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Abstract

Background: Identification of bona fide direct nuclear receptor gene targets has been challenging but essential for
understanding regulation of organismal physiological processes.

Results: We describe a methodology to identify transcription factor binding sites and target genes in vivo by intersecting
microarray data, computational binding site queries, and evolutionary conservation. We provide detailed experimental
validation of each step and, as a proof of principle, utilize the methodology to identify novel direct targets of the orphan
nuclear receptor NR2F1 (COUP-TFI). The first step involved validation of microarray gene expression profiles obtained from
wild-type and COUP-TFI2/2 inner ear tissues. Secondly, we developed a bioinformatic tool to search for COUP-TFI DNA
binding sites in genomes, using a classification-type Hidden Markov Model trained with 49 published COUP-TF response
elements. We next obtained a ranked list of candidate in vivo direct COUP-TFI targets by integrating the microarray and
bioinformatics analyses according to the degree of binding site evolutionary conservation and microarray statistical
significance. Lastly, as proof-of-concept, 5 specific genes were validated for direct regulation. For example, the fatty acid
binding protein 7 (Fabp7) gene is a direct COUP-TFI target in vivo because: i) we identified 2 conserved COUP-TFI binding
sites in the Fabp7 promoter; ii) Fapb7 transcript and protein levels are significantly reduced in COUP-TFI2/2 tissues and in
MEFs; iii) chromatin immunoprecipitation demonstrates that COUP-TFI is recruited to the Fabp7 promoter in vitro and in
vivo and iv) it is associated with active chromatin having increased H3K9 acetylation and enrichment for CBP and SRC-1
binding in the newborn brain.

Conclusion: We have developed and validated a methodology to identify in vivo direct nuclear receptor target genes. This
bioinformatics tool can be modified to scan for response elements of transcription factors, cis-regulatory modules, or any
flexible DNA pattern.
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Introduction

The nuclear receptor family encompasses a set of ligand-

regulated transcription factors that bridge a variety of systemic

endocrine signals with a tissue-specific gene regulation response

[1]. Although it is known that these hormone ligands play crucial

roles in numerous homeostatic and pathologic processes–such as

metabolism, development, cell division and cancer, and repro-

duction–the list of specific genes targeted by each nuclear receptor

is far from exhaustive. Thus, a more complete catalogue of all

nuclear receptor DNA binding sites and gene targets is an

attractive goal: to have a deeper mechanistic understanding of a

hormone’s actions in health and disease, and also allow more

precise pharmacologic manipulations to modulate its therapeutic

activities and/or unwanted secondary effects.

Numerous efforts have recently been directed towards estab-

lishing comprehensive nuclear receptor gene regulatory networks.

High-throughput methods that aim at defining the precise

genomic sites where a nuclear receptor is physically associated (a

process termed ‘‘location analysis’’) are derived from the

chromatin immunoprecipitation (ChIP) technique [2]. Variants

of this approach have been used to search for the genomic binding

sites of 7 nuclear receptors, each technique having different

degrees of bias in terms of the genomic regions probed, resolution,
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amplification of DNA fragments, analysis algorithms, and other

factors [2]. These studies have yielded invaluable information

regarding tens to thousands of DNA sites bound and regulated by

each specific transcription factor. However, the sensitivity of these

assays is limited, they depend on the quality of the antibody,

require a specific minimum number of cells to be technically

feasible, and tend to be costly due to the need of extensive

sequencing or hybridization arrays. Furthermore, the list of

binding sites generated is considered to be incomplete, since the

procedure is highly susceptible to experimental manipulations,

may not detect transient interactions, and is limited to the specific

tissue and developmental time assayed. This process can be more

difficult when studying orphan receptors, since a ligand is not

available to probe for hormone-dependent gene regulation.

COUP-TFs (Chicken Ovalbumin Upstream Promoter Tran-

scription Factors) are members of the orphan subfamily of nuclear

receptors [3,4]. The two homologues in mice, COUP-TFI/

NR2F1 (Entrez Gene ID 13865) and COUP-TFII/NR2F2

(Entrez Gene ID 11819), have overlapping expression patterns

but independent, essential functions [3,5,6]. COUP-TFI is

required for central and peripheral neurogenesis and cortical

patterning [7,8]. The COUP-TFI2/2 mouse has a high incidence

of perinatal mortality, malformations in the glossopharyngeal

ganglion, defects in axonal arborization, and loss of cortical layer

IV due to the absence of thalamocortical connections [7,8]. On

the other hand, a transgenic mouse that overexpresses COUP-TFI

in the developing telencephalon correlates with ventral cortical cell

fating and increases the rate of cell-cycle exit and differentiation of

the cortical ventricular zone and subventricular zone progenitors,

thereby depleting the progenitor pool prematurely and unbalanc-

ing the normal proportion of early and late-born neurons [9].

Conversely, knockdown of both COUP-TFI and COUP-TFII in

primary neurospheres in vitro and at e10.5 in vivo results in

prolonged generation of early-born neurons at the expense of

gliogenesis, suggesting that the precise temporal expression of both

COUP-TF homologues is required by neural precursor stem cells

(NPSC) to acquire gliogenic competency [10]. Furthermore,

COUP-TFI2/2 mice display an intriguing inner ear phenotype

consisting of a shorter cochlear duct, supernumerary outer hair

cells and occasional inner hair cell duplications, decreased

innervation, and postnatal degeneration of the basal turn of the

organ of Corti [6,11]. These malformations are incompatible with

hearing. Indeed, a deaf child who has many of the abnormalities

identified in the COUP-TFI2/2 mice was recently discovered to

have a chromosomal microdeletion of the entire COUP-TFI locus

[12].

We have pursued the identification of COUP-TFI in vivo direct

targets to reveal genes and pathways that are important for inner

ear development and functional maturation. Within the nuclear

receptor superfamily, COUP-TFs have the highest degree of

evolutionary conservation [3,4]. Although these are highly studied

receptors, the search for their targets has previously been done

only on a gene-by-gene basis [5]. There are over 75 known in vitro

COUP-TF targets, most of them related to lipid/steroid

metabolism. However, validated in vivo data is limited, and

information on inner ear targets is nonexistent. In vitro analyses

have characterized COUP-TFs to mainly be transcriptional

repressors but they can also activate some target genes [3,5].

COUP-TFs bind with the highest affinity to DNA response

elements of the AGGTCAnAGGTCA configuration, or DR1s

(direct repeats with 1 spacer) [13]. However, these orphan

receptors are notorious for the diversity of their response elements,

as they can also bind promiscuously to sites ranging from the DR0

to the DR13 configuration, as well as to everted and inverted

repeats, making the bioinformatic search for DNA binding sites

particularly challenging. In order to contend with these issues and

to identify candidate COUP-TFI inner ear and brain target genes,

we have employed a methodology that intersects microarray data,

in silico genomic analysis with a Hidden Markov Model, and

evolutionary conservation filtering.

Results

Identification of Candidate COUP-TFI Gene Targets by
Microarray Analysis

In order to establish a list of candidate COUP-TFI gene targets,

we analyzed the differential gene expression profiles of the wild-

type and the COUP-TFI2/2 P0 inner ears. For this purpose, we

performed a total of 8 microarray experiments using Affymetrix

MG-U74Av2 chips, including 2 biological and 2 experimental

replicates per genotype sample. Due to limiting RNA yields from

the newborn inner ear, each microarray chip was hybridized with

an RNA pool from multiple tissue samples, a method that has the

additional advantage of eliminating some of the normal biological

variability across individuals [14].

