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Abstract

Background: Excessive mechanical loading of articular cartilage producing hydrostatic stress, tensile strain and fluid flow
leads to irreversible cartilage erosion and osteoarthritic (OA) disease. Since application of high fluid shear to chondrocytes
recapitulates some of the earmarks of OA, we aimed to screen the gene expression profiles of shear-activated chondrocytes
and assess potential similarities with OA chondrocytes.

Methodology/Principal Findings: Using a cDNA microarray technology, we screened the differentially-regulated genes in
human T/C-28a2 chondrocytes subjected to high fluid shear (20 dyn/cm2) for 48 h and 72 h relative to static controls.
Confirmation of the expression patterns of select genes was obtained by qRT-PCR. Using significance analysis of microarrays
with a 5% false discovery rate, 71 and 60 non-redundant transcripts were identified to be $2-fold up-regulated and #0.6-
fold down-regulated, respectively, in sheared chondrocytes. Published data sets indicate that 42 of these genes, which are
related to extracellular matrix/degradation, cell proliferation/differentiation, inflammation and cell survival/death, are
differentially-regulated in OA chondrocytes. In view of the pivotal role of cyclooxygenase-2 (COX-2) in the pathogenesis
and/or progression of OA in vivo and regulation of shear-induced inflammation and apoptosis in vitro, we identified a
collection of genes that are either up- or down-regulated by shear-induced COX-2. COX-2 and L-prostaglandin D synthase
(L-PGDS) induce reactive oxygen species production, and negatively regulate genes of the histone and cell cycle families,
which may play a critical role in chondrocyte death.

Conclusions/Significance: Prolonged application of high fluid shear stress to chondrocytes recapitulates gene expression
profiles associated with osteoarthritis. Our data suggest a potential link between exposure of chondrocytes/cartilage to
abnormal mechanical loading and the pathogenesis/progression of OA.
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Introduction

Osteoarthritis (OA) is a chronic disease characterized by the

degeneration or destruction of the articular cartilage tissue that

covers and protects the moving joints. The clinical correlates of

OA are joint pain, dysfunction and restricted motion. The

etiologies of OA include joint dysplasia, genetic and develop-

mental joint abnormalities, ageing and joint injuries [1]. Indeed,

excessive chronic or repetitive mechanical loading of articular

cartilage has been reported to play a key role in the development

and progression of OA [1]. Chondrocytes represent the sole

cellular component of cartilage, and regulate its fate due to their

ability to synthesize matrix-degrading enzymes and matrix

proteins such as collagens and proteoglycans, which are

responsible for the tensile strength and compressive resistance,

respectively, of cartilage to mechanical loading. Mechanical loads

produce hydrostatic pressure and shear stress which causes tensile

strain in some direction [2,3]. Elegant modeling studies have

shown that, in addition to hydrostatic pressure, chondrocytes of

the superficial and transitional zones are subjected to high and

low fluid flow, respectively, whereas cells of the middle and deep

radial zones experience little to no fluid flow [2,3]. These

observations suggest that fluid flow or fluid shear stress is a

pathophysiologically relevant mechanical signal in cartilage

biology.

Fluid shear modulates intracellular signaling in a time-,

magnitude- and phenotype-dependent manner. In the vascula-

ture, high levels of laminar shear are atheroprotective, whereas

low shear oscillatory flow tends to be atherogenic. In contrast,

numerous in vitro studies support the concept that low fluid shear
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(,10 dyn/cm2) is chondroprotective [4], whereas high shear

stress (.10 dyn/cm2) elicits the release of pro-inflammatory

cytokines such as interleukin-6 (IL-6) [5], and mediates matrix

degradation [4,6] and chondrocyte cell death [7,8,9], which

represent earmarks of OA. Predicted fluid flow and fluid shear

stress values in vivo are lower than those applied in vitro by other

investigators and us [4,5,6,7,8,9]. We and others have docu-

mented that fluid shear affects cell responses in a time- and

magnitude-dependent manner. For instance, the reduced antiox-

idant capacity of chondrocytes was detected after a 24-h exposure

to a fluid shear stress level of 40 dyn/cm2 [7]. Quantitatively

similar results were obtained when chondrocytes were subjected

to a lower shear stress level (20 dyn/cm2) but for an extended

(48 h) shear exposure time [7]. As has appropriately been argued

in the literature [3], ‘‘it is the cumulative influence of loading histories

throughout life that governs the biology of the tissue’’. It is therefore

apparent that detection of chondrocyte responses relevant to OA

induced by pathological levels of fluid shear encountered in vivo

would require extremely long time scales (equivalent to those

associated with the onset of OA), which are infeasible and

impractical in a laboratory setting. Of note, the inter-dependence

between the magnitude and duration of shear for chondrocytes is

not known. We, therefore, strategically chose the standard

approach employed by toxicologists to evaluate the potential

toxicity of lifetime exposure of man to a chemical substance [10];

that is, the investigation of supra-physiological concentrations of

the chemical, in our case supra-physiological shear stress levels,

for an experimentally feasible time scale.

