(ALPHA)2, which is down-regulated upon

deletion of both Fus3 and STE kinase (Figure 5). Interestingly,

MF(ALPHA) 2 is the upstream signal (alpha factor) of the mating

pathway, which activates the STE kinase. A simple analysis based

on these observations could illustrate a positive feedback loop

including Fus3 but not Kss1 (Figure 4D). In addition, MF(AL-

PHA)2 is occupied by Mcm1 and Ste12 but not Tec1, which is

further evidence that MF(ALPHA)2 is transcriptional regulated in

the mating pathway. The deletion of Fus3 leads to a decreased

expression level of MF(ALPHA)2, resulting in the positive

feedback being cut off. In contrast, the deletion of Kss1 does not

affect the activity of MF(ALPHA)2, allowing the positive feedback

loop to be retained. Since another mating pheromone alpha factor

MF(ALPHA)1 is more highly expressed and produces most alpha-

factor, deprivation of this positive feedback explains the slight

reduction (10%) of mating efficiency.

Discussion

Phosphorylation and transcriptional regulatory networks work

in coordination in response to stress and changing environments.

Experimental and computational methodologies needed to dissect

each of these two networks are largely available in model organism

S.cerevisiae. However, it is still difficult to determine the transcrip-

tion factors that respond to a specific kinase/phosphatase. Our

results show that the functional link between these two kinds of

regulators can be accurately predicted by a hetero-regulatory

similarity score, computed from the comparison of their regulatory

profiles. We tried several statistics to measure the similarity

between regulatory profiles, including Pearson correlation coeffi-

cient, topological overlap matrix [27], Jaccard index [28], and

cumulative hyper-geometric density [29]. Pearson correlation

coefficient was chosen since it performed better than the other

statistics. In particular, several hetero-regulatory modules are

predicted from the clustering analysis, and these modules recover

known MAPK pathways in S.cerevisiae. Another major contribution

of this study is that we demonstrate phosphorylation and

transcriptional regulatory networks differ in motif usage, and the

predictive power of the functional signature and physical

interaction profile of a regulator is dependent on its local topology.

In particular, the ‘‘regulator chain’’ motif is abundant in

phosphorylation networks, suggesting these networks are largely

characterized by linear signal transduction. Hence, kinase/

phosphatase regulators in a regulator chain share a similar

functional signature while possessing a divergent binding profile.

However, the story is different for transcriptional regulatory

networks. Due to the frequent use of ‘‘bi-component’’ motifs and

the backup effect between transcription factors, the functional

signature of transcription factors is hardly predictive. Instead, the

binding profile of a transcription factor better represents its

function. In light of these observations, we defined the hetero-

regulatory similarity score, which couples phosphorylation

networks with transcriptional regulatory networks. In utilizing

this scoring methodology, hetero-regulatory modules that link

Figure 4. Hetero-regulatory modules inference results. (A) The predicted hetero-regulatory modules recover known MAPK pathways in
S.cerevisiae, including filamentous growth (FG) pathway, mating pheromone (MP) pathway, cell wall integrity (CWI) pathway, and high osmolarity
glycerol (HOG) pathway. (B) Distribution of function of HeR module’s target genes. The size of the pie, which represents the functional distribution of
the corresponding target gene set, is proportional to the number of target genes in the module. (C) Analysis of the target genes of HOG kinase (Ssk2,
Pbs2, Hog1) related HeR modules reveals cross-talk between HOG pathway and other MAPK pathways, and indicates potential role of Sok2 in HOG
pathway. (D) HeR modules related to transcription factors Tec1 and Ste12 inferred a feedback loop in mating pathway. Shown is the logic of the
inference.
doi:10.1371/journal.pone.0033160.g004