Given the lack of consensus within the bioinformatics community

regarding the different microarray normalization methods [15], we

analyzed our data using two different algorithms: GC-Robust Multi-

Array (GCRMA) [16] and dChip [17]. Each normalized expression

dataset was subsequently analyzed by 2-way ANOVA, evaluating

both genotype and experimental effects. This statistical approach

allowed us to 1) account for an experimental effect observed in the

expression value of many genes, therefore increasing the power of

the analysis, and 2) filter out potential expression differences due to

contamination during dissections (contaminating genes would

present as probes with a significant interaction p-value). Using this

methodology, the gene hits from the GCRMA-normalized

expression dataset consisted of 256 genes with a significant genotype

effect (p,0.01) and no interaction (p.0.01). Similar cutoffs applied

on the dChip-normalized dataset resulted in 250 significant gene

hits. Within both groups, COUP-TFI has the lowest genotype p-

value, validating our statistical approach (Table S1).

Surprisingly, only 51 genes were present in both hit lists

(Figure 1A). In fact, the correlation between the outputs of the

two normalization methods was quite limited, as evidenced by

plotting the two corresponding genotype p-values for each probe

(r2 = 0.07) - although we did observe a stronger correlation among

the lower p-values (data not shown). The same trend was observed

after plotting the interaction p-values, the genotype rank number

for each probe, and the genotype p-values of those probes that did

not have a significant interaction (p.0.01) in both methods (data

not shown). In view of these facts and in order to obtain a hit list

with the maximum confidence, we narrowed down our final gene

list to 176 probe IDs (171 unique genes) that have the best

genotype p-value correlation in the two normalization methods (no

interaction, a genotype p,0.01 by one normalization method, and

a genotype p,0.05 in the other) (Figure 1B) (See Table S1 and

Table S2 for complete expression and statistical data as well as

BED format files). Within the 176 candidate COUP-TFI

microarray targets, five gene ontology categories are significantly

enriched: cell adhesion, cartilage development, regulation of

progression through cell cycle, myeloid cell differentiation and

cellular lipid metabolism. Most of the COUP-TF targets known

today are associated to lipid/steroid metabolism, and this

pathway, specifically the modulation of cholesterol levels, plays

an important role in hair cell mechanotransduction and outer hair

cell function [18,19].

COUP-TFI/NR2F1 Target Genes
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We next examined the expression level of the top 10 genes on

the list by real-time RT-PCR in individual pairs of wild-type and

COUP-TFI2/2 P0 mouse inner ears (n = 4). With this approach,

we verified 7 out of the 10 gene expression changes with statistical

significance (p,0.05) (Figure 1C). These results are noteworthy

when comparing whole inner ears because COUP-TFI is only

expressed in a restricted domain of the inner ear (mostly the

sensory epithelium) at this stage [6]. From the genes that were not

validated with statistical significance, jun is an in vitro indirect

COUP-TF target [20], and ucp1 expression is deregulated upon

COUP-TF knockdown in a skeletal muscle cell culture model [21],

suggesting that our microarray hit list likely contains real COUP-

TFI targets, some of which likely cannot be validated by the

sensitivity of our assay. Additional real-time validation of the

microarray results is displayed in Table S3.

Of the 176 probe IDs in the hit list, 59% (104 probes) have a

lower expression level in the wild-type samples, a result consistent

with the proposed mechanism of COUP-TF action as predom-

inantly a transcriptional repressor [5]. In addition, 7 gene hits

have been directly implicated in human and/or mouse hear-

ing loss (Table 1), and 7 others are related to gene families

associated with inner ear abnormalities (Table 2) [22–24]. We

also determined that 43% (75) of our gene hits are documented

inner ear transcripts curated in inner ear expression databases

[24–26].

In Silico Genomic Prediction of COUP-TF Binding Sites
Using a Hidden Markov Model

In an effort to validate further the microarray gene hits and

differentiate between direct and indirect COUP-TFI targets, we

set out to identify if COUP-TF response elements were present

within the nearby regulatory sequences of the microarray gene

hits. This was problematic because the available public

transcription factor search sites were inadequate for this purpose,

since their position frequency matrices were derived from less

than 20 known binding sites and they only described one type of

response element, namely, the DR1 configuration. Since COUP-

TFs can bind a diversity of DNA response elements [13], we

decided to construct a Hidden Markov Model (HMM) that would

allow flexibility in the direction of the half-sites and in the

number (if any) of nucleotide spacer sites [27]. This strategy

would allow us to take advantage of the firm probabilistic HMM

Figure 1. COUP-TFI inner ear microarray analysis and validation. A. Normalization of the COUP-TFI microarray data by GCRMA yielded 256
significant gene hits (genotype p,0.01, interaction p.0.01), while normalization with dChip resulted in 250 significant expression changes. Only 51
probes overlap in both data sets. B. Correlation of genotype p-values for probe sets that do not interact (p.0.01) and have a genotype p,0.01 in the
GCRMA or dChip-normalized data sets. Probes with genotype p,0.01 by one normalization method but genotype p.0.05 by the other method
(shaded area) were eliminated from the final hit list. C. Real-time RT-PCR validation of the top 10 microarray hits. The graph compares the wild-type/
COUP-TFI2/2 fold change indicated by each set of normalized microarray data and by real-time RT-PCR performed with individual pairs of inner ears
(n = 4, * = p,0.05).
doi:10.1371/journal.pone.0008910.g001

COUP-TFI/NR2F1 Target Genes
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model and to extend our search beyond individual promoters

into the genomic scale.

To obtain the specific COUP-TF HMM parameters, we first

created a detailed database of all COUP-TF targets reported in

the literature, which we annotated and verified as described in

the Materials and Methods section. This direct COUP-TF target

gene database consists of 55 genes and 61 binding sites from 7

different species. The specific binding regions were classified as

half-sites, direct (DR), inverted (IR) and everted (ER) repeats of

various spacings. Half-sites were discarded from the list, since

they can be described with simple position weight matrices, and

biochemical data suggests that COUP-TFs bind as dimers [13].

Everted and inverted repeats were also discarded since they

were too few to create statistically reliable position frequency

matrixes for each half-site, and the literature suggests that the

nucleotide distribution is not equivalent in each orientation

[27]. The final list of HMM training sequences consists of 49

direct repeats that range from the DR0 to the DR13 spacer

configuration (File S1). HMM emission and transition proba-

bilities were then determined as described by Sandelin et al

[27], using Laplace’s rule as a pseudocount strategy [28]. A

classification-type HMM with circular local alignment and a

reverse complement version was generated with this data

(Figure 2A and File S1).

We used the GHMM C++ library [29] (python bindings) to

examine target sequences with our COUP-TF HMM parameters

and the Viterbi algorithm [28]. To evaluate the sensitivity of our

model and optimize the j probability (probability of entering the

match state), we used the Viterbi algorithm to analyze a 9000bp

sequence containing all 49 training sites and ,100bp of their

surrounding native genomic environment. We were able to

detect a high proportion of the training set (87% correctly labeled

training site nucleotides) at a stringent j value of 0.01, and up to

92% correctly-labeled nucleotides with j. = 0.04 (Figure 2B).

