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Abstract

Sample size calculations are an important part of research to balance the use of resources and to avoid undue harm to
participants. Effect sizes are an integral part of these calculations and meaningful values are often unknown to the
researcher. General recommendations for effect sizes have been proposed for several commonly used statistical procedures.
For the analysis of 2|2 tables, recommendations have been given for the correlation coefficient w for binary data; however,
it is well known that w suffers from poor statistical properties. The odds ratio is not problematic, although recommendations
based on objective reasoning do not exist. This paper proposes odds ratio recommendations that are anchored to w for
fixed marginal probabilities. It will further be demonstrated that the marginal assumptions can be relaxed resulting in more
general results.

Citation: Olivier J, Bell ML (2013) Effect Sizes for 262 Contingency Tables. PLoS ONE 8(3): e58777. doi:10.1371/journal.pone.0058777

Editor: Fabio Rapallo, University of East Piedmont, Italy

Received December 19, 2012; Accepted February 6, 2013; Published March 7, 2013

Copyright: � 2013 Olivier and Bell. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors have no support or funding to report.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: j.olivier@unsw.edu.au

Introduction

Sample size calculations are an integral part of scientifically

useful and ethical research [1]. A study which is too small may not

answer the research question, wasting resources and potentially

putting participants at risk for no purpose [2]. Studies which are

too large can also waste resources and expose participants to the

potential harms of research needlessly, as well as delaying results

and their translation into practice. The computation of sample size

a priori is usually dependent upon predetermined values for power

and level of significance, an estimate of the expected variability in

the sample and an effect size of practical or clinical importance. By

convention, the choice of power and level of significance is usually

at least 80% and no more than 5% respectively. When a practically

important effect size is unknown, there are several recommenda-

tions in the literature to guide the researcher. In his seminal paper,

Cohen [3] gives operationally defined small, medium and large

effect sizes for various, common significance tests. The use of effect

size recommendations should not replace differences of clinical or

practical importance [4] and may not be appropriate for all

disciplines. In basic science research, for example, large effect sizes

by Cohen’s criteria are common and, therefore, require small

sample sizes. On the other hand, clinical and epidemiological

research often deals with small effect sizes and often requires large,

population-based studies. While there are some approaches to

estimating a minimum important effect [5], there are instances

where this information is simply not known. Thus, effect size

recommendations assist with the balance between overly small and

overly large sample sizes.

When the researcher is interested in 2|2 contingency tables,

a common measure of effect size is w which, in this instance, is

equivalent to Pearson’s correlation coefficient [6]. Cohen [3]

recommends effect sizes of w~0:1,0:3 and 0:5 for small, medium

and large effect sizes respectively and are identical to his

recommendations for the correlation coefficient. Although Cohen

[3] denotes this statistic as v, much of the literature uses w [6–10]

and the remainder of this manuscript follows this convention. To

support his recommended effect sizes for correlation coefficients,

Cohen [11] chose equivalent values for the difference in two

means through the connection with point biserial correlation.

Additionally, w is applicable to logistic regression since it can be

converted to an odds ratio (OR) when the row (or column)

marginal probabilities of the 2|2 table are fixed. For example,

when the marginal probabilities are uniform (i.e., 0:5 for row and

column probabilities), Cohen’s recommended effect sizes are

equivalent to odds ratios of 1:49,3:45 and 9:0. It will be

demonstrated that the connection between the odds ratio and w
is largely dependent on the marginal probabilities and these OR
values should not be used in general.

A problem arises when using the effect size w for 2|2 tables as

the full range of correlation coefficients are only possible under

very restrictive circumstances and are not justified in general [12].

On the other hand, odds ratios are valid effect size measures that

are not constrained by the marginal probabilities. Ferguson [10]

recommends small, medium, and large odds ratio effect sizes of

2:0,3:0 and 4:0, but urges caution in their use as they are not

‘‘anchored’’ to Pearson’s correlation coefficient. Although many

have pointed out problems with w as an association measure and

advocate the use of odds ratios as an alternative, effect size

recommendations for odds ratios do not exist in general.

It is common in randomised controlled trials and case-control

studies to fix one of the marginal probabilities in the 2|2 table as

it directly relates to the ratio of participant allocation. For instance,

a marginal probability of 0:5 corresponds to a 1:1 case-control

ratio while a 2:1 ratio is a marginal probability of 0:67 (or

equivalently 0:33 for 1:2).

