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Abstract

This article investigates a possible Brain Computer Interface (BCI) based on semantic relations. The BCI determines which
prime word a subject has in mind by presenting probe words using an intelligent algorithm. Subjects indicate when a
presented probe word is related to the prime word by a single finger tap. The detection of the neural signal associated with
this movement is used by the BCI to decode the prime word. The movement detector combined both the evoked (ERP) and
induced (ERD) responses elicited with the movement. Single trial movement detection had an average accuracy of 67%. The
decoding of the prime word had an average accuracy of 38% when using 100 probes and 150 possible targets, and 41%
after applying a dynamic stopping criterium, reducing the average number of probes to 47. The article shows that the
intelligent algorithm used to present the probe words has a significantly higher performance than a random selection of
probes. Simulations demonstrate that the BCI also works with larger vocabulary sizes, and the performance scales
logarithmically with vocabulary size.

Citation: Geuze J, Farquhar J, Desain P (2014) Towards a Communication Brain Computer Interface Based on Semantic Relations. PLoS ONE 9(2): e87511.
doi:10.1371/journal.pone.0087511

Editor: Wang Zhan, University of Maryland, College Park, United States of America

Received September 11, 2013; Accepted December 21, 2013; Published February 7, 2014

Copyright: � 2014 Geuze et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was funded by the BrainGain Smart Mix Programme of the Netherlands Ministry of Economic Affairs and the Netherlands Ministry of
Education, Culture and Science. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: j.geuze@donders.ru.nl

Introduction

A Brain Computer Interface (BCI) [1] is a system that translates

measured brain activity into machine commands without the use

of any muscles or peripheral nerves. It could for instance allow

someone to control a wheelchair or send commands to a

computer. In theory this seems rather straightforward; a subject

or patient performs a certain mental task and the computer tries to

detect what the subject is doing. In practice, however, the signals

are often measured outside the skull using, for instance,

Electroencephalography (EEG) [2,3]. Because of the electrical

conductive properties of the dura, skull and scalp, the signal

measured is a more indistinct and low dimensional version of the

signal actually produced by the brain. Also, the signal produced by

the brain is a coded signal, which needs to be decoded by the BCI

system. The output of a BCI can be used for multiple purposes.

Here, the focus is on communication.

A number of BCIs have already been developed with

communication in mind. The best researched of these is the

visual speller [4]. There the subject spells characters by looking at

them on the screen. The letters are accentuated, often by a change

in brightness, and subjects are asked to count the number of

accents on the character they want to select. The accentuation of

the target character elicits a P300 response [5] in the subject’s

brain. This response is exploited by the BCI to decode the

intention of the subject. However, visual spellers work best when

subjects are still able to foveate the character they want to select,

allowing the BCI to also use brain responses in the primary visual

cortex. In the last few years, more research has been conducted

into transforming the visual speller into a BCI that can also be

used by patients that are not able to move or focus their eyes

anymore. Treder and Blankertz [6] looked at an alternative visual

speller design, where foveation was not necessary. Other

researchers have focussed on other modalities besides the visual

modality, e.g., an auditory speller [7,8], a speller where the

auditory and visual modality are combined [9], a tactile speller

[10] and a speller based on imagined movement [11].

However, all of these communication BCIs are based on

spelling out the message to be communicated character by

character. This article describes a communication BCI that is

based on word selection by utilising semantic relations between

words. By presenting many words in rapid succession and

collecting responses to those words that are related to the word

to be communicated (prime word), the BCI is able to decode this

prime word. It builds upon earlier work, which shows that the

semantic priming response, i.e., the response that differs when

words are related versus unrelated, can be detected at the single

trial level [12]. A first attempt at building this BCI utilised this

semantic priming response. However, due to differences between

the offline study in Geuze, van Gerven, Farquhar, and Desain [12]

and the online implementation, the single trial detection was

reduced to chance level. These differences are explained in more

detail in the discussion section. It was concluded that a more

robust brain signal was necessary to operate the BCI. Actual

movement was chosen for three reasons. First, actual movement

provides a strong brain signal that can be classified with high

accuracy. Second, when this BCI would be used by paralysed

patients they would attempt movement. Blokland et al. [13] has

argued that the neural signal generated by attempted movement

more closely resembles the neural signal generated by actual

movement in non-paralysed subjects. Last, by having subjects
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press a button when they see a related word, more information

about the actual brain activity is collected, than when only relying

on semantic relations predicted from another source. To get an

idea about the performance of this BCI using imagined

movement, the best performing subject redid the experiment with

imagined movement instead of actual movement.