These results are consistent with previous reports, which indicate

a sensitivity plateau when j.0.04 [27], but our HMM has an

improved level of maximum sensitivity (92% vs 85%). On the

other hand, a negative control random nucleotide sequence of

the same size yielded no false positives up to a j value of 0.006,

with only 8.4% false detection at a j of 0.05 (Figure 2B). We also

Table 1. Microarray hits associated with human/mouse hearing loss.

Gene Description Wild-type/COUP-TFI2/2 Species References

Agc1 Aggrecan 1 0.86 Mouse Rittenhouse et al 1978

Col7a1 Procollagen type 1 alpha 1 0.89 Mouse Bohne and Harding 1997;
Sokolov et al 1995

Crym Crystallin, mu 1.22 Human Abe et al 2003

Gjb2 Gap junction membrane
channel protein beta 2

1.2 Human/Mouse Gilford et al 1994;
Kelsell et al 1997;
Brown et al 1996;
Cohen-Salmon et al 2002

Mgp Matrix gla protein 0.88 Human Keutel Syndrome Munroe et al 1999

Pdgfra Platelet derived growth factor
receptor, alpha polypeptide

0.89 Mouse Deol et al 1970;
Duttlinger et al 1995;
Stephenson et al 1991

Sod1 Superoxide dismutase 1, soluble 0.74 Mouse Seidman et al 1991;
Seidman et al 1993;
McFadden et al 1999;
Ohlemiller et al 1999

doi:10.1371/journal.pone.0008910.t001

Table 2. Microarray hits related to gene families implicated in human/mouse hearing loss.

Gene Description Wild-type/COUP-TFI2/2 Human family Mouse family

Aldh1a1 Aldehyde dehydrogenase family 1,
subfamily A1

0.75 Raldh2

Cldn1 Claudin 1 0.83 Claudin14 Claudin11

Col6a1 Procollagen type 6 alpha 1 0.92 Col2a1, Col4a3, Col4a4, Col4a5,
Col11a1, Col11a2, Col9a1

Col11a2, Col4a3, Col4a4, Col4a5,
Col2a1

Kcna5 Potassium voltage-gated channel, shaker-
related subfamily, member 5

0.79 Kcne1, Kcnq1, Kcnq4 Kcne1

Slc25a1 Solute carrier family 25 (mitochondrial
carrier, citrate transporter), member 1

1.15 Slc12a2, Slc12a6, Slc12a7, Slc17a5,
Slc19a2, Slc1a3, Slc26a4, Slc26a5,
Slc4a2, Slc4a7, Slc30a4, Slc9a1

Tectb Tectorin beta 1.4 Tecta Tecta

Timm23 Translocase of inner mitochondrial
membrane 23 homolog (yeast)

1.17 Timm8a Timm8a

doi:10.1371/journal.pone.0008910.t002

COUP-TFI/NR2F1 Target Genes

PLoS ONE | www.plosone.org 4 January 2010 | Volume 5 | Issue 1 | e8910



Figure 2. COUP-TF Hidden Markov Model (HMM) framework, validation and genomic scans. A. Graphical representation of the COUP-TF
HMM framework. Each arrow represents a transition state, diamonds and circles denote emission states. The system starts from a background state
(ie, a non-binding site nucleotide) and searches for matches to direct repeats ranging from the DR0 to the DR13 configuration. B. Sensitivity and
selectivity of the COUP-TF HMM. To evaluate sensitivity of the COUP-TF HMM, a positive control sequence containing all 49 training sites was
analyzed iteratively with a Viterbi algorithm and increasing values of j. Results are plotted as the percentage of training-site nucleotides that were
correctly labeled (left y-axis). To evaluate selectivity (right y-axis), three negative control sequences of the same size were evaluated in a similar
manner. C. The ChromAnalyzer Java library performs custom HMM searches at a genomic level. (1) The end user inputs 2 text files: one with the
corresponding HMM parameters, and another file with a chromosome fasta file. (2) ChromAnalyzer translates the chromosome to numerical format
and fragments the sequence into smaller, overlapping fragments. (3) G-HMM software [29] searches for HMM matches in each fragment using the
Viterbi algorithm. (4) The location of each HMM match is translated into chromosomal coordinates and (5) delivered to the enduser as a standard BED
file. D. Distribution of COUP-TF HMM matches in the entire mouse, human and rat genomes. * = percentage of labeled nucleotides differs from the
species’ mean by more than 2 standard deviations.
doi:10.1371/journal.pone.0008910.g002
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tested two other negative controls: 1) a sequence of the same

length that reflects nucleotide distribution at the genomic level

and 2) a sequence of the same size that reflects nucleotide

distribution within 5000bp of established transcription start sites

(UCSC, mm8 assembly, 46% GC content). Both experiments

yielded low false positive detection rates even at high values of j

(8.3% and 6.1%, respectively, Figure 2B). Based on these

results, we selected a j value of 0.006 to run complete genome

scans, a probability that allows for a high sensitivity with very low

false-positive costs.

Short nucleotide sequences can be processed directly using the

GHMM python bindings [29]. However, since there is no publicly

available software to process entire chromosomes, we created the

ChromAnalyzer Java library. This tool was designed with the

flexibility required to identify binding sites of any transcription

factor (Figure 2C, described in detail in the Materials and

Methods section). Using this software and the HMM parameters

described above, we searched the entire mouse, human, and rat

genomes for candidate COUP-TF DNA binding sites. We found a

total of 2,436,761 unique COUP-TF HMM matches in the mouse

genome; as expected, the distribution of spacer states was similar

to that of the training set (data not shown). On average, we found

1 site every 1085bp, and the number of sites was roughly

proportional to the size of each chromosome. In fact, the

percentage of nucleotides labeled as a COUP-TF HMM match

was fairly constant throughout the genome (Figure 2D). The

human genome yielded a similar density of COUP-TF HMM

matches (1 site every 1086bp), with a constant percentage of

labeled nucleotides throughout the genome, except for human

chromosomes 17 and 19, which had a significantly higher number

of sites when correlated to the chromosome size. The human and

mouse chromosome Y, on the other hand, resulted in significantly

fewer HMM matches than expected from the number of

sequenced base pairs in these chromosomes. The rat genome

had a slightly lower COUP-TF match frequency, resulting in 1 site

every 1124 genomic base pairs. The complete list of candidate

COUP-TF binding sites (ie, COUP-TF HMM matches) in the

mouse genome is available in BED format directly from the

authors. This is essentially a database of the DR0-DR13 sites in

the entire mouse genome that can be uploaded into the UCSC

Genome Browser [30]. Similar files corresponding to the COUP-

TF HMM matches in the rat and human genomes are also

available.