The aims of this paper are to demonstrate: (1) the equivalence of

effect size measures for 2|2 contingency tables, in particular the

relationship between w and the odds ratio; (2) that recommended

odds ratio effect sizes can be derived from Cohen’s work using the
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maximum value of w as a guideline for fixed marginal

probabilities; (3) the shortcomings of w and the strength of the

odds ratio as an effect size measure; and (4) that conservative odds

ratio effect size recommendations can be derived without relying

on fixed margins. We provide an example that investigates the

association between helmet wearing by bicyclists and overtaking

distance by automobiles.

Equivalence of Effect Size Measures for 262
Contingency Tables

2|2 Contingency tables
The two-way classification or contingency table is a common

method for summarising the relationship between two binary

variables, say X and Y . Table 1 gives the joint probability

distribution of X and Y when their individual outcomes are from

the set f0,1g.

In this formulation, pij~P(X~i,Y~j), for i~0,1,j~0,1, is
the joint probability of X and Y , piz~P(X~i) is the marginal

probability of X , and pzj~P(Y~j) is the marginal probability of

Y . Under an assumption of independence between X and Y , the

product of the marginal probabilities equals the cell probabilities,

i.e., pij~pizpzj . Alternatively, the 2|2 table could be repre-

sented by the frequency of observations so that nij~n|pij where

n~
X

i,j
nij . Similarly, the marginal frequencies are

niz~ni0zni1 and nzj~n0jzn1j . Note that pij is assumed to be

the population proportion as the focus of this paper is the use of

effect sizes as a planning tool and not statistical inference per se. In

a case-control study, for example, X may indicate the presence or

absence of disease while Y is an indication of exposure. Thus,

p11~P(X~1,Y~1) would represent the joint probability of

being diseased and exposed.

Effect size w and Equivalences for 2|2 Tables
There are many association measures applicable to 2|2 tables

which, with the exception of the odds ratio and relative risk, are

equivalent or similar to w. The equivalence of some of these

association measures is outlined below.

For the random sample (X1,Y1),(X2,Y2), . . . ,(Xn,Yn), Pear-

son’s correlation coefficient is

Table 1. 262contingency table of probabilities.

X=0 X=1 Total

Y= 0 p00 p01 p0+

Y= 1 p10 p11 p1+

Total p+0 p+1 1.0

doi:10.1371/journal.pone.0058777.t001

Figure 1. Relationship between the odds ratio and w for unequal marginal probabilities.
doi:10.1371/journal.pone.0058777.g001
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r~

Pn
‘~1 (X‘{ �XX )(Y‘{ �YY )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

‘~1 (X‘{ �XX )2
Pn

‘~1 (Y‘{ �YY )2
q

where �XX and �YY are the sample means of the X‘ and Y‘

respectively. Although used primarily as a measure of linear

association, Pearson’s correlation coefficient can be applied to

binary variables and is often given the notation w. For the 2|2
table case, we get

Xn
‘~1

(X‘{ �XX )(Y‘{ �YY )~n11{
n1znz1

n

Figure 2. Odds ratios and marginal probability by small, medium and large effect sizes for 1:1 allocation.
doi:10.1371/journal.pone.0058777.g002

Figure 3. Odds ratios and marginal probability by small, medium and large effect sizes for 1:2 allocation.
doi:10.1371/journal.pone.0058777.g003
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Xn
‘~1

(X‘{ �XX )2~
n0zn1z

n

Xn
‘~1

(Y‘{ �YY )2~
nz0nz1

n

So, Pearson’s correlation coefficient for binary random variables

X and Y is

r~w~
p11{p1zpz1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p1zpz1(1{p1z)(1{pz1)
p

Since p11~p1zpz1 under the hypothesis of independence, w
can be interpreted as measuring the departure from independence

between X and Y . Note that Cramér’s w is equivalent to this

equation for the 2|2 table case [11] as well as the square root of

Goodman and Kruskal’s t [13].

For the analysis of contingency tables, in general (not just the

2|2 table case) the effect size formula for K total cells is

v~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK
k~1

(P1k{P0k)
2

P0k

vuut
where P0k and P1k are cell probabilities under the null and

alternative hypotheses respectively. Note that v is related to the

usual chi-square statistic x2 by v~
ffiffiffiffiffiffiffiffiffiffi
x2=n

q
and is sometimes called

the contingency coefficient. Using this formula, Cohen [3]

recommends v~0:1,0:3 and 0:5 for small, medium and large

effect sizes. Making note that P1k is the probability of each cell (pij )

and P0k is the cell probability under an independence assumption

(so that P0k~pizpzj ), we can then write the effect size formula

for the 2|2 table as follows

v~w~sgn(p11{p1zpz1)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX1
i~0

X1
j~0

(pij{pizpzj)
2

pizpzj

vuut

Simple arithmetic demonstrates the equivalence of v with w.
The sgn function is used to give the appropriate sign since the chi-

square statistic is inherently non-directional.