Since OA is often a consequence of excessive mechanical forces

[1] and given that the application of high fluid shear to

chondrocytes recapitulates some of the earmarks of OA

[4,6,7,8,9], we aimed to screen the gene expression profiles of

shear-activated chondrocytes and assess potential similarities with

OA chondrocytes. Using cDNA microarrays, we found that 42 of

the 131 differentially regulated genes in sheared chondrocytes

have been reported previously in OA chondrocytes, and are

related to extracellular matrix (ECM)/matrix degradation, cell

growth/differentiation, inflammation and cell survival/death.

Consistent with the critical role of cyclooxygenase-2 (COX-2)

in the development and/or progression of OA in vivo [11] and

findings on the regulation of shear-induced reactive oxygen

species (ROS) [9] and apoptosis in vitro [7], we identified a

collection of genes that are regulated by shear-induced COX-2,

including genes of the histone and cell cycle families, which may

play a critical role in chondrocyte death. Taken together, our

data suggest that prolonged application of high fluid shear to

human T/C-28a2 chondrocytes recapitulates the earmarks of

OA, and illustrate a link between high mechanical forces and the

development of OA.

Results

Differentially expressed genes in shear-activated human
chondrocytes

OA is often a consequence of excessive mechanical loading of

cartilage [12], which produces hydrostatic stress, tensile strain and

fluid flow [2,3]. Exposure of human chondrocytes to high fluid

shear elicits the release of pro-inflammatory mediators such as

interleukin-6 [5], and mediates matrix degradation [4,6] and

apoptosis [7,8,9]. In view of accumulating evidence suggesting that

prolonged application of high fluid shear recapitulates some of the

earmarks of OA, we aimed to identify the differentially-regulated

genes in human T/C-28a2 chondrocytes subjected to high fluid

shear (20 dyn/cm2) versus static (control) conditions (0 dyn/cm2)

for 48 h and 72 h, using a cDNA microarray technique. In these

experiments, total RNA, extracted from control (unsheared) and

shear-activated T/C-28a2 cells, was reverse transcribed and

labeled with Cy3 and Cy5, respectively, and then hybridized to

TIGR 40K human set chips containing 39,936 human expressed

sequence tags (ESTs) [7,9]. As shown in Fig. 1, the expression

ratios of 61% of all EST probes between sheared and control

genes were statistically significant based on the Student’s t-test

(p#0.01). Using SAM with a 5% FDR, 799 probes were found to

be differentially regulated between sheared and control specimens.

Of these, 98 probes displayed $2-fold upregulation, whereas 90

probes showed #0.6-fold fold downregulation between sheared

and control chondrocytes (Fig. 2, Tables S1 and S2). Of the 98 up-

regulated probes, 76, corresponding to 71 non-redundant

transcripts, have been sequenced at full-length, whereas the

remaining are ESTs (Table S1). Similarly, of the 90 down-

regulated probes, 69, representing 60 non-redundant transcripts,

correspond to known genes, whereas the rest are ESTs (Table S2).

The differentially-regulated genes with known sequences were

classified according to gene ontology (GO), in terms of their

involvement in biological processes, and sorted by percentages

according to FatiGO (http://www.fatigo.org), a web interface

which carries out data mining using GO for DNA microarray data

[13,14] (Fig. S1A and B).

Comparison of the gene expression profiles between
sheared and OA chondrocytes

We next investigated the potential similarities in the gene

expression profiles of shear-activated chondrocytes determined in

this study and OA chondrocytes reported in the literature. Of the

71 shear-up-regulated genes, 32 have previously been reported to

Figure 1. Volcano plot of microarray data. T/C-28a2 chondrocytes
were subjected to fluid shear (20 dyn/cm2) or static control (0 dyn/cm2)
conditions for 48 h or 72 h. Three paired samples for each time point
were obtained for microarray analysis. The negative log10-transformed
p-values of the Student’s t-test are plotted against the shear to static
ratios of fold change in the six-sample experiment. The horizontal bar
represents the nominal significant level 0.01 for the Student’s t-test
(p#0.01 for 61% of all ESTs represented by the red and green points).
The vertical dashed bars denote #0.6-fold downregulation (left) or
$2.0-fold upregulation (right).
doi:10.1371/journal.pone.0015174.g001