The number of genomic COUP-TF HMM matches is high

when compared to the number of nuclear receptor binding sites

found by ChIP-based location analyses [2]. However, this

number of HMM matches corresponds to the sum of 9 different

spacer configurations. As further validation, we observed that

most of these sites are present within non-coding genomic

sequences; only 2.7% of all HMM matches had any overlap

with coding regions (defined here as both UTRs and coding

exons). On average, we found 1 site every 933 non-coding bps,

and only 1 site per 13,073 coding bps. This represents a 36.8-

fold enrichment of candidate COUP-TF binding sites within the

non-coding genomic regions. After correcting for the size of

both coding and non-coding genomic compartments, we still

observed an 11.63-fold enrichment in the non-coding section

(roughly 1 in every 79.3 non-coding bps was labeled as a

COUP-TF site, compared to 1 in every 1110 non-coding bps).

At any rate, the high density of COUP-TF HMM matches

resulted in at least one site within the promoters of all but 2 of

our microarray hits (intersected via the UCSC Table Browser

[30]). Thus, an additional filtering step was required to identify

functional regulatory sites.

Correlation of Microarray and Bioinformatics Data with
Evolutionary Conservation

At present, the most popular way of increasing the specificity of

computational transcription factor binding site searches is a

technique known as phylogenetic footprinting [31]. This concept is

based on the assumption that evolution selects against mutations

within DNA regions that have an important regulatory function;

thus creating evolutionary ‘‘cold spots’’ within the critical genomic

segments that regulate gene expression. To perform this analysis,

we used UCSC’s [30] ‘‘Most Conserved’’ track and phastCons

conservation score to filter our candidate COUP-TF binding site

list. For each microarray hit, we extracted and classified COUP-

TF HMM matches within any of 3 proximal regulatory regions: 1)

promoter; defined here as 5000bp upstream of each transcription

start site associated with the gene, 2) 59 UTR, and 3) first intron of

all transcripts associated with the gene. The classification included

one of 3 mutually exclusive degrees of conservation, in order of

decreasing importance: 1) overlap with a UCSC Most Conserved

segment, 2) conservation score .0.7, and 3) conservation score

.0.3. We found a total of 258 individual HMM matches that

fulfilled one of the conservation conditions, corresponding to 93

unique genes within our microarray hit list. An interesting finding

was that the highest number of COUP-TF conserved sites was

found within the first introns of those transcripts (149 intronic

DNA elements in total, compared to 65 in promoters and 24

within the 59UTRs). This information, along with our COUP-TF

microarray results, was used to create a ranked list of candidate

COUP-TFI targets in the inner ear. Ranking was weighed with

the following criteria, in decreasing order: 1) lower microarray

genotype p-value or higher fold change 2) presence and number of

‘‘Most Conserved’’ COUP-TF HMM matches (in any location) 3)

presence and number of COUP-TF HMM matches with a

conservation score above 0.7 and 4) presence and number of

COUP-TF HMM matches with a conservation score above 0.3.

The top 25 hits are displayed in Table 3, and the full database is

available as Table S3. Our analysis is validated by the fact that

Acox1, a known COUP-TFI target [32], is among the highest

ranked candidate target genes in our database.

Validation of a Candidate COUP-TFI Target In Vitro and In
Vivo

The Fabp7 gene (fatty acid binding protein 7, brain, Entrez

Gene ID 12140) was ranked 15th within the candidate target gene

list (Table 3) and selected for in vitro validation experiments using

wild-type and COUP-TFI2/2 mouse embryonic fibroblasts

(MEFs). Fabp7 is the brain-type member (BLBP) of the

intracellular lipid binding protein family – although it is also

expressed in other tissues such as the retina and mammary gland

[33]. In particular, Fabp7 and COUP-TFI have similar temporal

and spatial expression patterns in the ventricular zone of the

developing brain [10,34,35]. Of note, the majority of known

COUP-TF targets belong to the glucose and lipid metabolism

pathways (Table S2), and COUP-TFII is described to induce

Fabp2 (intestinal fatty acid-binding protein) expression in vitro [36].

Fabp7 is down-regulated in the COUP-TFI2/2 inner ear as

determined by our microarrays and contains 2 closely-spaced

conserved COUP-TF HMM matches (DR0 and DR2) within its

upstream promoter. As a preliminary step, we verified significant

changes in the expression level of Fabp7 in the COUP-TFI2/2

MEF cell line by real-time RT-PCR (Figure 3A). Next, we

performed chromatin immunoprecipitation (ChIP) to determine if

COUP-TFI binds directly to the predicted response elements. In

wild-type MEFs, there is a 3-fold enrichment of COUP-TFI

COUP-TFI/NR2F1 Target Genes
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physical association to the binding site region of the Fabp7

promoter as compared to binding in COUP-TFI2/2 MEFs

(Figure 3B).

To validate Fabp7 as an in vivo target gene, we analyzed the

Fabp7 transcript levels in wild-type and COUP-TFI2/2 tissues.

Using real-time RT-PCR we measured that there was a lower

Fabp7 mRNA level in COUP-TFI2/2 P0 inner ears as compared

to wild-type controls (Figure 3C). Similar changes in Fabp7

transcript levels were observed in the COUP-TFI2/2 P0 brain

cortex (Figure 3C). These differences in Fabp7 expression were

also evident at the protein level: FABP7 protein was 34% lower in

inner ears and 27% lower in the brain of newborn COUP-TFI2/2

mice, when compared to the corresponding wild-type tissue

controls (Figures 3D and E). The moderate decrease of Fabp7

transcript and protein levels can be explained by a compensatory

upregulation of COUP-TFII levels in both COUP-TFI2/2 brain

and inner ear tissues (Figure S1).

We next used the newborn brain to determine if COUP-TFI

was directly binding to the Fabp7 promoter in vivo. ChIP

experiments were used and confirmed that COUP-TFI was

enriched and physically associated to the Fabp7 promoter binding

sites in the wild-type compared to COUP-TFI2/2 P0 brain

(Figure 4A). No COUP-TFI binding was observed at the negative

control genomic region (the housekeeping gene Cyclophilin A)

(Figure 4A). To elucidate the state of the chromatin at the Fabp7

promoter by which COUP-TFI regulates Fabp7 expression, we

compared the levels of H3K9 acetylation, a marker of active

chromatin, in the wild-type and COUP-TFI2/2 brain tissue. In

vivo ChIP revealed that H3K9 acetylation is more enriched at the

Fabp7 promoter in the wild-type than in COUP-TFI2/2 newborn

brains (Figure 4B), consistent with a mechanism that COUP-TFI

regulation of Fabp7 is associated with higher chromatin accessi-

bility and transcriptional activity.

To identify potential candidate histone acetyltransferases that

might be recruited to the Fabp7 promoter to enhance COUP-TFI

regulation, a series of in vivo ChIPs were performed to test if CBP,

p300 and SRC-1 cofactors were present. CBP/p300 are general

coactivators recruited by most nuclear receptors, and SRC-1 is a

known COUP-TFI coactivator at the PEPCK and NGFI-A

promoters [37,38]. In vivo ChIP analyses revealed an enrichment of

Table 3. Top 25 candidate inner ear COUP-TFI targets.