The BCI works by presenting 100 probe words in rapid

succession (one every 1.35 seconds). From the 150 possible prime

words subjects select a word they want to communicate, and keep

this word in mind. They press a button every time they are

presented with a probe word that is related to their selected prime

word. The probe words that are presented are a subset of the

prime words that the BCI is able to detect, where it is possible that

the same probe word is presented multiple times. The BCI collects

the subjects EEG (electroencephalogram) data and uses a binary

classifier to determine whether the brain’s response to the probe

word includes a movement response or not. By combining the

classification results for each presented probe word with a

database containing semantic relations between all prime and

probe word combinations, the system attempts to identify the

intended prime word.

In the study described here, there are 150 prime words and the

same set of possible probe words. Randomly selecting a probe

word to be presented next could suffice with such a small number

of words. However, when using more possible words, this quickly

becomes problematic. To solve this, an algorithm was developed

that selects the probe word in an informed way. The algorithm

uses the decoding state of the BCI and selects the probe word

which, when presented, would elicit the most information in

determining which word is the prime word.

The decoding and probe selection algorithms were implement-

ed and the BCI was tested with 11 subjects in order to answer the

following questions: (i) Is it possible to build a BCI based on semantic

relations using an intelligent probe selection algorithm? (ii) Does applying a

dynamic stopping technique contribute to the performance of this BCI? (iii)

Does this intelligent selection contribute to the performance of the BCI?, (iv) Do

the results of the BCI scale to large numbers of prime and probe words? Post-

hoc simulations were used to answer the last two questions. The

simulations were performed using the real subject single trial

classification results. The collection of the data required to answer

the first two questions took more than 2 hours per subject.

Therefore it was decided to answer the last two questions with

simulations.

Methods

Ethics Statement
The procedures used in the experiment were according the

Declaration of Helsinki, and all subjects gave written informed

consent. The procedures were approved by the Ethical Committee

of the Faculty of Social Sciences at the Radboud University

Nijmegen.

Subjects
The electroencephalogram (EEG) of 11 right-handed, native

Dutch subjects was measured. Their age ranged from 18 to 28

(M = 22.4, SD = 3.2) and 7 of the subjects were female. All subjects

had normal or corrected-to-normal vision and were free of

medication and neurological abnormalities. All subjects partici-

pated voluntarily and gave written informed consent. All subjects

but two (S1 and S5) received a reward in the form of money or

study points. One participant (S1) also participated in a previous

study [12]. One of the subjects (S2) was observed not to pay

attention during the experiment and not perform the task and look

around for periods of time. This was confirmed by the data, where

the mismatch between expected button presses and actual button

presses in the training block was more than 2 standard deviations

higher than the average over subjects. On these grounds, this

subject was not included in the analysis.

Procedure
The experiment consisted of five blocks. First, a practice block

for the subjects to become acquainted with the task. Second, a

training block where data are gathered to train the classifiers.

Then, two test blocks where the classifiers are applied to the data

and feedback is given about which word the subject saw as a

prime. Last, there is a post-training block with the same properties

as the training block, but shorter. This post-training block is used

to determine any time-based deterioration of classifier perfor-

mance due to non-stationarities in the data.

Subjects were seated in a comfortable chair in front of a

computer screen. First the prime word was presented in a green

colored font for 2000 ms. Then, a fixation cross was shown for

1150 ms, followed by a probe word for 350 ms and another

fixation cross for 1150 ms, all in a white colored font. The probe

and fixation cross were repeated until the total number of probes

for the given prime word had been reached. A graphical

representation can be seen in Figure 1. Subjects were instructed

to press a button with their right index finger when they found that

a probe word was related to the prime word they were shown

earlier. They were instructed to keep their finger on the button

throughout the experiment to minimize movement artefacts. Their

EEG was measured during the experiment. The button press itself

was not used during the online analysis, which were solely based

on the recorded EEG activity.

In the training block 36 prime words are presented each

followed by 5 related probes and 10 unrelated probes in random

order. After presenting three prime word sequences consecutively,

the subject can take a break. In a test block, 6 prime words are

presented each with 100 probes. The probe selection is performed

by the algorithm explained in detail in the decoding section below.

Since the prime word sequence is too long to present at once (100

probes), subjects can take a break after 30 probes. After pressing a

button to continue, the prime word is presented again to remind

the subject. When all 100 probes have been presented feedback is

given about which word the decoding algorithm selected based on

the subject’s brain activity. The feedback is given in a blue colored

font. The post-training block is similar to the training block, only

with 12 prime words instead of 36.

Stimuli
Stimuli consisted of words drawn from the Leuven association

dataset [14]. This dataset was constructed by having subjects

perform a continuous word association task. The cues were

constructed by the researchers, while the associated words were

generated by the subjects. For each word pair their association

strength was determined by dividing the number of times the

response was given to that particular cue by the total number of

responses to that cue.

For the training stimuli 36 prime words were selected. For each

of these prime words, 15 probe words were matched, 5 which were

related and 10 which were unrelated. For the related probe words,

only words with a high association strength were chosen (..14).