Sheared Chondrocytes Display the Earmarks of OA
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be similarly regulated in OA chondrocytes, accounting for 45%

similarity. As shown in Table 1, these genes are related to cell

adhesion, cell survival/death, cell growth/differentiation, extra-

cellular matrix (ECM)/matrix degradation, inflammatory re-

sponse, oxidation/reduction and signal transduction. Although

prolonged application of fluid shear increased the mRNA synthesis

of TCDD-inducible poly(ADP-ribose) polymerase (PARP-1) in

human T/C-28a2 chondrocytes (Table 1), a recent microarray

study reported this gene to be down-regulated in OA chondrocytes

relative to normal controls [15]. Of note, PARP-1 was found to

be up-regulated in rheumatoid arthritis (RA) [16]. Moreover, our

data are consistent with prior observations suggesting that RHOB,

a member of the Rho GTP-binding protein, is overexpressed

in OA [17,18] and the positive association in the expression levels

of RHOB and PARP-1 [19]. Our microarray analysis also

identified two additional genes, IL-32 and pappalysin, that are

up-regulated in shear-activated chondrocytes as well as in RA

[20,21] but not OA [15]. Of the 60 shear-down-regulated genes,

only 3 have been reported to be similarly regulated in OA. A

previous microarray study identified two members of the histone

family, HIST2H2AA and H3F3B, to be mildly down-regulated

in OA knees [22]. Here, we identified 6 new genes of the histone

family to be significantly down-regulated in shear-activated

chondrocytes (Table 2). Moreover, fluid shear down-regulated

the mRNA levels of 9 cell cycle-related genes (Table 2), which may

be responsible for chondrocyte apoptosis [9]. Three additional

genes, vascular cell adhesion molecule-1 (VCAM-1), chitinase 3-

like 2 (CHI3L2) and the chemokine CXCL12 were down-

regulated in sheared chondrocytes, although these genes have

been reported to be up-regulated in the microarray profiling of

OA chondrocytes [15,22,23].

Confirmation differential gene expression by qRT-PCR
To validate the expression profiles obtained by microarray

analysis, qRT-PCR was used to quantify the mRNA expression

levels in sheared and matched static control chondrocytes. We

chose to examine the following genes: gremlin in view of consistent

literature data suggesting that it is up-regulated in OA chondro-

cytes [15,24]; HIST12BD and HIST13H2A, which represent two

newly identified genes that are differentially regulated in shear-

activated chondrocytes; RHOB in light of conflicting literature

data [15]; PAPP-A given their opposite regulation in sheared and

Figure 2. Hierarchical clustering of differentially expressed genes from six sheared and matched static control chondrocyte
specimens. Each horizontal row represents a single gene. Up-regulated genes in shear-activated (20 dyn/cm2 for 48 h or 72 h) relative to matched
static control T/C-28a2 chondrocyte samples are shown in red, whereas down-regulated genes are shown in green.
doi:10.1371/journal.pone.0015174.g002
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OA [15] chondrocytes. qRT-PCR revealed the same gene

expression pattern as the microarray analysis in all five genes

examined in this work (Table 3).

High fluid shear induces IL-1b expression, matrix
degradation and reactive oxygen species in human
chondrocytes

Although OA is classified as a non-inflammatory joint disease,

prostaglandins and cytokines such IL-1b and IL-6 are believed to

play a role in the pathogenesis and progression of disease

[11,25,26]. In addition to inducing the expression of matrix

degrading enzymes, IL-1b also represses the expression of an array

of genes associated with the differentiated chondrocyte phenotype,

including the type II collagen gene (COL2A1) and aggrecan (AGC)

[25,27,28]. Degradation of aggrecan is considered an important

manifestation of OA. We thus evaluated whether prolonged

application of high fluid shear to human T/C-28a2 chondrocytes

modulates the expression of key marker genes of OA in a manner

similar to that detected in OA relative to healthy chondrocytes. As

shown in Fig. 3, high fluid shear increases the mRNA levels of

COX-2 and IL-1b and concomitantly suppresses those of

COL2A1 and AGC in human T/C-28a2 chondrocytes, which is

similar to the gene regulation pattern observed in OA chondro-

cytes [25,26,27,28].

Accumulating evidence suggests that reactive oxygen species

(ROS) contribute to the pathophysiology of OA [29]. ROS

generation overwhelms the endogenous antioxidant defense

system of chondrocytes, as evidenced by the marked downregu-

lation of a battery of antioxidant genes in OA chondrocytes

such as superoxide dismutase, gluthione peroxidase 3 and

thioredoxin-interacting protein [22]. Using DCFDA in conjunc-

Table 1. List of differently-regulated genes in shear-activated T/C-28a2 chondrocytes compared to OA chondrocytes obtained
from the literature.

Gene Symbol; (EST)
Fold ±SD
(Shear/Static) References Gene Symbol; (EST)

Fold ±SD
(Shear/Static) References

Upregulation Upregulation

Cell adhesion Signal transduction

CYR61 (AI014487, AA012944) 2.2860.42 [50,51] HBEGF (R14663) 2.0860.36 [15,61]

CD44 (W45275 AA282906) 5.1461.30 [15,52] HHIP (AI056548) 2.6860.72 [62]

Cell survival/death FOSL1 (T89996) 13.1561.01 [15]

PIM1 (N63635) 2.0360.40 [15] EPHA2 (H84481) 2.3660.21 [15]

MYC (AA464600) 2.1560.45 [53] WNT5A (W93592) 2.2860.05 [15]

FAS (AA293571) 2.5360.67 [54] PLAU (AA284668) 2.2860.15 [63]