Rank Probe ID
Gene
Symbol

Microarray
genotype p-
value Rank*

Microarray
fold-change
Rank* P MC P .0.7 P .0.3 5U MC 5U .0.7 5U .0.3 FI MC FI .0.7 FI .0.3

1 161750_F_AT NCAM1 119 88 10 9 8

2 103212_AT CDCA7L 34 31 9 5 8

3 101469_AT NEDD9 98 94 3 5*** 1 2

4 92958_AT FOXO3A 124 159 1 1 6

5 101515_AT ACOX1 29 30 9 1

6 100952_AT STIM1 103 24 1 4 2 8

7 103575_AT CHD4 33 34 7** 1 1

8 161461_AT BMP7 15 115 1 1 2 2 1

9 94297_AT FKBP5 173 171 1 1 3

10 95731_AT SESN1 162 167 2 3

11 104671_AT AMPD3 142 96 1 1 2 1

12 100354_AT TBX15 9 133 2 3 1

13 101542_F_AT DDX3X 7 126 3** 1

14 102414_I_AT DNAJC3 23 142 3 1

15 98967_AT FABP7 148 165 1 1

16 92202_G_AT ZBTB16 172 174 1 1

17 104728_AT PROS1 70 62 1 1 1 1

18 160139_AT HSPB8 125 146 1 1 1

19 93527_AT KLF9 151 155 1 2

20 96825_AT TENC1 72 73 3

21 102426_AT CASQ1 113 132 1 1 1

22 93619_AT PER1 158 154 1 1

23 103460_AT DDIT4 164 170 1

24 103040_AT CD83 117 145 1 1

25 98108_AT CRABP1 100 122 2

Ranking criteria (leftmost column) integrate microarray data and number of conserved COUP-TF HMM hits, as well as the degree of evoluationary conservation.
P = promoter (5000bp); 5U = 59UTR; FI = first intron of all transcripts associated with the gene.
MC = Most conserved site; .0.7 = site with a conservation score greater than 0.7; .0.3 = site with a conservation score greater than 0.3.
*Microarray ranking range from 1–175, higher rank numerical value with lower genotype p-value or greater fold-change.
**Corresponds to a late transcription start site.
***Sites distributed in the first intron of different transcripts, or in the first intron of a particular splice variant.
doi:10.1371/journal.pone.0008910.t003
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CBP and SRC-1 recruitment to the wild-type brain Fabp7

promoter compared to the COUP-TFI2/2 samples (Figure 4B).

There was no in vivo p300 recruitment observed for either

genotype (data not shown). These results lead to a gene regulation

model (Figure 4C), where COUP-TFI binds the conserved

DR0/DR2 sites in the proximal upstream Fabp7 promoter,

recruiting CBP, SRC-1 and possibly other coactivators that

promote local H3K9 acetylation, creating an active chromatin

environment and increasing the transcription rate of the Fabp7

gene.

Validation of Other Predicted COUP-TFI Targets
In order to expand the experimental validation of candidate

COUP-TFI target genes–and to strengthen the ‘proof-of-concept’

of our methodology–we performed additional in vitro validation

experiments using wild-type and COUP-TFI2/2 MEFs. We

selected 4 additional candidate target genes that contain at least

one conserved COUP-TF HMM match within their nearby

regulatory regions, and first determined if they are also modulated

in a COUP-TFI-dependent manner in these cell lines by

performing real-time RT-PCR. Three genes (Crapb1: cellular

retinoic acid binding protein 1, Entrez Gene ID 12903; Sod1:

superoxide dismutase 1, soluble, Entrez Gene ID 20655; and

Casq1: calsequestrin1, Entrez Gene ID 12372) were significantly

deregulated at the transcript level in COUP-TFI2/2 MEFs when

compared to wild-type cells, while one gene (Foxo3a: forkhead box

O3a, Entrez Gene ID 56484) did not show statistically significant

changes in this context (Figure 5A). We then investigated physical

recruitment of COUP-TFI to the predicted response elements for

each of the 3 deregulated genes. ChIP assays using primer sets

flanking each of the candidate binding sites confirmed COUP-TFI

recruitment to at least one response element in each candidate

gene in the wild-type cells (Figure 5B), but not in the COUP-

TFI2/2 negative control reactions. Specifically, ChIP assays

revealed 2-fold enrichment for each of the Crabp1 promoter

COUP-TF response elements, 2-fold enrichment for the binding

site in the Casq1 59UTR as well as over 8-fold enrichment for the

response element in the first intron of this gene, and 6-fold

enrichment for the conserved COUP-TF HMM match in the Sod1

promoter (Figure 5B).

We did not evaluate the physical association of COUP-TFI to

the Foxo3a predicted binding sites in vitro, since this gene’s

expression is not deregulated in the absence of COUP-TFI in

our cell culture model (Figure 5A). However, the microarray data

indicated that Foxo3a is deregulated in the COUP-TFI2/2

newborn inner ear, and therefore is a potential direct COUP-

Figure 3. Fabp7 is a COUP-TFI target. A. Real-time RT-PCR shows lower Fabp7 transcript levels in COUP-TFI2/2 MEFs (n = 5; * = p,0.01). B.
Chromatin immunoprecipitation assay demonstrates binding of COUP-TFI to the wild-type Fabp7 promoter in cell culture. C. Real-time RT-PCR for
Fabp7 transcript levels using P0 inner ears and newborn brain cortex (n = 5, * = p,0.05). D. Western Blot analysis for FABP7 in P0 inner ear whole cell
protein extracts, analysis revealed a 34% reduction in FABP7 protein levels in the COUP-TFI2/2 tissue. E. Western Blot analysis for FABP7 in P0 brain
whole cell protein extracts, analysis revealed a 27% reduction in FABP7 protein levels in the COUP-TFI2/2 brains.
doi:10.1371/journal.pone.0008910.g003
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TFI target in vivo. Thus, we explored Foxo3a expression regulation

and recruitment of COUP-TFI, as described for the Fabp7 gene.

Indeed, real-time RT-PCR for the upstream Foxo3a transcript

revealed a significantly higher Foxo3a mRNA levels in the COUP-

TFI2/2 newborn cortex when compared to wild-type controls

(Figure 5C). In vivo ChIP assays also verified physical association

and enrichment of COUP-TFI to one of the six conserved COUP-

TF HMM sites located within the first intron of this gene

(Figure 5D).

Discussion

We have described a methodology to search for transcription

factor binding sites that is particularly suited for factors that have a

flexible DNA binding profile: the intersection of microarray data,

HMM genome scan, and UCSC conservation tracks. Hidden

Markov Models are widely used in bioinformatics for applica-

tions that range from exon boundary prediction to conserv-

ation analyses [39]. The use of HMMs to search for trans-

cription factor binding sites has been reported by several groups

[27,40–42]; however, there is no study that integrates genomic

HMM scans with conservation and expression data, or that

corroborates predicted novel targets with experimental validation.

Moreover, no publicly available software allows the search of

entire genomes for matches to a custom HMM. Thus, this study

constitutes the first large-scale expression analysis for COUP-TFI/

NR2F1 with validation of direct COUP-TFI regulation in vitro and

in vivo of novel target genes predicted by a bioinformatic approach.

We address the uncertainty regarding the performance of

different microarray normalization methods [15] by comparing

the results of two algorithms -GCRMA and dChIP. Although the

correlation between these two methods was limited, we reconciled

both sets of results by extracting gene probes with a significant

genotype difference and the best p-value correlation and validated

the results by quantitative real-time RT-PCR using inner ear

tissue.