For the unrelated words, words were selected with an association

strength of 0. This resulted in 180 related probe words (M = 0.24,

SD = 0.073) and 360 unrelated probe words (M = 0, SD = 0).

For the test stimuli a subset of the Leuven association dataset

was constructed by selecting the 150 words with the most
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connections, i.e., number of related words. From this subset, 12

words were selected to be presented as primes. Three primes with

a high number of connections (color, food, sea), three primes with

a low number of connections (stick, tooth, child), and six random

prime words (egg, tree, filth, boat, rose, rabbit). For the exact

number of connections per prime word, see Figure 2. Seven of

these words were seen as prime before, 6 in the training block

(color, food, child, egg, tree, boat) and 1 in the practice block (sea).

One of the prime words also occurred in the post-training block

(tooth). For the probe words a selection from the constructed

subset was used, for more information on probe selection see the

decoding section below. The prime word could also occur as a

probe word. Because this did not occur in the Leuven dataset, the

association strength of a prime with itself was set to the maximum

association value in the dataset. The average association strength

of the probe words can be seen in Figure 3.

The post-training stimuli were constructed in the same way as

the training stimuli, but for only 12 prime words. This resulted in

60 related probe words (M = 0.21, SD = 0.078) and 120 unrelated

probe words (M = 0, SD = 0).

An overview of all the stimuli can be found in the supporting

information: File S1 (Stimuli).

Equipment
The stimuli were presented with Psychtoolbox [15–17] version

3.0.8 running in Matlab 7.4. The stimuli were displayed on a 1799

TFT screen, with a refresh rate of 60 Hz. The data were recorded

using 64 sintered Ag/AgCl active electrodes using a Biosemi

ActiveTwo AD-box and sampled at 2048 Hz. The electrodes were

placed according to the 10/20 electrode system [18]. The EEG

was recorded in an electrically shielded room. The EEG offset for

each channel was kept below 25 mV. A button box was used to

allow participants to start the next sequence and indicate whether

a probe word was related. Brainstream (http://www.brainstream.

nu/), a toolbox for running online BCI experiments was used to

coordinate the presentation of the stimuli, managing the EEG data

and running the online classification analysis pipelines.

Data Availability
The data is stored locally, in multiple locations, which are

regularly backed-up. The anonymous data is available in on

request from the lead author.

Data Analysis
The analyses were performed by Brainstream (http://www.

brainstream.nu/), the plotting of the grand average results was

performed using the Fieldtrip toolbox [19].

A part of the analysis pipeline for both Event Related Potentials

(ERP) and Time Frequency Representations (TFR) was common,

therefore, these steps were performed on the continuous EEG data

before they were sliced from 0–1350 ms after probe onset. This

common pipeline first temporally down-samples to 256 Hz and

removes linear trends. Bad channels were detected and removed

and eye artifacts were removed by de-correlating the EEG and

EOG channels. To maintain a consistent channel set the removed

channels were reconstructed using spherical spline interpolation

[20]. These data were then sliced and used as input for the two

classification pipelines.

To classify the data based on the evoked single trial ERP, the

training data were sliced from 0–1350 ms after probe onset.

Outlying trials, i.e., a trial where the power differed by more than

3 standard deviations from the trial median, were removed. A

Figure 1. Design. Basic design of the experiment.
doi:10.1371/journal.pone.0087511.g001

Figure 2. Number of associations. Number of associations for prime
words in the test blocks.
doi:10.1371/journal.pone.0087511.g002

Figure 3. Association strength. Average association strength per
block. The error bars indicate the standard deviation.
doi:10.1371/journal.pone.0087511.g003
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common average rereference was calculated and the data were

filtered between 0.1 Hz and 10 Hz. This was then used to train a

binary L2 regularised logistic regression classifier. The related and

unrelated classes were balanced by selecting a random subset from

the unrelated class to match the number of trials in the related

class. This was done to prevent the classifier from always selecting

the dominant class. The above mentioned steps (except the outlier

removal) were also performed per single trial in the online test

blocks, after which the trained classifier was applied to the data,

resulting in a decision value. The same preprocessing steps (except

the balancing) were performed to obtain the data in the grand

average ERPs. To test for significant differences between brain

responses to related probes and to unrelated probes the cluster-

based non-parametric statistic described by Maris and Oostenveld

[21] was used. This test corrects for the multiple comparisons

problem by incorporating a permutation test.

To classify the data based on the induced response a single trial

time frequency representation was used. The training data were

sliced by brainstream from 0–1350 ms after probe onset. Outlying

trials were removed, after which a rereference based on surface

laplacian was applied to increase spatial specificity. The time

frequency representation was calculated with a hanning window of

500 ms with an overlap of 50%. Then the frequencies of interest

were selected (8–24 Hz) and the resulting data were used to train

another binary L2 regularized logistic regression classifier. The

related and unrelated classes were balanced by selecting a random

subset from the unrelated class to match the number of trials in the

related class. The above mentioned steps, excepting the outlier

removal, were performed on the online single trials in the test

blocks, before applying the trained classifier. As before, the data

that were used to train the classifier was also used to plot the grand

average TFRs. To test for significant differences between the

conditions the cluster-based non-parametric statistic was used with

the same settings as for the ERP analysis.