TIPARP (AA707871) 3.9460.07 [16] * LTBP2 (AA424629) 2.3660.25 [15,64]

GLIPR1 (W52273) 2.3760.05 [15] Others

PPP1R15A (AA460168) 2.5760.36 [15] FER1L3 (AA457121) 2.5460.03 [65]

Cell growth and differentition PLAT (AA453728) 2.1960.43 [15,56]

CCND1 (AA487700) 2.3760.12 [15] SLC2A1 (R17667) 2.9560.05 [66]

RHOB (AA054975) 3.7060.09 [17,18] LYN (R83837) 2.1860.21 [15]

PAPP-A (R96235) 2.9460.71 [20]* PHLDB2 (AA479351) 2.0660.13 [15]

GREM1 (W48852) 9.9960.65 [24]

Extracellular matrix and
degradation

COL4A1 (AA150402) 2.4160.18 [22] Downregulation

ADAM12 (AA099554 H78537) 2.5260.04 [15,55] Signal transduction

MMP2 (AA936799) 3.3361.03 [32] CXCL12 (AI655374) 0.3860.09 [20,67]

Inflammatory Response BMP5 (AA779457) 0.5760.03 [68]

CAV1 (AA055835) 2.6460.23 [39,56] Others

TLR4 (AI371874 AI082399) 2.2760.06 [15,57] CHI3L2 (AA481250) 0.6160.06 [22,32]

IL32 (AA458965) 2.9360.83 [21] * HTRA1 AA699878 0.4060.10 [23]

Oxidation/reduction MEIS2 (AA148641) 0.5660.03 [15]

MT1E (AI289110) 2.4460.68 [58] VCAM1 (H07071) 0.4160.07 [15]

MT1X (N80129) 2.1160.50 [58] PRKAB2 (AA620527) 0.5560.10 [15]

APOE (AA478589) 2.1460.37 [59]

ALDH1A3 (N32226) 5.9161.01 [60]#

35 and 7 genes, up-regulated ($2-fold) and down-regulated (#0.6-fold), respectively, in human T/C-28a2 chondrocytes subjected to a shear stress level of 20 dyn/cm2

for 48 h and 72 h, were similarly regulated in OA chondrocytes.
*Involved in rheumatoid arthritis.
#murine models.
Genes in italics have reverse regulation in sheared and OA chondrocytes.
doi:10.1371/journal.pone.0015174.t001

Sheared Chondrocytes Display the Earmarks of OA
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tion with flow cytometry, we determined that high shear stress

induces ROS generation in human chondrocytes (Fig. 4A). Knock-

down of L-prostaglandin synthase (L-PGDS) via RNA interference

abrogated the formation of ROS in sheared T/C-28a2 chondro-

cytes (Fig. 4). Taken altogether, our data suggest that COX-2-

derived PGD2 and/or its metabolite 15-deoxy-D12,14-PGJ2 (15d-

Table 2. Identification of genes regulated by COX-2 in shear-activated T/C-28a2 chondrocytes.