Figure 5. Fus3 inhibits filamentous pathway mainly through inactivating Tec1. Target genes with known function in the two mating
pathway kinase related HeR modules, (KP: Ste7, Ste11, Ste20; TF: Ste12, Tec1) and (KP: Fus3;TF: Ste12, Tec1) are shown. The targets of STEs (Ste7,
Ste11, Ste20) are enriched with mating pathway genes (green), while the targets of Fus3 are enriched with filamentous pathway genes (red). Deletion
of STEs will lead to down-regulation of mating pathway genes, and most of them could be bound by Ste12 and Mcm1 as expected. Deletion of Fus3
mainly up-regulates filamentous pathway genes, which are binding targets of Ste12 and Tec1. Other two filamentous pathway related genes, Dse2
and Dse4, are down-regulated upon Fus3 deletion, and they are inhibitors of filamentous pathway [[32]].
doi:10.1371/journal.pone.0033160.g005
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kinase/phosphatase and transcription factors can be identified

through the computational integration of individual networks

without requiring labor-intensive screening experiments. It

is also worth noticing that network topology is an important

factor when choosing an appropriate method to analyze the

network.

One limitation of our method is that the functional link of some

kinase/phosphatase cannot be predicted because they have no

signature. In other words, the expression level of downstream

genes do not change upon deletion of the corresponding regulator.

One explanation of this phenomenon is the buffering effect. For

example, Mkk1 and Mkk2 are two redundant MAPKKs involved

in the protein kinase signaling pathway that controls cell integrity.

The deletion of either kinase has no significant effect, since the

other one will take over its entire function. Another reason is that

some kinase are inactive in normal conditions. This limitation can

be compensated by measuring the expression level under

conditions of induced stress or by constructing double mutation

strains in which functionally redundant kinase are deleted

simultaneously. Our method will gain additional power when

such data becomes available.

Deciphering the signal transduction in normal cells and cancer

cells is an essential step in curing cancer. In spite of its importance,

understanding of the human signaling pathways is very limited. In

fact, predicting the regulatory relationship between kinases/

phosphatases and transcription factors remains an extremely

difficult problem. The methodology proposed in this study with

hetero-regulatory similarity score and the hetero-regulatory

module attempts to solve this problem. Our results demonstrate

that signal transduction can be accurately recapitulated by a multi-

level analysis of large-scale datasets. Although this study is

conducted and tested in the model organism S.cerevisiae, we

suppose that this method can be easily exploited in other

organisms when the data becomes available. Currently, the

binding specificity of many transcription factors has been studied

through ChIP-chip and ChIP-seq experiments in human. With the

recent development in RNAi technology, the construction of

kinase/phosphatase single mutation cell lines and genome-wide

measurement of gene expression level in these cell lines will be

straightforward. Thus, our approach serves as a promising tool for

the discovery of signaling pathways in human.

Materials and Methods

Materials
Five networks were used in this study: KPFN, a functional

network derived from a microarray study of kinase/phosphatase

single deletion strains [4]; TFFN, a functional network derived

from TF single deletion strains [5]; KBN, a biochemical network

derived from in vitro protein chip [1]; KPIN, physical interaction

network of kinase/phosphatase interaction [10]; TFBN, a TF-

DNA interaction network derived from ChIP-chip experiments

[12] [13]. The datasets of KPFN, TFFN, KBN and KPIN were

downloaded from the supplementary of the original papers, and

we adopted the threshold for regulatory relationship as used by the

original authors. TFBN was downloaded from YEASTRACT:

http://www.yeastract.com/. Each network was represented by a

binary matrix (A), where the rows and columns correspond to

target genes and regulators respectively. Aij~1 if regulator j

regulates target i; Aij~0, otherwise. The gold standard co-

functional gene pairs are manually curated by biological experts

[30], which can be downloaded from the supplementary of the

original paper.

Prediction of co-functional gene pairs
For each network, the functional relevance of two genes is

calculated using the Pearson correlation coefficient (PCC) between

interaction profiles of two regulators (columns). Gene pairs are

ranked descending by PCC, and a percent of top-ranking pairs are

predicted as co-functional. The true positive rate at various

percent levels is calculated and compared across the five networks.