A combined classifier was obtained by adding the decision

values of the individual classifiers. The classifiers are calibrated to

produce valid estimates of the likelihood of a button press given

the features. Thus, adding decision values in this was is equivalent

to a bayesian information combination under the assumption of

conditional independence of the classifiers.

Decoding
In the decoding algorithm, classifications of multiple probes are

combined to determine the prime word the subject is trying to

communicate. If the codebook C is a matrix of n primes by m

probes, indicating for each prime-probe-combination whether

they are related or not. At the end of the sequence the prime word

with the highest probability is selected by

îi~ argmax P c
i

ijDx
� �� �

ð1Þ

where x is a vector of decision values, one for each probe. The

probability for each target is calculated by combining the

codebook and the individual decision values for each presented

probe word:

P cij Dx
� �

~
1

Z
:

m

j~1
P cij Dxj

� �
ð2Þ

where Z is an irrelevant normalisation constant, and where the

probability a probe belongs to the class indicated in the codebook,

given the decision value of the classifier is given by the logistic

function,

P cij Dxj

� �
~

1

1{e
xj

if cij~1

1{ 1

1{e
xj

if cij~{1

8><
>: ð3Þ

where related is assigned as the positive class, indicated by 1, and

unrelated is assigned as the negative class, indicated by 21.

The probe to be presented next in the experiment is the probe

for which the probability that the subject recognises it as related is

closest to .5:

ĵj~ argmin
j

Dv:C 0{0:5:1mDð Þ ð4Þ

where the codebook C again indicates which prime-probe-

combinations are related and where v is the vector with the

probabilities for each prime word based on the probes that have

been presented so far:

vi~P ci Dxð Þ ð5Þ

Choosing the probability for a probe close to .5 optimizes the

amount of information transmitted by the response:

I(p)~{p:log2(p){(1{p):log2(1{p) ð6Þ

Post-hoc Analysis
A number of post-hoc analysis were performed to compliment

the data obtained during the experiment. First an early stopping

method was applied to determine at which point time the prime

word sequence could be stopped without losing accuracy. A

number of methods are discussed in Schreuder et al. [22]. Three

of these methods (fixed number, Jin et al. [23], and Höhne et al.

[8]) and an additional method not mentioned by Schreuder et al.

[22] were compared with not stopping. The additional method,

thresholding the probability of a target given the data, as given in

Equation (2), at 0.95, performed best and was selected for

determining the stopping point. The last method The early

stopping was first applied to the data gathered from the

experiment, and later to all subsequent post-hoc analyses.

To obtain data that are too time-consuming to gather from

subjects, post-hoc simulations were performed. The algorithm

detailed in the decoding section above was implemented, where

the classifier decisions were drawn from the decision values that

were gathered during the experiment. Simulation results are

obtained by simulating each word 100 times (iterations) for each

subject and averaging over iterations, items and subjects, i.e., each

number is the mean of 12.000 simulated prime sequences. The

decision values were pooled per subject per block into a related

and unrelated pool, based on the codebook constructed from the

association database, i.e., not using the button presses.

The results from the experiments were simulated, by using the

same parameters, to compare the simulation results to the data

obtained in the experiment. However, where the experiment

yielded one value per subject, per word, the simulations yielded

100.

To determine whether the information-based probe selection

performs better than random probe selection, a simulation was run

where the probes were selected at random.

Towards a BCI Based on Semantic Relations
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To investigate whether the algorithm scales to larger numbers of

prime words, the simulation was run with 150, 500, 1.000, 2.500,

and 10.000 prime words. (For the 10.000 prime words condition in

fact only 9.270 prime words were used because that is the size of

the Leuven dataset. For communication convenience we use

10.000 or 10k.) In the experiment, 150 words were used as both

prime words and probe words, resulting in a codebook (C) of

1506150. As a baseline for the scale to larger number of prime

words a simulation was run where the maximum number of probe

words were used (10.000), i.e., in the comparison only the number

of prime words changes. The 150 prime words used in the

experiment were always included and a random set of probe words

was selected to supplement the total number of prime words to the

required amount.