Gene Symbol EST Gene ID Shear/static Shear+NS398/Shear

Cell growth/differentiation

PAPP-A R96235 Pregnancy-associated plasma protein
A, pappalysin 1

2.960.7 0.460.2

Cell survival/death

ISG20L1 (AEN) AA682514 Apoptosis enhancing nuclease 2.260.2 0.460.1

FAS [69] AA293571 Fas (TNF receptor superfamily, member 6) 2.560.7 0.360.01

Inflammation

CAV1 [36] AA055835 Caveolin 1 2.660.2 0.460.01

CAV2 AI339434 Caveolin 2 2.460.3 0.560.02

Matrix degradation

ADAM12 H78537 ADAM metallopeptidase domain 12 2.660.3 0.660.03

Signal transduction

EPHA2 H84481 EPH receptor A2 2.460.2 0.560.01

LTBP2 AA424629 Latent transforming growth factor
beta binding protein 2

2.460.3 0.560.03

Oxidation/reduction

APOE [70] AA478589 Apolipoprotein E 2.360.3 0.560.01

Others

ITGA2 AA463610 Integrin, alpha 2 2.260.3 0.560.03

Histone Family

HIST3H2A AI268551 Histone cluster 3, H2a 0.560.1 1.960.02

HIST1H4C AA868008 Histone cluster 1, H4c 0.560.1 1.860.02

HIST2H2BE AA010223 Histone cluster 2, H2be 0.560.1 1.960.08

HIST1H2BD N33927 Histone cluster 1, H2bd 0.560.1 2.060.01

HIST1H4J AI653010 Histone cluster 1, H4j 0.560.1 1.860.03

HIST1H2BL AI340654 Histone cluster 1, H2bl 0.560.1 1.760.06

Cell Cycle

TPX2 H73329 TPX2, microtubule-associated, homolog 0.660.1 1.760.2

AURKB H81024 Aurora kinase B 0.660.1 2.160.06

NUF2 AA421171 NDC80 kinetochore complex
component, homolog

0.660.1 1.760.03

CDC25C W95001 Cell division cycle 25 homolog C 0.660.1 1.760.1

BUB1 AA446462 Budding uninhibited by
benzimidazoles 1 homolog

0.660.1 1.760.04

CDC2 AA278384 Dyclin-dependent kinase 1 0.660.07 1.660.07

KIF2C AA400476 Kinesin family member 2C 0.660.1 1.760.01

NUSAP1 AA620485 Nucleolar and spindle associated protein 1 0.560.07 2.060.02

CENPF T87341 Centromere protein F, 350/400 ka (mitosin) 0.560.05 1.760.04

Others

TOP2A AA504348 Topoisomerase (DNA) II alpha 170 kDa 0.560.04 1.860.02

PBK AA476576 PDZ binding kinase 0.660.1 1.760.07

STOX1 AA452877 Storkhead box 1 0.660.06 1.660.3

PALM H14208 Paralemmin 0.560.1 1.860.01

CIT H10788 Citron (rho-interacting, serine/
threonine kinase 21)

0.560.1 1.860.3

Values represent transcript ratios for sheared (20 dyn/cm2 for 48 h) to paired static controls (0 dyn/cm2 for 48 h) or sheared in the presence of the specific COX-2
inhibitor NS398 (50 mM) to paired sheared controls (20 dyn/cm2 for 48 h). Data represent mean 6SD (n$3).
doi:10.1371/journal.pone.0015174.t002
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PGJ2) have the ability to generate ROS in sheared T/C-28a2

chondrocytes.

Genes regulated by COX-2 in shear-activated
chondrocytes

In view of the pivotal role of COX-2 in the regulation of shear-

induced inflammation and apoptosis in human chondrocytes

[7,9], we next aimed to identify genes regulated by COX-2 in

sheared chondrocytes. The gene transcription profile of T/C-

28a2 chondrocytes, subjected to high fluid shear (20 dyn/cm2) for

48 h in the presence or absence of the specific COX-2 inhibitor

NS398 (50 mM), was determined from microarray experiments

using the TIGR MeV software. Our data reveal that the

expression pattern of two distinct collections of genes was

reversed in sheared chondrocytes incubated with NS398 (Fig. 5).

The first collection of genes is positively regulated by COX-2.

Thus, inhibition of COX-2 activity by NS398 suppresses the

shear-induced, COX-2-dependent upregulation of these genes,

which are primarily related to inflammation, matrix degradation

and apoptosis (Fig. 5; Table 2; Table S3). The second collection

of genes is negatively regulated by COX-2, and as such,

inhibition of COX-2 activity restores the shear-induced COX-

2-dependent downregulation of these genes back to near basal

levels (Fig. 5; Table 2; Table S4). The majority of these genes are

histone- and cell cycle- related genes (Table 2; Table S4). To

validate the contribution of COX-2 to shear-mediated regulation

of histones, T/C-28a2 chondrocytes were transfected, prior to

their exposure to high fluid shear, with a siRNA oligonucleotide

sequence specific for L-PGDS, which is downstream of COX-2

and responsible for ROS production. This genetic intervention

abrogated the shear-mediated downregulation of histone genes

(Fig. 4B).

Discussion

OA is a debilitating disease of the joints characterized by the

irreversible erosion of articular cartilage. OA has multiple risk

factors including joint dysplasia, genetic and developmental joint

abnormalities, ageing and joint injuries [1]. In younger people

without genetic/developmental abnormalities, mechanical fac-

tors due to trauma are primarily implicated in the initiation and

progression of OA lesions [12]. The adult articular chondro-

cytes, although quiescent in normal cartilage, are able to

respond to mechanical forces. Excessive mechanical loading of

cartilage producing hydrostatic stress, tensile strain and fluid

flow [2], adversely affects chondrocyte function and precipitates

OA. The objective of our study was to identify the similarities in

the gene expression profiles of shear-activated and OA

chondrocytes. Using the cDNA microarray technology, we

found that 42 of the 131 differentially regulated genes in

sheared chondrocytes have been reported previously in OA

chondrocytes, and are related to ECM/matrix degradation, cell

growth/differentiation, inflammation and cell survival/apoptosis.

It is likely that the 15 histone- and cell cycle- related genes,

found to be differentially regulated in sheared chondrocytes, are

also involved in OA, since distinct histone [22] and cell cycle

[15] related genes were recently reported in microarray studies

of OA chondrocytes. In addition, the gene expression patterns of

other well-established markers of OA such as COX-2 [11,30],

L-PGDS, IL-1b, COL2A1 and AGC [25,27,28], are similar to

those detected in sheared chondrocytes. Taken together, at least

60 genes display akin regulation in both sheared and OA

chondrocytes.

As shown in Table 1, there were a few genes whose regulation

patterns were opposite in shear-activated relative to OA

chondrocytes. These differences could be attributed to several

reasons such as the distinct etiologies underlying OA, the stage of

OA, and the inherent variability of gene expression levels in

chondrocytes isolated from different donors. Although high

variability might be expected for the disease samples due to

different etiology and/or stage of OA, Aigner and coworkers [22]

reported a comparable high variability among normal donors.

