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Abstract

The ability of systems and synthetic biologists to observe the dynamics of cellular behavior is hampered by the limitations
of the sensors, such as fluorescent proteins, available for use in time-lapse microscopy. In this paper, we propose a
generalized solution to the problem of estimating the state of a stochastic chemical reaction network from limited sensor
information generated by microscopy. We mathematically derive an observer structure for cells growing under time-lapse
microscopy and incorporates the effects of cell division in order to estimate the dynamically-changing state of each cell in
the colony. Furthermore, the observer can be used to discrimate between models by treating model indices as states whose
values do not change with time. We derive necessary and sufficient conditions that specify when stochastic chemical
reaction network models, interpreted as continuous-time Markov chains, can be distinguished from each other under both
continual and periodic observation. We validate the performance of the observer on the Thattai-van Oudenaarden model of
transcription and translation. The observer structure is most effective when the system model is well-parameterized,
suggesting potential applications in synthetic biology where standardized biological parts are available. However, further
research is necessary to develop computationally tractable approximations to the exact generalized solution presented
here.
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Introduction

Developing an understanding of biological phenomena through

modeling requires the notion of a state that captures the essential

components of the system and a model that describes its essential

functions. When a collection of cells is considered in aggregate,

measurement noise is usually primarily responsible for complicat-

ing the problem of identifying state and model parameters in

genetic networks. At the single-cell level, the presence of cellular

variability in experimental data [1] introduces systemic noise that

further complicates this problem. However, noise can be used as a

tool in the identification process. Munsky et al. [2] demonstrate

the power of using both transient and steady-state noise statistics in

parameter identification, as using both types of statistics yields

more information about cellular parameters than steady-state

noise alone. Likewise, Dunlop et al. [3] use the averages of

correlations in expression level to identify regulatory elements in

Escherichia coli.

The stochastic phenomenon of systemic noise in individual cells

can be detected by observing the variation that occurs during the

growth the of isogenic colonies observed using time-lapse

microscopy [4]. The movies produced by these methods do not

provide a full measurement of the system’s state but instead

provide measurements of only a few species, such as fluorescing

proteins, and these data are corrupted by measurement noise. For

a stationary chemical process, ‘‘stochastic monitoring’’ [5] is a

Bayesian approach to estimating the value of a state given all prior

measurements and a master equation describing the state’s

evolution; however this approach requires that the stochastic

process be both stationary and observed at all time points. Boys

et al. [6] use Bayesian inference for parameter estimation of a

stochastic chemical process when the populations of a subset of the

species are observed at intermittent time points, but do not

consider the more general problem of estimating the dynamically

changing state. Suter et al. [7] estimate transcriptional switching

rates in mammalian genes using a similar Bayesian approach.

However, to our knowledge, the problem of performing state

estimation on a general stochastic chemical kinetic process with

intermittent observations and branching (modeling cell division)

has not been addressed in the literature.

In the standard mesoscopic formulation of stochastic chemical

kinetics [8], the trajectories generated by a reaction network define

it as a jump process, where the state of the system remains constant

except at discrete points in time corresponding to the firing of

reactions. As such, a stochastic chemical kinetic system under

limited observation can be considered as a class of hidden Markov

model or partially observed discrete-event system [9]. Several

methods have been proposed for state estimation, identification,
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and diagnosis of partially observed stochastic discrete-event

systems [10,11] and for discrete-event systems with timing

information [12]. By constructing an observer for stochastic

chemical kinetics systems based on discrete-event systems, we can

address the problems of state estimation and model identification

in a general unified framework.

In this study, we propose an observer-based method for

estimating system states, estimating parameters, and discriminat-

ing between mechanisms from a single colony of cells observed

through time-lapse microscopy. We derive equations for calculat-

ing the posterior probability distributions for states and parameters

from the observation of both a single cell and a complete colony.

We derive necessary and sufficient conditions that specify when a

set of models can be distinguished from each other using our

method. We illustrate our approach by analyzing the Thattai-van

Oudenaarden model [13], a standard model of transcription and

translation.