The relationship of w to the odds ratio
The odds ratio for the association between X and Y is

p11p00=(p10p01). When the marginal probabilities are held

constant and the cell probability p11 is known, the remaining cell

probabilities can be written as

p01~pz1{p11

p10~p1z{p11

p00~p11{pz1zp0z

Therefore, when the marginal probabilities are fixed, the odds

ratio can be computed directly from p11, which can then be

expressed as

OR~
p211{p11(p1zzpz1)zp11

p211{p11(p1zzpz1)zp1zpz1

It is clear from the above formula that the odds ratio will be

greater than one (or less than one) precisely when the joint

probability p11 is greater (or less) than expected under an

assumption of independence, i.e., p11wp1zpz1. Additionally,

the formula for w can be rearranged to solve for p11, i.e.,

p11~p1zpz1zw
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1zpz1(1{p1z)(1{pz1)

p

Although mathematically unattractive, it is clear the odds ratio

can then be computed from w, p1z, and pz1. Note that when

w~0 (i.e., no correlation), we get p11~p1zpz1 (i.e., X and Y are

independent) and the odds ratio is OR~1. When w=0, the term

w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1zpz1(1{p1z)(1{pz1)

p
is then a measure of the departure

from independence.

Table 2. Sample sizes calculated for small, medium and large effect sizes for 1:1 allocation, 80% power and a~0:05.

p1+

Odds Ratio 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1.22 8168 4688 3646 3254 3188 3386 3948 5282 9576

1.86 724 436 354 330 338 374 454 632 1188

3.00 200 128 110 108 116 134 170 246 480

doi:10.1371/journal.pone.0058777.t002

Table 3. Observed proportion of helmet use and safe passing
manoeuvres from Walker (2007).

No Helmet Helmet Total

Safe 0.491 0.462 0.953

Unsafe 0.021 0.026 0.047

Total 0.512 0.488

doi:10.1371/journal.pone.0058777.t003
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Maximum w and Modified Effect Sizes

When the marginal probabilities are fixed constants, w is an

increasing linear function of p11. Further, p11 is bounded by

max (0,pz1{p0z)ƒp11ƒmin (p1z,pz1)

These bounds are due to all cell probabilities being non-

negative and the relationship of p11 with the other cell

probabilities given above. As a result, w is bounded as well and

attains its maximum when p11~min (p1z,pz1). Using the upper

bound of the above inequality, it can be shown that

wmax~max
p11

w~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1z(1{pz1)

pz1(1{p1z)

s

where p1zvpz1 to ensure wmaxƒ1. It is clear from the formula

for wmax that the full range of correlation coefficients, i.e.,

{1ƒwƒ1, is attainable only when the marginal probabilities

are equal, i.e., p1z~pz1 or p1z~(1{pz1). This has an intuitive

appeal as perfect correlation for two binary variables is only

possible when two cell probabilities are zero. For example, when

all observations are in either the (0,1) or (1,0) cells, ŵw~{1.
However, it would appear highly unlikely both marginal

probabilities will be equal in practice. For example, in a 1:1

case-control study with mortality as the primary outcome, half of

all patients would need to die for perfect correlation to be possible.

On the other hand, if 10% of all patients die, the maximum

correlation possible is wmax~1=3 which is near a medium

recommended effect size. So, in this situation, all estimates of w,
computed from observed proportions, are bounded by

{1v{1=3ƒŵwƒ1=3v1

Importantly, odds ratios are not bounded with possible values of

½1,?) as w varies on the interval ½0,wmax�. In fact, as w approaches

wmax, the OR increases without bound. Figure 1 demonstrates this

relationship. Importantly, this indicates w has serious limitations as

a measure of association and that these limitations are not

applicable to the odds ratio.