This high variability might also explain why their microarray

analysis of OA chondrocytes revealed the downregulation of an

array of genes involved in cytokine signaling including IL-1b, IL-8

and leukemia inhibitory factor [22], whereas a recent study

showed upregulation of these same genes in OA [15]. Controversy

exists among others about whether COL2A1 expression is

Table 3. Comparison of the transcript ratios of select genes
determined by qRT-PCR versus cDNA microarray.

Shear/Static Shear+NS398/Shear

Molecule of
interest qRT-PCR Microarray qRT-PCR Microarray

Gremlin 4.960.1 1060.7 1.460.2 ND

HIST12BD 0.560.1 0.560.1 2.960.2 2.060.1

HIST13H2A 0.460.1 0.560.1 1.760.1 1.960.1

RhoB 7.360.1 3.760.1 1.060.2 0.860.1

Pappalysin
(PAPP-A)

3.760.3 2.960.7 0.460.2 0.260.5

Values represent transcript ratios for sheared (20 dyn/cm2 for 48 h) to paired
static controls (0 dyn/cm2 for 48 h) or sheared in the presence of the specific
COX-2 inhibitor NS398 (50 mM) to paired sheared controls (20 dyn/cm2 for
48 h). Data represent mean 6SD (n$3).
doi:10.1371/journal.pone.0015174.t003

Figure 3. High shear stress induces gene markers of osteoar-
thritis in human chondrocytes. T/C-28a2 chondrocytes were
subjected to fluid shear (20 dyn/cm2) or static conditions (0 dyn/cm2)
for 48 h. qRT-PCR was used to quantify the mRNA transcript ratios of
select genes in sheared compared to static control chondrocytes. Data
represent the mean6S.D. of n$3 independent experiments.
doi:10.1371/journal.pone.0015174.g003

Sheared Chondrocytes Display the Earmarks of OA

PLoS ONE | www.plosone.org 6 December 2010 | Volume 5 | Issue 12 | e15174



increased or suppressed in OA cartilage. Aigner and colleagues

have suggested that the expression of COL2A1 is suppressed in the

upper zones of early OA cartilage, but increased in late-stage OA

cartilage relative to normal controls [31,32]. However, upregula-

tion of collagen genes applies predominantly to those chondrocytes

found in the middle and deep zones of OA cartilage, whereas the

anabolic phenotype is less obvious in the upper regions [33].

We have demonstrated the critical role of COX-2 in the

regulation of shear-induced IL-6 and apoptosis in human

chondrocytes [7,9,34]. Using cDNA microarrays, we identified

Figure 4. Effects of L-PDGS knockdown on shear-mediated ROS generation and histone regulation in human chondrocytes. T/C-28a2
chondrocytes were subjected to fluid shear (20 dyn/cm2) or static conditions (0 dyn/cm2) for 48 h. In select experiments, T/C-28a2 cells were
transfected with an siRNA oligonucleotide sequence-specific L-PGDS before being subjected to fluid shear. (A) ROS generation was quantified using
the DCFDA dye in conjunction with flow cytometry. Histograms are representative of three independent experiments. (B) mRNA transcript ratios for
sheared to static control T/C-28a2 chondrocytes (closed bars). In select experiments, the transcript ratio of sheared, L-PGDS knockdown T/C-28a2 cells
to static control cells was determined (open bars). Data represent the mean6S.D. of n$3 independent experiments. *, p,0.05 with respect to shear
control.
doi:10.1371/journal.pone.0015174.g004

Figure 5. Heat map of genes identified as commonly regulated by COX-2 in shear-activated human T/C-28a2 chondrocytes. Each
horizontal row represents a single gene. Up-regulated genes in shear-activated relative to control chondrocyte specimens are shown in red (left
upper part). NS398 (50 mM) suppresses the shear-induced COX-2-dependent upregulation of these genes, which are depicted in green (right upper
part). Down-regulated genes in sheared relative to static control chondrocytes are shown in green (left lower part). Inhibition of COX-2 activity by
NS398 (50 mM) restores the shear-induced COX-2-dependent downregulation of the genes, which are depicted in red (right lower part).
doi:10.1371/journal.pone.0015174.g005
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genes that were either positively or negatively regulated by COX-

2 in shear-activated chondrocytes. The former genes are related

to inflammation, matrix degradation and apoptosis. A positive

association in the expression levels of COX-2 and caveolin-1

[35,36] or EPH receptor A2 [37] is supported by findings of other

studies employing different cell types. Caveolin-1 and -2 co-

localize and form a hetero-oligomeric complex in vivo [38].