Results

Stochastic Modeling
We consider a single-celled organism as a single, well-mixed

compartment. Consider a reaction network in a chamber that

satisfies the standard assumptions of stochastic chemical kinetics

[8] and contains a set of n species S~fS1,S2, . . . Sng that interact

along a set of m reaction channels R~fR1,R2, . . . Rmg. The state

of the reaction network at time t as a n-dimensional vector

x(t)~ N1(t) . . . Nn(t)½ �, where Ni(t) denotes the population of

the species Si at time t. The state space X of the reaction network

is countable and we index the states as fx1,x2, . . .g. By

enumerating the states we can construct a continuous-time

Markov chain to describe the reaction network, consisting of the

state space X , a transition rate matrix Q, and an initial probability

distribution p0. The transition rate matrix Q is constructed from

the functions that define the rates of the reaction channels and

these functions need not be linear. The ith element of the

probability density vector p(t) is the probability that the state of

the network is xi at time t. The probability density vector evolves

according to the chemical master equation _pp(t)~Qp(t), with

initial condition p(0)~p0. Many reaction network models permit

the population of at least one species to grow without bound; for

these networks, p(t) is an infinite-dimensional vector and Q is an

infinite-dimensional matrix. In this paper, we assume that for each

species Si, we can choose a value Smax,i such that the probability of

the population of Si ever exceeding Smax,i is negligibly small. We

then disallow the firing of reaction channels that allow the

population of each species to exceed the chosen maximum value.

The size of the state space under these assumptions is Pn
i~1 Smax,i,

a very large but finite number.

The system is observed at a sequence of time points t1,t2, . . . tk;

each time point corresponds to the capture of a time-lapse

microscopy image. At each ti we observe the output yi; this

quantity can be scalar- or vector-valued (corresponding to one-

colour and multi-colour experiments, respectively). For each

possible output value y and each state xi, we define the probability

density p(yDx(t)~xi). We construct the observation density vector

hy for each output by setting the ith element to p(yDx(t)~xi). We

also consider an idealized situation in which the system is observed

continually on the interval ½0,t) and all observations are noise-free,

i.e. p(yDx(t)~xi)~1 for some value of y, and 0 for all other values.

State Estimation
The first problem we consider we call the forward problem. The

objective of this problem is to the find the a posteriori probability

distribution vector of the reaction network at a time t, given the

sequence of observations up to time t. For each tw0, we set

pF (t)~p(tDy1,y2, . . . yj), where j is the largest index such that

t§tj . The dynamic evolution of pF (t) is described by the hybrid

system.

_ppF (t)~QpF (t), pF (tzi )~
diag(hyi

)pF (t{i )

1T diag(hyi
)pF (t{i )

, ð1Þ

where the left-hand equation describes the continuous evolution of

pF between observations and the right-hand equation describes

the discrete change in pF when an observation occurs. A full

derivation of this system is given in Section 1 of Supporting

Information S1.

For the idealized case of continual, noise-free observation, we

can also describe the dynamic evolution of pF (t) as a hybrid

system. To do so, we must first define, for each pair of outputs yi

and yj , the matrix Qyi ,yj
. An element of Qyi ,yj

is equal to the

corresponding element of Q if the state associated with the row has

output yi, and the state associated with the column has output yj .

All the other elements of Qyi ,yj
are equal to zero. The idealized

forward observer is described by the hybrid system.

_ppF (t)~Qyi ,yi
pF (t){ 1T Qyi ,yi

pF (t)
� �

pF (t),

pF (tzi )~
Qyiz1,yi

pF (t{i )

1T Qyiz1,yi
pF (t{i )

:
ð2Þ

In the idealized case, the observed trajectory is a jump process

with constant output between jumps. The left-hand equation

describes the behavior of the system while the output is continually

observed to be yi . The second equation describes the change in the

probability distribution when a change in output from yi to yiz1

occurs. A full derivation of this system is also given in Section 1 of

Supporting Information S1.

The structure of the ‘‘forward observers’’ uses the ‘‘predict-and-

update’’ approach for observers found in control theory, such as

the Kalman filter [14]. Between observation, the observer updates

the probability distribution of the state using the chemical master

equation. When an observation occurs at time ti, the probability

mass function is re-weighted according to how likely each state was

to have generated the observed output y(ti).

The expected value taken with respect to the distribution pF (t)
is the minimum mean-square error (MMSE) estimate of the state

given the sequence of observations up to time t. Whenever a new

observation is taken, there is a discontinuous jump in the

probability distribution and the MMSE estimate as the new

information is incorporated. This jump occurs because the

quantity pF (t) does not anticipate the arrival of new information;

when a new observation is made, there is a discrete change in the

information available to the forward observer and thus a

discontinuity.

The forward observer thus computes the probability distribution

of the current state of a process while an experiment is on-line.

The second problem we consider is the related ‘‘backward’’

problem of finding the a posteriori probability distribution vector of

the reaction network at a time t given the entire sequence of

observations. For each t, we define

pB(t)~p(tDy(t1),y(t2), . . . y(tk)) as the quantity we wish to

calculate.