To evaluate the results of the post-hoc analyses, a number of

measures were used: rank, proportion correct, number of probes,

and Information Transfer Rate (ITR). The rank is defined as the

position in the list of targets when sorted on their probability (see

Equation (2)). The proportion correct can be indicated in three

ways. The actual proportion correct (correct
total

), the proportion related

correct, where words that are related to the prime word are also

counted in the numerator, and proportion in rank top 10, where

words that have rank 1–10 are also counted in the numerator. The

number of probes is simply the amount of probes that are used

before reaching the stopping criterium. The Information Transfer

Rate (ITR) is a measure that is often used to compare algorithms,

because it incorporates accuracy, number of classes, and the time

per classification. Wolpaw, Ramoser, McFarland, and Pfurtschel-

ler [24] defined the ITR for a Brain Computer Interface as:

B~V :R ð7Þ

Where B is the ITR in bits per second, V is the amount of

classifications per second, and R is defined as:

R~log2(N)zP:log2(P)

z(1{P):log2
1{P
N{1

� � ð8Þ

ITR is often reported in bits per minute by multiplying B with 60.

Results

Grand Average Results
The grand average ERP results can be seen in Figure 4. The

figure shows the ERPs for the related condition (in solid red) and

unrelated condition (in dashed black) for channel CPz for each of

the training block. The grey area indicates where the two

conditions differ significantly, as indicated by the cluster-based

non-parametric statistic described by Maris and Oostenveld [21].

The vertical dashed line indicates the grand-average reaction time,

i.e., when subjects pressed the button. Channel CPz was chosen as

a representative channel. The topo-plots of the time window

indicated by the grey area in the ERP plot show the distribution of

the effect over the scalp. Channels indicated with an asterisk are

significant in this time window.

The grand average Time Frequency Representation (TFR)

results are shown in Figure 5. Channel C3 was selected as a

representative channel because right-hand motion is most strongly

visible above the motor-cortex in the contra-lateral hemisphere.

The data in Figure 5 are a normalised difference between the two

conditions, obtained by first subtracting the TFR data from the

unrelated condition from the related condition and then dividing

the result by the sum of the two conditions (related{unrelated
relatedzunrelated

). The

area within the grey box is where the two conditions are

significantly different, as indicated by the cluster-based non-

parametric statistic described by Maris and Oostenveld [21].

Classification Results
An overview of the single trial classification results is shown in

Table 1. All reported accuracies are significantly different from

chance level (0.5), with p-value of ,.001, based on a binomial test

[25], Ch. 17. These classification results are based on the labels

that are taken from the Leuven dataset.

To investigate how well the Leuven dataset represents the

associations by the subjects and whether that is influenced by the

difference in association strength per block (shown in Figure 3), the

mismatch between the labels as given by the Leuven dataset (used

during the experiment) and the labels that were derived from the

button presses of the subjects during the experiment was

calculated. The average proportion of mismatched labels per

block can be seen in Figure 6. Because in the test blocks, some

prime-probe combinations may occur multiple times, only the

mismatch for unique combinations it calculated.

An overview of the decoding results can be found in Table 2. It

shows the proportion correct in the situation where all 100 probes

are used (Full) and in the situation where early stopping is applied

(Stop). Asterisks indicate whether the accuracy is significantly

different from chance level (1/150, 0.00667), based on a binomial

test.

Post-hoc Simulation Results
The results for the post-hoc simulations can be found in

Figure 7. It shows the performance on the four measures

mentioned earlier: proportion correct (top-left panel), rank (top-

right panel), number of probes (bottom-left panel), and Informa-

tion Transfer Rate (ITR) (bottom-right panel). The different

simulations are arranged on the x-axis. From left to right: (i) the

results from the experiment using the full number of probes (Exp

Full), (ii) the results from the experiment with early stopping (Exp),

(iii) simulation results with early stopping (Sim), (iv) simulation with

random probe selection and early stopping (Rand Sim), (v)

simulation with 150 targets and 10.000 probes with early stopping

(Sim 150610k), (vi) simulation with 10.000 targets and 10.000

probes with early stopping (Sim 10k610k).

To determine whether the simulation results differ significantly,

four Bonferroni corrected one-way repeated measures ANOVA’s

were performed, with factor condition with the six analyses as

levels. When the ANOVA was significant, bonferroni corrected

post-hoc contrasts were performed using Student’s dependent

samples t-test. The contrasts of interest were: Exp Full vs Exp, Exp

vs Sim, Sim vs Rand Sim, and Sim 150610k vs Sim 10k610k.

Only the significant contrasts are reported below.

There was a significant difference in proportion correct between

the six analyses, F(5,45) = 13.8, p ,.001, g2
p = 0.353. The post-

hoc contrasts showed that the proportion correct with intelligent

probe selection (M = 0.307, SD = 0.14) is significantly higher than

the proportion correct with random probe selection (M = 0.122,

SD = 0.0875), p(9) = 6.79, p ,.001. It also showed that the

proportion correct in the simulation with 150 targets and 10.000

probes (M = 0.344, SD = 0.142) is significantly higher than the

proportion correct in the simulation with 10.000 targets and

10.000 probes (M = 0.191, SD = 0.108), t(9) = 6.61, p,.001.