Moreover, integrin alpha 2 (ITGA2) is associated with caveolin-1

in tumor cells [38]. Interestingly, our data suggest that EPH

receptor A2, caveolins-1 and -2 and ITGA2 are under the control

of COX-2 in sheared chondrocytes. Caveolin-1 [39] and FAS

[39], also positively regulated by COX-2, have been reported to

be up-regulated in OA cartilage. In view of our recent

observations suggesting that p53 phosphorylation is regulated

by COX-2 in sheared chondrocytes [9], it is not surprising that

apoptosis enhancing nuclease (AEN) is also under COX-2

control.

Two major classes of genes were identified to be negatively

modulated by COX-2 in shear-activated T/C-28a2 chondrocytes:

histone and cell-cycle-related genes. We and others have shown

that COX-2 overexpression induces cell cycle arrest in diverse cells

including chondrocytes, NIH 3T3 fibroblasts, human embryonic

kidney 293 cells [9,40]. Here, we provide evidence for the first

time suggesting that overexpression of COX-2 also negatively

regulates histone gene expression in sheared chondrocytes.

Downregulation of histone gene expression has been detected

after DNA damage induced by ionizing radiation in different cells

such as human fibroblasts and osteosarcoma [41]. Endogenous

degradation of histones was also observed in K562 human

leukemic cells after oxidative challenge [42]. The precise role of

histones in OA has yet to be defined. Two histone family genes,

H2AFO and H3F3B, were shown to be differentially down-

regulated in OA chondrocytes relative to healthy control samples,

which is in general agreement with our observations in sheared

chondrocytes. Moreover, injection of histone H1 into collagen-

induced arthritis (CIA) mice dramatically suppressed CIA [43].

Prior work has shown that transcriptional downregulation of

histone occurs in parallel with the inhibition of DNA synthesis by

p53 [41]. We recently demonstrated that PGD2 and/or its

metabolite 15d-PGJ2 mediate chondrocyte apoptosis via PKA-

dependent regulation of p53 phosrphorylation [9]. Indeed, L-

PGDS knockdown reverses the shear-mediated histone transcrip-

tional downregulation.

ROS play an important role in the pathogenesis of OA [29].

Excessive levels of ROS generated by abnormal chondrocyte

metabolism tip the balance of anabolic and catabolic events,

resulting in oxidative stress and loss of homeostasis. We and

others have shown that elevated mechanical stress, including

shear stress, releases ROS from chondrocytes [9,12], and that

antioxidants repress stress-induced chondrocyte death [7,12]. L-

PGDS knockdown inhibits shear-induced ROS formation,

suggesting the involvement of PGD2 and/or its metabolite 15d-

PGJ2 in this process.

In summary, we have demonstrated that prolonged application

of high fluid shear to T/C-28a2 chondrocytes recapitulates the

earmarks of OA, thereby providing further support to the link

between exposure of chondrocytes/cartilage to high mechanical

loading and the development of OA. Fluid shear is a well-defined

biophysical stimulus for in vitro studies of mechanotransduction

of articular chondrocytes. Delineating the responses of chondro-

cytes to high fluid shear may help us understand how OA

develops. These studies may also lead to identification of ideal

hydrodynamic environments for culturing artificial cartilage in

bioreactors.

Methods

Reagents
The specific COX-2 inhibitor NS398 was obtained from

Cayman Chemical. All other reagents were from Invitrogen,

unless otherwise specified.

Cell Culture and Shear Stress
Human immortalized T/C-28a2 chondrocytes were grown

(37uC in 5% CO2) on glass slides in 1:1 Ham’s F-12/DMEM

medium supplemented with 10% FBS [9,44]. 24 h prior to the

onset of shear stress application, T/C-28a2 cells were incubated in

serum-free medium containing 1% Nutridoma-SP (Sigma-Al-

drich), a low protein serum replacement that maintains chondro-

cyte phenotype. T/C-28a2 chondrocytes were subjected to a shear

stress level of 20 dyn/cm2 for 48 h or 72 h in medium containing

1% Nutridoma-SP by the use of a streamer gold flow device

(Flexcell International). In select experiments, the specific COX-2

inhibitor NS398 (50 mM) was added to the medium just before the

onset of shear exposure. T/C-28a2 cells have been shown to

behave much like primary human chondrocytes when cultured

under appropriate conditions [45]. Further evidence suggesting

that T/C-28a2 cells represent an appropriate chondrocyte model

stems from the significant similarities between human primary

chondrocytes and T/C-28a2 cells in the induction of IL-6

synthesis in response to chemical and shear stimulation [34,46].

RNA Isolation
Total RNA was isolated using TRIzol, and purified with the

RNeasy Mini Kit combined with DNase treatment on a column,

according to the manufacturer’s protocol (Qiagen).

Microarray Hybridization
Microarray experiments were performed as previously de-

scribed [7,9,47]. Briefly, total RNA (15 mg), isolated from six

independent, paired static and shear-activated T/C-28a2 chon-

drocyte samples, was reverse transcribed in the presence of

random primers and aminoallyl(aa)-dUTP with Superscript II

Reverse Transcriptase. The aa-dUTP-labeled cDNAs from

sheared and static control samples were coupled to NHS-Cy5

and NHS-Cy3 (GE Healthcare), respectively. Cy5- and Cy-3-

labeled targets were mixed, and co-hybridized on the microarray

slides printed with a set of 39,936 human ESTs (TIGR 40K

Human Set).