The number of total COUP-TF HMM hits in the entire mouse

genome is several orders of magnitude higher than the number of

binding sites reported by ChIP-based location analyses [2].

However, the number of COUP-TF HMM matches found

within a random nucleotide sequence is negligible (Figure 2B),
and most of the sites are enriched within the non-coding genomic

regions. These facts support the idea that these DNA-binding

compatible sequences are not found in error, but rather that this

is their true distribution and density within the genome. Other

researches have reached similar conclusions [31]. The prevailing

Figure 4. Validation of Fabp7 as a COUP-TFI target in vivo. A. In vivo chromatin immunoprecipitation assay demonstrates physical binding of
COUP-TFI to the Fabp7 promoter in the wild-type newborn brain, COUP-TFI2/2 brains were used as a negative control. No COUP-TFI binding
enrichment is observed at a negative control genomic region (Cyclophilin A). B. In vivo chromatin immunoprecipitation reveals higher levels of H3K9
acetylation in the Fabp7 promoter of the wild-type newborn brain tissue, as well as increased physical association of CBP and SRC-1. C. Schematic
diagram of the proposed mechanism of Fabp7 regulation by COUP-TFI.
doi:10.1371/journal.pone.0008910.g004
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Figure 5. Validation of other COUP-TFI targets. A. Real-time RT-PCR shows significantly deregulated Casq1, Crabp1, and Sod1 transcript levels
in COUP-TFI2/2 MEFs (n = 5; * = p,0.05). B. Chromatin immunoprecipitation assay in cell culture demonstrates binding of COUP-TFI to at least one
conserved COUP-TF HMM match near the Casq1, Crabp1, and Sod1 genes. C. Real-time RT-PCR for Foxo3a transcript levels using newborn brain cortex
(n = 5, * = p,0.05). D. In vivo chromatin immunoprecipitation assay demonstrates physical binding of COUP-TFI to the third conserved COUP-TF HMM
match in the Foxo3a first intron.
doi:10.1371/journal.pone.0008910.g005
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dogma posits that most transcription factor binding sites found in

silico – although they would readily bind the protein in vitro- will

not have a functional role in vivo (a concept defined as the ‘‘futility

theorem’’ [31]). Indeed, most ChIP-based assays have only a

partial overlap with binding sites found by computational

searches, and most sites predicted in silico are not occupied by

the cognate transcription factor when pursued experimentally.

However, three factors account for at least part of this disparity in

the number of transcription factor binding sites. First, most

ChIP-based datasets are considered to be incomplete, since the

information is restricted to a particular tissue or cell line and

developmental time point. For example, some nuclear receptor

binding sites may be functional only in a tissue-specific or

developmental-time specific manner, and subordinate to chro-

matin modifications that occur at a certain stage of cell fating,

during development, aging or disease state. Second, ChIP assays

have specific technical limitations, such as the sensitivity of the

antibody and the particular experimental conditions, and they

may not detect transient protein-DNA interactions. In fact, high-

throughput ChIP assays performed for the same nuclear receptor

under similar experimental conditions have only partial overlap

in their results [2,43,44]. Third, it is likely that the functional role

of a given DNA-binding site is also determined by the specific

content of the surrounding DNA, and that unique combinatorial

interactions between several transcription factors determine the

expression profile of each cell. This concept is also supported by

available nuclear receptor location data [43]. However, we

envision that it is feasible to increase the selectivity of

bioinformatics searches by modeling higher order cis-regulatory

modules (CRMs) [31], consisting of several transcription factor

binding sites, using the same HMM statistical principles and

software described herein.

Our bioinformatic search for transcription factor binding sites is

limited by the fact that it will not detect regulatory sites where

recruitment to the DNA is dependent on tethering to other

transcriptional cofactor(s), a mechanism that is estimated to

account for 30% of nuclear receptor-dependent gene regulation

[2]. Physical association assays based on the chromatin immuno-

precipitation technique are required to detect this type of

downstream targets. Another constraint of our approach is that

we limited our scan for COUP-TF HMM matches within the

proximal regulatory regions, and therefore our analysis excludes

regulatory sites located far from the gene’s transcription start site,

and it is susceptible to any mis-annotations in the corresponding

genome assembly. Location assays have indeed identified that a

significant proportion of nuclear receptor binding sites are distant

from the regulated genes [43]. Thus, chromatin immunoprecip-

itations remain the gold standard to detect DNA-protein

interactions. We present the ChromAnalyzer software tool not

as a substitute for ChIP-based assays, but as a reasonable

alternative to perform quick and inexpensive genome-wide nuclear

receptor location analyses, particularly for those laboratories with

a limited budget or who are technically limited by the size of their

cell population, such as stem cell studies or our own work on the

developing and newborn cochlear sensory epithelia, which is only

composed of 16,000 mechanosensory hair cells. Following

ChromAnalyzer bioinformatic examination, the tissue and time-

specific binding sites can be subsequently filtered with the aid of

expression and physical association assays, as we have demon-

strated. The definition of proximal regulatory elements can be

revised and the microarray correlation analysis repeated iteratively

with new parameters as necessary, although ChIP-based ap-

proaches are still necessary to identify very distant or non-

canonical binding sites.

As the third layer of correlation, we used phylogenetic

footprinting to filter the HMM hits, extracting the location of

binding sites near microarray gene hits that are also conserved

across evolution. Although phylogenetic footprinting aids in

prioritizing target lists and increases specificity by ,90% [31], it

is important to bear in mind that it will miss conserved sites in

regions that are not easily aligned. Therefore, absence of a

conserved site – or absence of a site altogether – does not fully

discard the possibility of regulation by COUP-TFI. Furthermore,

the site might be missed by a particularly low j value or consist of

an atypical nucleotide distribution. At present, our genomic HMM

scans are not intended to be used in isolation, but rather as one

layer of evidence to guide the design of experiments, accelerating

the otherwise arduous process of gene-wise transcription factor

binding site validation. Furthermore, ChromAnalyzer HMM

scans are meant to be an iterative process: each newfound,

validated COUP-TFI DNA binding site will be incorporated into

the HMM training list, and thus the COUP-TF HMM parameters

will be fine-tuned to reflect the exact profile of the known COUP-

TF binding sites.

We first describe the detailed and mechanistic experimental

validation in vitro and in vivo of one of the highest-ranked candidate

COUP-TFI targets identified by our analysis: the fatty-acid

binding protein 7 (Fabp7) gene. Fabp7 is one of 9 intracellular

fatty acid binding proteins, and it is expressed in the embryonic

and adult nervous system, retina and mammary gland [33]. Fabps

act as lipid chaperones, promoting cellular uptake and transport of

fatty acids and targeting them to specific organelles and metabolic

pathways, including the nucleus for transcriptional regulation [45].

Fabp7 is a marker for radial glial cells –the neuronal and glial

precursor stem cells- during embryonic neurogenesis [33,46,47],

where COUP-TFI and COUP-TFII are also expressed and

required for the timely neurogenesis to gliogenesis switch [10].

Although Fabp72/2 mice have no anatomical neurologic

abnormalities –possibly due to compensatory overexpression of

other Fabp homologues-, they do exhibit increased anxiety and

fear memory [48], decreased prepulse inhibition (a schizophrenia

endophenotype), and decreased neurogenesis in the adult

hippocampus [49].