There was a significant effect on rank for the six analyses,

F(5,45) = 24, p,.001, g2
p = 0.568. Post-hoc contrasts showed that

the rank in the simulation with 150 targets and 10.000 probes (M

= 18.6, SD = 18.4) is significantly higher than the rank in the

Towards a BCI Based on Semantic Relations
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simulation with 10.000 targets and 10.000 probes (M = 73.4, SD

= 24.7), t(9) = 29, p,.001.

There was also a significant difference in the number of probes

used in the different analyses, F(5,45) = 52.9, p,.001, g2
p = 0.635.

The post-hoc contrasts showed that the number of probes used in

the experiment without early stopping (M = 100, SD = 0) is

significantly higher than when applying the early stopping

algorithm (M = 40.7, SD = 20.1), t(9) = 9.31, p,.001. It also

showed that the number of probes used in the experiment with

early stopping (M = 40.7, SD = 20.1) is significantly lower than

the number used in the simulation with early stopping (M = 61.6,

SD = 20.8), t(9) = 27.45, p,.001. Furthermore, the number of

probes used with intelligent probe selection (M = 61.6, SD = 20.8)

is significantly lower than the the number of probes used with

random probe selection (M = 95.1, SD = 6.78), p(9) = 26.72, p,

.001. Finally, the number of probes used in the simulation with

150 targets and 10.000 probes (M = 55.6, SD = 19) is significantly

lower than the number of probes used in the simulation with

10.000 targets and 10.000 probes (M = 69.1, SD = 21.4), t(9) = 2

9.77, p,.001.

A significant difference in Information Transfer Rate (ITR, see

Equation (5)) was also found, F(5,45) = 15.2, p,.001, g2
p = 0.349.

Post-hoc contrasts showed that the ITR in the experiment without

early stopping (M = 0.835, SD = 0.633) is significantly lower than

when applying the early stopping algorithm (M = 2.6, SD = 1.59),

t(9) = 24.91, p = 0.003. Furthermore, the ITR with intelligent

probe selection (M = 1.52, SD = 1.52) is significantly higher than

the the ITR with random probe selection (M = 0.222, SD

= 0.255), p(9) = 3.21, p = 0.042. It also showed that the ITR in the

simulation with 150 targets and 10.000 probes (M = 1.53, SD

= 1.2) is significantly higher than the ITR in the simulation with

10.000 targets and 10.000 probes (M = 0.668, SD = 0.758),

t(9) = 29.77, p,.001.

For the scaling to larger vocabularies (more prime words),

further simulations were performed, where the number of prime

words were gradually increased from 150 to 10.000. The results

and a fit of this data can be seen in Figure 8. It shows that the

proportion correct decreases logarithmically with vocabulary size

with formula 0:59{0:099. (x), where.log x is the vocabulary size in

number of possible prime words. The rank decreases according to

a power law function: 0:088zx{0:1. The number of probes until

the stopping criterium is reached increases logarithmically

approximately according to z7:3 .  The ITR can roughly

be fit with a polynomial after a log(x) transformation:

{0:074x2zx{1:9, peaking at a vocabulary size of 1214.

Discussion

The grand average Event Related Potential (ERP) results show

a significant P300 effect. The timing of the peak and distribution

over the scalp are similar to paradigms eliciting a P300 response

[5]. The peak of the response, on average, occurs shortly before

the button press, indicating the brain response comes before the

button press. The grand average Time Frequency Representation

(TFR) results show a significant negative difference in the mu-

band, corresponding to the brain activity normally elicited by a

finger movement [26]. When looking at the evolution of the

difference topography of the ERS in the 10–14 Hz frequency

band, it also shows an expected pattern: no difference in the first

window (0–250 ms), and then an increasing (negative) difference

over motor cortex. The corresponding figure can be found in the

supporting information: Figure S2.1 in File S2 (Results). The single

trial accuracy on the test items is on average 67%. However, there

is a difference of about 10% between the training/post-training

and the test items.

Figure 4. Grand Average ERP. Grand average Event Related Potential (ERP) results for the training block. Top: the ERPs for the related (solid red)
and unrelated (dashed black) conditions. The grey area indicates where the conditions differ significantly. The dashed vertical line indicates the
average reaction time, i.e., when the subjects pressed the button. Bottom: The distribution over the scalp of the significant difference (related –
unrelated) averaged over the grey area of the top panel (260ms –1000 ms). Asterisks indicate for which channels the effect is significant.
doi:10.1371/journal.pone.0087511.g004

Figure 5. Grand Average TFR. Grand average TFR results for the
training block for channel C3. The data shown here is a normalised
difference between the related and unrelated conditions, obtained by
related{unrelated
relatedzunrelated

. The grey box indicates in which parts of the figure the

difference between the two conditions is significant. The vertical
dashed line indicates the grand average reaction time, i.e., when the
subjects pressed the button.
doi:10.1371/journal.pone.0087511.g005

Table 1. Classification accuracies.