Microarray Data Analysis
Expression levels from individual genes were determined from

the scanned microarray slides using TIGR_SpotFinder, and

normalized with the total intensity algorithm of the TIGR

Microarray Data Analysis System (MIDAS) [47,48]. Data are

presented as mean 6 standard deviation (S.D.) using the TIGR

Multiexperiment Viewer (MeV). Comparisons between the

expression levels of static control and sheared genes were

performed using the unpaired Student’s t-test, and considered to

be statistically significant if p,0.01. Further microarray data

analysis involved only statistically significant genes. Differentially

expressed genes were then identified using one-class Significance

Analysis of Microarray (SAM) at a 5% false discovery rate (FDR)

using TIGR MeV [47,48]. Average linkage hierarchical clustering

analysis with a Euclidean distance metric was performed using

TIGR MeV [47,48]. For pathway and functional category

classification of the differentially expressed genes, we used the

annotations publicly available from the National Center for

Biotechnology Information LocusLink database (http://www.

Sheared Chondrocytes Display the Earmarks of OA

PLoS ONE | www.plosone.org 8 December 2010 | Volume 5 | Issue 12 | e15174



ncbi.nlm.nih.gov/LocusLink/), which classifies a gene according

to molecular function, biologic process, and cellular component

using Gene Ontology categories (http://www.geneontology.org/).

Quantitative Real-Time PCR (qRT-PCR)
qRT-PCR assays were performed on the iCycler iQ detection

system (Biorad) using total RNA, the iScript one-step RT-PCR kit

with SYBR green (Biorad) and primers. The GenBank accession

numbers and forward (F-) and reverse (R-) primers are as follows:

Gremlin (NM_013372), F-59-GTATGAGCCGCACAGCCT-

ACA-39; R-59-CTCGCTTCAGGTATTTGCGCT-39

RHOB (NM_004040), F-59-GGTCCCCTGAGCATGCTTT-

TCTGA-39; R-59-GCCACACTCCCGCGCCAATCTC-39

PAPP-A (NM_002581), F-59-CAGAATGCACTGTTACCTG-

GA-39; R-59-GCTGATCCCAATTCTCTTTCA-39

HIST1H2BD (NM_021063), F-59-CAAAGAAGGG CTCCA-

AGAAG-39; R-59-TGGTGACGGCCTTGGTGC-39

HIST3H2A (NM_033445), F-59-CAGGGTGGCAAGGCGC-

GCGC-39; R-59-TCTTGGGCAGCAGTACGGCC-39

COX-2 (NM_000963), F-59-TGAGCATCTACGGTTTGC-

TG -39; R-59-AACTGCTCATCACCCCATTC-39

Aggrecan (NM_013227), F-59-ACTTCCGCTGGTCAGATG-

GA-39; R-59-TCTCGTGCCAGATCATCACC-39

Interleukin-1b (NM_000576), F-59-ATGGCAGAAGTACCT-

AAGCTCGC-39; R-59-ACACAAATTGCATGGTGAAGTCA-

GTT-39

COL2A1 (NM_001844), F-59-CTGGCTCCCAACACTGCC-

AACGTC-39; R-59-TCCTTTGGGTTTGCAACGGATTGT-39

L-PGDS (NM_000954), F-59-GCCTCGCCTCCAACTCGA-

GC-39, R-59-TGCAGCAGCATGGTTCGGGT-39

GAPDH (NM_002046), F- 59-CCACCCATGGCAAATTCC-

ATGGCA-3; R-59- TCTAGACGGCAGGTCAGGTCCACC-39

GAPDH was used as internal control. Reaction mixtures were

incubated at 50uC for 15 min followed by 95uC for 5 min, and

then 35 PCR cycles were performed with the following

temperature profile: 95uC 15 s, 58uC 30 s, 68uC 1 min,

77uC 20 s. Data were collected at the (77uC 20 s) step to remove

possible fluorescent contribution from primer dimers [49].

Transient Transfection
In RNA interference assays, T/C-28a2 cells were transfected

with 100 nM of an siRNA oligonucleotide sequence specific for L-

PGDS (SC-41640) or control (SC-44240) siRNA (Santa Cruz).

Transfected cells were allowed to recover for at least 12 h in

growth medium, and then incubated overnight in serum-free

medium containing 1% Nutridoma-SP before their exposure to

shear or static conditions.

ROS Detection
ROS generation was detected by incubating T/C-28a2

chondrocytes with 5-(and-6)-carboxy-29,79-dichlorodihydrofluor-

escein diacetate (carboxy-H2DCFDA; 25 mM in D-PBS contain-

ing Ca2+/Mg2+) for 30 min at 37uC. Cells were next washed with

D-PBS lacking Ca2+/Mg2+, detached from slides by mild

trypsinization, re-suspended in D-PBS and examined by flow

cytometry.
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