Effect Sizes Relative to wmax

In many practical instances, the marginal probabilities are not

equal, making the full range of values for w impossible with the

potential of making Cohen’s recommended effect sizes unusable

for 2|2 tables. Although not equivalent to perfect correlation,

wmax can be interpreted as the maximum possible correlation given

the marginal probabilities. In fact, w/wmax has been proposed as

an association measure with the interpretation as the proportion of

observed correlation relative to the maximum attainable with fixed

marginal probabilities [7], although the researcher is cautioned

when the marginal probabilities diverge [6]. Note that w is not

equivalent to Cohen’s similarity/agreement measure k. However,

k suffers from the same boundary problems as w and the two are

equivalent when scaled to their maximum values, i.e., w/wmax~k/
kmax, making the two measures similar [6].

Recommended effect sizes in terms of the odds ratio
As an alternative to Cohen’s recommendations, increments of

wmax can be related to the odds ratio, say awmax, where a[(0,1).
Note that values of a~0:1,0:3 or 0:5 coincide with Cohen’s usual

recommendations when wmax~1. The relationship between awmax

and the odds ratio can be simplified by choosing marginal

probabilities for commonly used participant allocations. As an

example, Figures 2 and 3 demonstrate the relationship between

p1z and odds ratios for 0:1wmax, 0:3wmax and 0:5wmax for 1:1 and

1:2 allocations respectively. Note that the minimal odds ratios, and

therefore most conservative when used to compute sample size,

occur when p1z tends to 0. Although the odds ratio does not exist

when p1z~0, the limit exists and is

ORmin~ lim
p1z~0z

OR~1z
a

(1{a)pz1

Additionally, the maximal odds ratio, and therefore most anti-

conservative, occurs when the marginal probabilities are equal, as

expected. Below is the maximum attainable odds ratio for equal

margins p1z~pz1~p for increments a of wmax,

ORmax~
(p{a(1{p))(1{p(1{a))

p(1{p)(1{a)2

It is important to note that when 0vpz1ƒ0:5, as is often true

for case-control studies where cases are harder to identify or enrol

than controls, the minimal odds ratio will be smallest for evenly

allocated studies, i.e., pz1~0:5. Further, it is generally recom-

mended to use 1:1 allocation as it is the most statistically efficient

ratio, i.e., maximum power for a fixed overall sample size. So,

odds ratios of 1:22,1:86 and 3:00 can be used as small, medium

and large effect sizes without assumptions regarding marginal

probabilities. Sample sizes computed using these odds ratios for

1:1 allocation are given in Table 2 for 80% power and 5% level of

significance. A SAS macro that will compute sample sizes from

given marginal probabilities for small, medium and large odds

ratios has been provided as a supplementary file.

Interestingly, Haddock et al. [12] as a rule of thumb consider

odds ratios greater than 3 large effect sizes, although there is no

clear justification given. In a situation where an allocation ratio

other than 1:1 is used, recommended odds ratios can be computed

directly using the above formula. These results are also applicable

for other values of pz1w0:5 through its complement

0vpz0ƒ0:5. This is equivalent to swapping the columns (or

rows) and the researcher should be aware the recommended odds

ratio effect sizes are now the reciprocals of those above, i.e.,

0:82,0:54 and 0:33 for small, medium and large respectively.

This approach can also be applied to the relative risk and risk

difference. If X is taken as the grouping variable and Y as the

outcome, the relative risk is p11(1{pz1)=(p10pz1). Simple

substitution of awmax and the marginal probabilities p1z and

pz1 results in a relative risk identical to ORmin for p1zw0, i.e.,

RR~1z
a

(1{a)pz1

Therefore, recommendations can also be derived for relative

risk and are identical to those given for the odds ratio above. This

Effect Sizes for 262 Contingency Tables
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result is expected as the odds ratio converges to the relative risk as

the incidence rate approaches 0.

Instead of comparing the risk between two groups as a ratio, it is

sometimes useful to compare their differences [14]. Again taking

X as the grouping variable and Y as the outcome, the risk

difference can be written as

RD~
p11
pz1

{
p10
pz0

~
p11{p1zpz1

pz1(1{pz1)

where p1zƒpz1 to ensure wmaxƒ1 as above. It is clear from

the numerator in this representation that RD is a measure of the

departure from independence, i.e., p11~p1zpz1. Simple sub-

stitution of awmax into RD yields

RDa~a
p1z
pz1

where the subscript a is used to distinguish between risk difference

formulae. This formula can be simplified somewhat for 1:1

allocations, i.e., RDa(pz1~0:5)~2ap1z; however, a general

result independent of the marginal probabilities is clearly not

possible in this instance as 0ƒp1zƒ0:5 and therefore

0ƒRDa(pz1~0:5)ƒa.
Alternatively, the ORmin formula can be solved for a and

compared to previously given odds ratio recommendations. In

terms of ORmin and pz1, we get

a~
pz1(ORmin{1)