Motif enrichment analysis
In order to evaluate the enrichment of network motifs, their

occurrence is calculated and compared with randomly shuffled

networks similar to a previous study [31]. During the randomi-

zation steps, the degree of genes is preserved. In detail, to generate

such a random network, we performed ‘‘permutations’’ of the real

networks (Figure S5). For KBN and TFBN, 1000 randomized

networks were generated, and the edges of each network were

shuffled 5000 times. We assigned a p-value to a network motif

according to the fraction of randomized networks in which the

motif occurs more frequently than the real network. The Z-score

of a motif is calculated as the difference of its observed occurrence

in the real network and its averaged occurrence in the 1000

random networks, normalized by the estimated standard devia-

tion. In order to randomly shuffle the combined network, KBN

and TFBN were first shuffled separately 5000 times, and then

combined to form a randomized combined network. P-values and

Z-scores are similarly derived from 1000 randomized combined

networks.

Identification of Hetero-regulatory modules
Given the hetero-regulatory score matrix(R pseudo-code see

Figure S6), the goal is to detect sub-matrixes that satisfy the

following criterias: (1) TFs in a module are similar in their HeRS

score profiles; (2) KPs in a module are similar in their HeRS score

profiles; (3) TF and KP have high HeR score with each other. A

heuristic strategy was employed to identify hetero-regulatory

modules in the integrated network. We started by hierarchically

clustering the KPs and TFs respectively(Figure S4). The

dendrogram is cut arbitrarily at PCC level 0.7, thus deriving

several KP clusters and TF clusters. In order to allow multiple

membership of a regulator, HeR modules are detected from two

directions. First, for a KP cluster, a TF that has a HeRS score

greater than a certain threshold T with all KPs in the cluster is

added to form a candidate HeR module. Two candidate HeR

modules are merged if they share a KP cluster and the PCCs of

their TFs are greater than 0.7. Similarly, HeR modules can be

built by adding KPs to TF clusters with the above rules. Thus, the

resulting modules contain at least two KPs or two TFs, and a KP

or TF can be involved in several HeR modules. The threshold T is

set to 0.055, resulting in 23 HeR modules (Table 1). The threshold

is chosen by supervision that allowed the known MAPK pathways

to be identified. However, the result is not sensitive to the

threshold since the HeR scores between hetero-regulators in the

same MAPK pathway rank top in the HeR matrix, and KPs in a

kinase cascade form a tight cluster with each other.

Supporting Information

Figure S1 One example of bi-component loops motif in
transcriptional regulatory network, Ste12 and Tec1.
Ste12 and Tec1 both regulate Kss1 which is a kinase in the

filamentous growth pathway. Ste12 activate the mating pathway

gene Ste3, while Tec1 does not. G1 and G2 are other genes in the

yeast genome which are not regulated by Ste12 and Tec1.

Theoretically and experimentally, single deletion of Ste12 will
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decrease the expression level of Ste3, and the deletion of Tec1 has

no observable effect because of the genetic buffering with Ste12

[[33]]. In this case, similarity in physical binding profile

(cor&0.58) can reveal the close relationship between Ste12 and

Tec1, while functional interaction profiles (cor&0) cannot.

(TIF)

Figure S2 Global topological properties of KBN and
TFBN. In both networks, the degree distributions obey a power

law form.

(TIF)

Figure S3 Comparison of prediction accuracy of hetero-
regulatory scores derived from TFFN and TFBN. The

HeRS score based on TFBN is proved more accurate in predicting

co-functional heterogeneous pairs than that based on TFFN.

(TIF)

Figure S4 Hierarchical clustering of the hetero-regula-
tory similarity matrix. The clustering was performed on

HeRS matrix using Cluster 3.0. The options used were ‘‘Complete

Linkage’’, and processed simultaneous for the columns(TFs) and

rows (Kinases/Phosphotases). The cutoff of significant Pearson

correlation coefficient(PCC) is set to 0.1.

(TIF)

Figure S5 Permutation procedure in generating the
random network. As shown, regulatory gene pairs like

(R1,T1) and (R2,T2) are randomly chosen, then the edges are

permutated.

(TIF)

Figure S6 The pseudo-code for R.

(TIF)
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