Train Test 1 Test 2 Post-train

S1 85% 75% 73% 80%

S3 75% 66% 65% 80%

S4 87% 74% 77% 87%

S5 74% 65% 65% 76%

S6 79% 62% 64% 70%

S7 75% 60% 59% 67%

S8 74% 61% 64% 70%

S9 73% 65% 63% 66%

S10 73% 66% 69% 83%

S11 88% 62% 66% 83%

Mean 78% 66% 67% 76%

IM 76% 66% 67% 72%

Single trial classification accuracies, based on relatedness labels from the
Leuven dataset. All classification accuracies differ significantly from chance level
(0.5) with a p-value of ,.001.
doi:10.1371/journal.pone.0087511.t001
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The mean decoding accuracy is 38% using the full 100 probes,

and 41% when applying early stopping. The Information Transfer

Rate (ITR) is 0.835 bits/min with the full 100 probes and 2.6 bits/

min with early stopping. The post-hoc simulations show that the

performance of the algorithm is significantly better with the

intelligent probe selection algorithm than with random probe

selection. The simulations also show that the performance scales

logarithmically with vocabulary size (number of possible prime

words).

A consistent difference in single trial accuracy between training

block and test blocks was found. On average, the accuracy of the

test blocks was 10% lower than that in the training block. There is

often a lower accuracy in test blocks than in the training blocks

caused by non-stationarities in the data. The more time between

the training block and the test block, the lower the test accuracy.

However, this does not seem to be the case here. The accuracy on

the post-training block, which occurs furthest away in time from

the training block, has a similar accuracy to the training block.

There are some differences in the stimuli that might explain the

lower accuracy. The mean association strength in the test-items is

lower than the strength of the training-items (see Figure 3).

Another hypothesis could be that there is a higher mismatch

between codebook and button press found in the test sets. This in

turn would decrease the single trial accuracy because the labels do

not match with when the subject actually moves. However, this

does not seem to be the case as the single trial accuracy where the

button presses are used as labels, the 10% drop in accuracy

remains. Future research efforts should give more insight into the

cause of this performance mismatch.

As mentioned before, there is a mismatch between the

associations as indicated by the Leuven dataset and the subjective

associations of the subjects as indicated by their button presses.

This mismatch is shown in Figure 6. The inverse of the mismatch

could be seen as a measure of fit of the Leuven dataset. In that

case, the overall fit of the dataset is 91%. There is a difference in fit

between the training blocks (94% fit) and test blocks (88% fit). This

difference could be explained by the difference in association

strength between the blocks (see Figure 3). The test blocks have a

lower association strength compared to the training blocks. It

could be expected that with lower association strengths less people

would agree that items are indeed related, decreasing the fit on

those particular items.

An early stopping algorithm was applied to the data obtained in

the experiment. When the probability of any prime word in the

decoding algorithm reached the threshold of.95, the decoding was

stopped with that prime word as output. On average the

proportion correct did not change, however a significant lower

number of probes is used to reach this same accuracy. In other

words, it takes less time without affecting the performance, which

in turn increases the Information Transfer Rate (ITR) of the BCI.

It was shown here that the intelligent probing algorithm

contributes significantly to the performance of the BCI. It

increases the accuracy, decreases the number of probes required,

and increases the ITR of the BCI. It is also expected, that this

difference will become even more pronounced with a larger

vocabulary (now 150 words).

Offline simulations found that increasing the vocabulary size

resulted in a drop in performance, however this was not

proportional to the increase. The proportion correct and number

of probes change logarithmically with the vocabulary size. The

rank decreases according to the power law and the ITR can be

fitted with a polynomial after a log transformation. The maximum

of this polynomial occurs at a vocabulary size of about 1.200. This

means that the BCI conveys the most information with that

vocabulary size.

It has been shown here that the BCI works by measuring

subject’s actual movement. According to Blokland et al. [13]

actual movement is closer in brain signature to attempted

movement, i.e., when paralysed subjects try to make an actual

movement, than imagined movement. The subject with the best

performance returned to do the experiment again with imagined

movement. A comparison between this subject’s data in the actual

movement session and in the imagined movement sessions was

made. It showed that the ERP results were almost identical

between the two conditions. In the TFR, the imagined movement

had a similar pattern, but a lower amplitude, which is in line with

the previous research [27]. The corresponding figures can be

found in the supporting information: Figure S2.2 and Figure S2.3

in File S2. The classification results are also almost identical to the

grand average movement results and show that this BCI could also

work based on imagined movement.

Figure 6. Mismatch. Mismatch between codebook based on Leuven
association dataset and button presses. Only the unique mismatches
were counted. Error bars are corrected for a within subject design [31],
p. 361–366.
doi:10.1371/journal.pone.0087511.g006

Table 2. Decoding results.