1zpz1(ORmin{1)

When the allocation ratio is 1:1, this formula simplifies to

a(pz1~0:5)~(ORmin{1)=(ORminz1) which has a form iden-

tical to Yule’s Q [15]. So, Ferguson’s [10] odds ratio recommen-

dations of 2:0,3:0 and 4:0 therefore correspond to proportions of

maximum correlation of a~0:33,0:5 and 0:6. This suggests

Ferguson’s recommendations have the potential to be anti-

conservative from a sample size viewpoint.

Example

This paper was motivated by a reanalysis of passing distances

for motor vehicles overtaking a bicyclist [16]. One of the primary

results of this study was a significant association between helmet

wearing and less overtaking distance, supporting a theory of risk

perception for motor vehicle drivers directed towards bicyclists.

Prior to collecting data, Walker [16] reported computing a sample

size of n~2259 overtaking manoeuvres based on a 2|5 fixed

effects factorial ANOVA for a small effect size f~0:1, 5% level of

significance and 98% power. The factors for this study were

helmet wearing (2 levels) and bicycle position relative to the kerb (5

levels). It has been noted, however, that passing distances are often

recommended and sometimes legislated to one metre or more

[17]. So, passing manoeuvres of at least a metre are considered

safe and less than a metre unsafe, with the implication that large

differences in passing distance are unimportant beyond one metre

in terms of bicycle safety. When compared with helmet wearing,

safe/unsafe passing distances can be analysed using a 2|2 table.

Since Walker’s study was powered at an unusually high level with

subsequent increased probability of a type I error, bootstrap

standard errors were estimated for more reasonable values for

power of 80%, 85% and 90%. Operationally defined small,

medium and large effect sizes were also used since a meaningful

difference in overtaking distance is unknown.

The relevant observed data from Walker [16] is given in

Table 3. The observed marginal proportions here are pz1~0:488
for helmet wearing and p1z~0:047 for unsafe passing man-

oeuvres. Using the marginal probabilities, the maximum attain-

able effect size is wmax&0:227 and the estimated correlation is

ŵw~0:028. A consequence is the effect size for the association

between helmet wearing and safe passing distance is, at best, much

less than a small effect size by Cohen’s index. The corresponding

small, medium and large odds ratio effect sizes using increments of

awmax are 1:24,1:94 and 3:21 for a~0:1,0:3 and 0:5. Note that

these values are not much greater than the minimal recommended

odds ratios mentioned in the previous section, further suggesting

the association between safe/unsafe passing distance and helmet

wearing is, at best, a small effect size. In fact, the unadjusted odds

ratio is OR~1:3 and non-significant by the chi-square test

(p~0:182). Conversely, sample sizes for a future study can be

computed from the observed probabilities using G*Power for

logistic regression with a single binomially distributed predictor for

a~0:05 and 80% power [18] resulting in 16237,1409 and 383
observations for small, medium and large odds ratios. To put these

sample size computations into perspective, a future study would

need to extend the sampling period by a factor greater than seven

to detect a significant association between helmet wearing and

safe/unsafe overtaking distance given a small effect size and

identical marginal probabilities.

Discussion

We present a demonstration that many contingency table

correlation measures are equivalent for the 2|2 case and their use

is limited due to constraints created by fixed marginal probabil-

ities. The odds ratio, which is a function of these measures for fixed

marginal probabilities, is not problematic, is regularly used in

statistical analyses and has a direct application to logistic

regression. Recommended odds ratios have been proposed from

Cohen’s small, medium and large effect sizes for w relative to the

maximum attainable correlation wmax. Further, minimal odds

ratios can be computed with only knowledge of participant

allocation.

The use of effect size recommendations should be avoided in

situations in which clinical or practical differences are known.

However, they can help the researcher balance between overly

large or overly small sample size calculations when such

information is unknown. In these situations, conservative estimates

for odds ratio effect sizes can be derived from only the allocation

ratio leading to a general result and, when a 1:1 allocation is

chosen for optimal power, odds ratios of 1:22,1:86 and 3:00
correspond to small, medium and large effect sizes.

Supporting Information

File S1 SAS Macro to compute sample sizes from
marginal probabilities for small, medium and large
odds ratios.

(SAS)
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