Although the role and expression pattern of Fabp7 is not known

in all tissues, our results suggest that COUP-TFI lies upstream of

Fapb7 and mediates the regulation of proliferation and differen-

tiation of stem cells during neurogenesis and inner ear develop-

ment. Several FABP proteins interact with orphan receptors to

deliver their ligands in the nucleus, and their transcription rate is

in turn regulated in a positive feedback loop by the activated

nuclear receptor. For example, the Fabp1 gene is a PPARa
transcriptional target, and FABP1 transports PPARa ligands and

can physically interact with this receptor in the nucleus [50].

FABP7 binds long-chain fatty acids (LCFAs), with highest affinity

(1029) for docosahexanoic acid (DHA) [51], an essential fatty acid

and an abundant lipid component in the nervous system. It is

possible that Fabp7 transports a lipid ligand that activates COUP-

TFI. A recent study demonstrated that supraphysiologic levels of

retinoic acid activate COUP-TFII and used X-ray crystallographic

data to propose that ligand binding releases COUP-TFII from a

repressed state to allow cofactor binding and regulation of its

target genes [52]. However, endogenous ligands for these orphan

receptors remain elusive.

As further ‘proof-of–concept’ of our methodology, 3 novel

direct COUP-TFI targets in vitro - Crabp1, Sod1 and Casq1-, as well

as one novel target in vivo –Foxo3a- were validated. These genes

are known to be expressed in the cochlea and are relevant for

inner ear physiology: Crabp1 is expressed during cochlear
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development and controls the intracellular concentration of free

retinoids [53,54] (key hormone regulators of inner ear embryo-

genesis [55]); Casq1 participates in the calcium buffering system

that is upregulated to protect hair cells from noise trauma and lies

within DFNA49, an autosomal dominant non-syndromic hearing

loss locus [56–58]; and mutations in Sod1 are associated with

early-onset hearing loss in mice [59]. Interestingly, Foxo3a

regulates metabolic processes and is linked to longevity in species

ranging from C. Elegans to humans [60,61], and it is deregulated

in the inner ears of calorie-restricted mice [62]. As stated, we will

continue the experimental validation of candidate target genes,

and will iteratively complement our approach with ChIP-seq

analyses for COUP-TFI target genes throughout cochlear and

brain development to refine the identification of COUP-TFI

targets.

The bioinformatics tool we describe can be modified to scan

for response elements of any transcription factor, combinations

of several types of response elements, or any kind of flexible

DNA pattern. A primary requirement is the availability of a

pool of annotated binding sites or SELEX dataset in order to

train a Hidden Markov Model. We propose that given the vast

number of expression datasets and experimental data already

available, this approach can be readily applied to expand the

pool of candidate target genes for other nuclear receptors as

well.

Materials and Methods

Ethics Statement
All studies involving the use of animals were approved by the

Baylor College of Medicine Institutional Animal Care and Use

Committee according to policies, procedures, and regulations

related to the protection of animals mandated by the federal

government of the United States.

Microarray Hybridizations and Data Analysis
Microarray hybridizations were performed on Affymetrix MG-

U74Av2 chips through the BCM Microarray Core Facility. Two

sets of hybridizations (experimental replicates) were performed at a

different point in time, each set consisting of one RNA pool per

genotype hybridized in duplicate. Our microarray data is MIAME

compliant and has been deposited into the Gene Expression

Omnibus (GEO) database under the series accession number

GSE16744.

Microarray raw data was normalized using GCRMA [16] and

dChip [17] software. Careful inspection revealed a considerable

experimental (or time-point) effect in the expression value for

many genes. Therefore, the data was analyzed using a 2-way

analysis of variance, evaluating for genotype and experimental

(time-point) effects. This approach increased the power of the

analysis, since some of the genotype random variability was

explained by the experimental factor, making it easier to find

significant differences. Additionally, genes with a significant

interaction (p,0.01) were eliminated from the list, since these

theoretically encompass expression differences resulting from

tissue contamination during inner ear dissection. Indeed, a gene

ontology analysis performed on the interacting genes revealed a

significant overrepresentation of multiple striated-muscle related

classes (EASE score as low as 1.67E218 [63]), validating our

statistical approach. The final microarray hit list was assembled

as described in the Results section of this manuscript. Gene

ontology analysis was performed using DAVID-EASE software

[64].

RNA Isolation and Real-Time RT-PCR
Whole P0 inner ears were placed in RNA Later (Ambion) after

dissection, stored at 4C overnight and then at 220C until

genotype was determined [7]; cell culture samples were lysed with

Buffer RLT (RNeasy Mini Kit; Qiagen), centrifuged for 2 minutes

at 14,000rpm on QIAshredder columns (Qiagen) and stored at

280C. Total RNA was isolated using the RNeasy Mini Kit

(Qiagen), following the manufacturer’s instructions, and quantified

by NanoDrop spectrophotometry (Wilmington, DE). 1.5mg of

RNA were reverse-transcribed in a final volume of 20ml using

SuperScript II RT (Invitrogen) and oligo-dT primers (Invitrogen).

Real-time PCR reactions were performed in an ABI Prism 7000

Sequence Detection System using 0.25ml of cDNA and SYBR

Green JumpStart Taq ReadyMix (Sigma). Amplification efficiency

was determined via a standard curve, and relative sample

quantities were normalized to Cyclophilin A levels as a loading

control (See File S2 for a list of primers). Real-time RT-PCR for

COUP-TFII (Figure S1) was performed with Taqman probes

(Applied Biosystems Mm00772789_m1). Statistical analysis was

performed using a one-tailed Student’s t-test and p = 0.05 as a

cutoff.

Creation of the COUP-TF Target Gene Database and
HMM Training Set

In order to collect a reliable list of HMM training sequences, we

created a database of all the known COUP-TF targets. The initial

list included a total of 69 candidate direct targets (79 binding sites)

and included the gene name, species, type of site (as described in

the literature), binding site sequence (as described in the literature),

position within the gene, activation/repression, competing ele-

ments or cofactors, tissues/cells, experiments performed, locus link

number, OMIM link and Jackson lab ID. Entries judged to have

insufficient experimental evidence for direct binding were

eliminated. The nucleotide sequence of each binding site was

verified by crosschecking with the UCSC database, and the

specific genomic coordinates for each sequence were recorded. To

verify the binding site classification (ie, half-site, direct, inverted or

everted repeats), we used Consite [65] to scan each sequence with

a classical half-site position frequency matrix, and correlated the

scores obtained with the experimental evidence. The final

candidate HMM training sequences (Table S2) correspond to

the nucleotides in the plus strand of each site, including one or

both half-sites (in capitals), the spacer region (lower case), and 3

nucleotides upstream and downstream of the half-sites (lower

case).