Full Stop Probes

S1 83% ** 42% ** 29

S3 50% ** 58% ** 36

S4 50% ** 42% ** 28

S5 25% * 33% ** 58

S6 8% 25% * 54

S7 8% 17% 52

S8 42% ** 58% ** 66

S9 33% ** 33% ** 75

S10 42% ** 50% ** 43

S11 42% ** 50% ** 33

Mean 38% ** 41% ** 47

IM 58% ** 33% ** 34

First two columns indicate proportion correct, last column indicates the number
of probes used to obtain the accuracy for the stop condition, for the full
condition this is always 100. Asterisks indicate whether the proportion correct
differs significantly from chance level (1/150, 0.00667). * indicates .001 , p ,

.05, ** indicates p ,.001.
doi:10.1371/journal.pone.0087511.t002
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The codebook used by the BCI, based on the Leuven

association dataset [14] is sparse and not optimal. Results show

a difference between the associations based on the dataset and the

associations as judged by the subjects, i.e., the mismatch

mentioned earlier. The single trial classification results could be

improved by using the labels given by the subjects during the

experiment. However, it is not possible to improve the decoding

process by using these labels. In order for the decoding to be fair,

all possible combinations of prime and probe words need to be

manually labelled by the each subject. With a vocabulary size of

150 words, there are already 11.175 combinations, which would

take about 4,5 hours to label. Increasing the vocabulary size to the

earlier mentioned optimum 1.200 words, increases the combina-

tions to 719.400 (about 280 hours). So for smaller codebooks, some

time could be spent in optimising the codebook to further increase

the performance of the BCI.

A way to keep the vocabulary size small is to use context to

construct the vocabulary. When the BCI is to be used by a patient

who wants to communicate about wishes (e.g., I would like some

coffee) and feelings (e.g., my leg hurts), words needed to communicate

this could be selected as the vocabulary. By using this context, the

total number of words could be kept relatively small, allowing for a

similar performance as reported here, and allowing the patient to

manually label all possible combinations for improved perfor-

mance.

The proposed BCI could be useful for two different groups of

patients. First, the group of locked-in patients who are not able to

communicate anymore. For these patients, this BCI could be an

alternative for the existing (visual) spellers. Instead of spelling a

word letter by letter, the word or concept is communicated directly

using the semantic relations BCI. Further research is needed to

determine which method patients prefer. The BCI would also

work when pictures or auditory presented words are used instead

of visually presented words. This would open up the application

for patients that are not able to read, due to illiteracy or other

causes. Second, the group of patients with aphasia, especially the

patients where the recognition is still intact, but language

production is impaired and spelling itself is impossible or very

slow. These patients would not need the brain control. For these

patients the button-presses themselves can be used, dramatically

increasing the performance of the system. Simulations with perfect

Figure 7. Post-hoc simulations. Results for post-hoc simulations: Exp Full: the experiment using the full number of probes, Exp: results from the
experiment with early stopping, Sim: simulation results with early stopping, Rand Sim: simulation with random probe selection and early stopping,
Sim 150610k: simulation with 150 targets and 10.000 probes with early stopping, Sim 10k610k: simulation with 10.000 targets and 10.000 probes
with early stopping. Top-left: Proportion correct, related correct and in top 10. Top-right: Rank, the rank for the last analysis (Sim 10k610k) is scaled
by dividing by 61.8. Bottom-left: Number of probes. Bottom-right: Information Transfer Rate. * indicates .001 , p ,.05, ** indicates p ,.001.
doi:10.1371/journal.pone.0087511.g007

Towards a BCI Based on Semantic Relations

PLOS ONE | www.plosone.org 9 February 2014 | Volume 9 | Issue 2 | e87511



classification accuracy show perfect decoding accuracy after about

18 probes, and an ITR of around 23 bits per minute.

A different way to detect concepts or words could result from

the work of Huth, Nishimoto, Vu, and Gallant [28], Simanova,

Hagoort, Oostenveld, and van Gerven [29], or Schoenmakers,

Barth, Heskes, and van Gerven [30]. They attempt to decode

concepts, words, or images from the brain by looking at activation

patterns measured by functional Magnetic Resonance Imaging

(fMRI). Currently this still requires presenting stimuli to the

subjects and decoding the response to these stimuli. However in

future it may be possible to decode this information when the

subject has the stimulus in mind.

Conclusions

This article shows that (i) it is possible to build a BCI based on

semantic relations using an intelligent probing algorithm, (ii)

Applying a dynamic stopping technique significantly contributes to

the performance of such a BCI, (iii), the intelligent selection

algorithm contributes significantly to the performance of the BCI,

and (iv) the number of required probes increases slowly

(logarithmically) with increasing numbers of probe words and

primes.

Supporting Information

File S1 Stimuli. Full list of stimuli. List of all stimuli used in the

experiment, including semantic relations.

(PDF)

File S2 Results. Additional results. Three figures with

additional results.

(PDF)
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