In Silico Genomic Prediction of COUP-TF Binding Sites
and Conservation Analysis

We created the ChromAnalyzer Java library (Figure 3) to

analyze entire chromosomes for matches to any custom Hidden

Markov Model. ChromAnalyzer was written as a Java wrapper

that communicates with the python bindings of the GHMM

C++ library [29]. The input consists of a text file describing the

HMM parameters and a text file containing a sequence of any

length in fasta format. The output delivered to the enduser

consists of BED coordinates for all the HMM matches found in

the sequence along with the final count of non-overlapping

HMM matches and their classification by size. This output

format allows visualization of the results in the UCSC browser,

as well as their intersection with any microarray data and other

UCSC databases. Entire genomes can be analyzed in this

manner in less than 48 hours (measured on a PC with 2.4 GHz

dual-core Athlon 64 CPU and 2GB RAM, running Linux
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Fedora Core 5). We’ve also created a ChromAnalyzer variant

that searches multiple fasta fragments of less than 20,000 bp.

Both ChromAnalyzer programs can be obtained directly from

the authors on the open source basis. Phylogenetic footprinting

was performed by intersecting our microarray and HMM results

with the UCSC conservation tracks via the UCSC Table

Browser functions [30].

Isolation of Mouse Embryonic Fibroblasts
Mouse embryos (e12–e14) were removed from the uterus and

placed in labeled 6-well plates with PBS. The corresponding yolk

sac was placed in a separate tube for genotyping [7]. In the tissue

culture hood, embryos were transferred to 3ml of DMEM with

15% FBS, suspended in this media 3 times with an 18G needle,

and subsequently added to a 10cm tissue culture plate with 7ml of

DMEM and 15% FBS. Cells were left undisturbed for 2 days, and

split twice in a 1:4 ratio before freezing down stocks.

In Vitro and In Vivo Chromatin Immunoprecipitation
(ChIP)

Wild-type and COUP-TFI2/2 MEFs were grown to 80%

confluency in 15cm tissue culture plates. Chromatin crosslinking

and immunoprecipitation were performed using the Active Motif

ChIP-ITTM Express Kit, following the manufacturer’s instructions

except for the number of washes, which was increased to 6, and

the final PCR amplification, which was quantified with ABI Prism

7000 Sequence Detection System using Power SYBR Green PCR

Master Mix (Applied Biosystems), 5ul of immunoprecipitated

chromatin or input, and the corresponding primer pair (refer to

File S2 for a complete list of primer sets). For in vivo ChIPs, P0

brains were placed in 1% formaldehyde immediately after

dissection. Tissues were fixed for 15min, and the reaction was

then quenched in 0.125M glycine for 5 min. Nuclear extraction,

lysis, immunoprecipitation and real-time PCR were performed as

described above. Immunoprecipitations were performed overnight

at 4C with 3mg of anti-COUP-TFI (Perseus Proteomics Inc.

2ZH8132H), anti-H3K9 (kind gift from Dr. Nikolai A. Tim-

chenko), anti-SCR-1 (Abcam ab84) or anti-CBP (Abcam ab2832)

antibodies. Negative IP reactions were performed with mouse IgG

(Sigma), or no antibody. Results are plotted as relative binding

(percent of input of the corresponding IP/percent of input of

negative control IP). COUP-TFI2/2 relative binding values were

set to 1.

Western Blot and Protein Quantification
Brain and whole inner ears were flash frozen in liquid nitrogen

and stored at 280C immediately after dissection. To obtain

whole-cell protein extracts, tissues were lysed in 50mM HEPES

(pH 7.5), 150mM NaCl, 0.5% DOC, 1% NP40, 0.05% SDS and

protease inhibitor cocktail (Roche) for 30 min on ice and

subsequently centrifuged at 14,000rpm for 10min. The superna-

tant was used for protein quantification with the Bradford assay

method (Bio-Rad) and absorbance at 595nm was measured using

PowerWave XS spectrophotometer (Witec AG). Seventy-five mg of

inner ear total protein and 12mg of brain total protein were

analyzed by SDS-PAGE using a 12.5% acrylamide gel. Proteins

were transferred to a nitrocellulose membrane (Bio-Rad), and

Western Blot was performed by with anti-Fabp7 antibody (Santa

Cruz Biotechnology FL-132) in a 1:200 dilution, and anti-actin

antibody (Santa Cruz Biotechnology, sc-47778) at a 1:1000

dilution, incubated overnight at 4C. Protein quantification was

performed with ImageJ software [66] with the Gel Analysis

method.

Supporting Information

Figure S1 COUP-TFII transcript levels are upregulated in the

COUP-TFI2/2 tissue. A. COUP-TFII transcript levels in wild-

type and COUP-TFI2/2P0 inner ears (n = 5; * = p,0.05). B.

COUP-TFII transcript levels in wild-type and COUP-TFI2/2 P0

brain cortex (n = 5; * = p,0.05).

Found at: doi:10.1371/journal.pone.0008910.s001 (0.30 MB TIF)

Table S1 COUP-TFI microarray database. Complete gene

expression and statistical data for all probes in the Affymetrix

MG-U74Av2 microarray chip. The database is indexed by

probe ID and includes the following fields from left to right:

gene name, description, expression/statistics from the RMA-

normalized set (5 columns), expression/statistics from the

dChip-normalized set (5 columns), and a final column indicat-

ing which probes fulfill the criteria for the final candidate

COUP-TFI target gene list (interaction p.0.01; genotype

p,0.01 by one normalization method and genotype p,0.05

in the other method: 176 probes total). Individual columns

for each normalized set includes the following fields from

left to right: expression fold change (wild-type average/mutant

average), genotype p-value, time-point (or experimental) p-

value, interaction p-value, and a column denoting the initial hit

list, i.e., probe sets with genotype p,0.01 and interaction

p.0.01 (denoted as ‘‘G no I’’) in that particular normalization

method.

Found at: doi:10.1371/journal.pone.0008910.s002 (2.90 MB

PDF)

Table S2 HMM training sites. Complete description of the 49

COUP-TF response elements used to calculate the COUP-TF

HMM parameters. The included fields are, from left to right:

name of the sequence, Locus Link number, gene name, brief

gene description, species, competing elements or cofactors (as

described in the literature), final HMM training sequence

(formatted as described in the Methods section), type of binding

site (determined as described in the Methods section), orienta-

tion of the response element (plus or minus strand), position

within the gene/promoter (as described in the literature),

activation or repression by COUP-TF, specific tissues/cells

that the experiments were performed in, list of experimental

assays performed, absolute genomic coordinates (4 columns),

OMIM link and Jackson lab ID number. Genomic coordi-

nates correspond to the galGal3, hg18, mm9, rn4, and StrPur2

assemblies.

Found at: doi:10.1371/journal.pone.0008910.s003 (0.04 MB

XLS)

Table S3 Complete candidate inner ear COUP-TFI target

database. Genes are listed in decreasing rank order. MC = HMM

match within a most conserved UCSC site, .0.3 = HMM match

with a conservation score greater than 0.3, .0.7 = HMM match

with a conservation score greater than 0.7.

Found at: doi:10.1371/journal.pone.0008910.s004 (0.06 MB

XLS)

File S1 COUP-TF HMM in XML format. XML file denoting

the precise transition and emission parameters used for the

COUP-TF HMM genomic search.

Found at: doi:10.1371/journal.pone.0008910.s005 (0.02 MB

TXT)

File S2 List of primers. This file includes two tables: 1) the list of

primers used for real-time RT-PCR microarray validation; and 2)

the list of primers used in chromatin immunoprecipitations

coupled to real-time PCR.
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Found at: doi:10.1371/journal.pone.0008910.s006 (0.02 MB

XLS)
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