Discrimination of Stochastic Biochemical Circuits
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Given the results of the forward observer for discrete

observations (Eq. 1), the probability pB(t) can be calculated for

any t§0 using the ‘‘backward observer’’.

pT
B (t)~pT

B (tzk ) diag pF (t{k )
� �� �{1

eQ tk{tð Þdiag pF (t)ð Þ

for tk{1v tƒtk:
ð3Þ

The names ‘‘forward observer’’ and ‘‘backward observer’’ are

taken from the direction of calculation in time; the forward

probability is calculated starting at t~0 and ending at t~tk; the

backward probability equation is initialized with pB(tk)~pF (tk)
and then calculated backwards in time ending at t~0.

Figure 1 shows the application of the forward and backward

observer algorithms to a single-species birth-death process where

the measured output of the system is a coarse-grained estimate of

the population as ‘‘low,’’ ‘‘medium,’’ or ‘‘high.’’ Panel 1a shows a

sample output from the system. Panels 1b and 1c show the outputs

from the forward and backward observers, respectively, and

indicate that discontinuities in pF at each observation time are

smoothed away in the backward probability distribution pB. Panel

1d shows the expected a posteriori value of the species population

from both observers.

Model Discrimination
The forward and backward observer algorithms used to

determine the state of the cellular process can, with a straightfor-

ward modification, also be used to distinguish between a finite set

of candidate models of the process. These models can have

different reaction structures or they can contain the same set of

reaction channels but have differing reaction rates. Suppose that

we wish to discrimate between a finite set of m models

M1,M2, . . . ,Mm. If the rate matrix associated with the model

Mi is Q(Mi), then running the observer algorithms using the

block diagonal system matrix.

Figure 1. Implementation of the observer algorithms. (a) Inputs
to the observer algorithm. (i) The system model consists is a birth-death
reaction of a single species X . The initial distribution is the steady-state
of this reaction network, a Poisson distribution with parameter l~8. (ii)
The sensor model partitions the state space into three sections with
deterministic outputs. If the population of X is less than or equal to 6,
the observed output is ‘‘LOW’’; if the population is between 7 and 13,
the output is ‘‘MEDIUM.’’ Otherwise the output is ‘‘HIGH.’’ (iii) A sample
time series trajectory of observed output. The process is observed
intermittently with observations taken every.1 time units. (b) The time-
varying probability distribution of the state estimate generated by the
forward algorithm. At each observation point, there is a discontinuity in
pF (t) as new information is incorporated into the estimated probability
mass function. The forward algorithm estimate lags the data, as it does
not anticipate the values of future outputs. (c) The time-varying
probability distribution of the state estimate generated by the
backward algorithm. At each observation point, the state estimation
is non-differentiable, but continuous. (d) Comparison of the evolution
of the forward expectation

Ð
XNxpF (t)dx and the backward expectationÐ

XNxpB(t)dx. The shaded area indicates plus or minus one standard
deviation.
doi:10.1371/journal.pone.0047151.g001
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Q(M1)

Q(M2)

P

Q(Mm)

2
6666664

3
7777775

calculates the probability of each model given the sequence of

observations. The model index is treated as a state of the system

that cannot change with time; the probability distribution over the

model space can then be calculated using the forward and

backward observer algorithms. When the observer algorithms are

applied to the block diagonal matrix, the set of states correspond-

ing to a modele more likely to produce the observed trajectory

increases in probability, while the set of states corresponding to a

model less likely to produce the trajectory decreases in probability.

Integrating Lineages
When a single cell grows into a colony of isogenic cells, different

daughter cells will produce different sequences of observations due

to the inherent stochasticity in both the chemical reaction and the

observation process. If the observer algorithms are used for model

discrimination on each daughter cell separately, they will produce

differing probability distributions over the model space and likely

disagreement as to the most likely model.

The final problem we consider is integrating the observations

from many different cells that are all descendants of a single

ancestral cell. Denote the single ancestral cell by A and the set of

observations made on this cell before it divides by yA. A divides

into two daughter cells that are themselves ancestors of two new

lineages, which we denote by D1 and D2; the observations made

along these two sublineages are yD1 and yD2 , respectively. Our

objective is to calculate the aposteriori probability

pA,D1,D2
(td ) : ~p(td DyA|yD1|yD2 ), that is, the probability distri-

bution vector for each cell given all the observations in the lineage.

Denote by td the time at which the ancestral cell divides. If we

assume that each molecule in the reaction has equal probability of

appearing in either of the two daughter cells after division, the

probability distribution vector at the division time can be

expressed as

pA,D1,D2
(td )~

Pr (yD2 )

Pr (yD2 DyA,D1 )
diag p1(td )

� �{1

diag pD2
(td )

h i
pA,D1

(td ):

ð4Þ

The first factor,
Pr (yD2 )

Pr (yD2 DyA,D1 )
is a constant and the second

factor diag p1(td )
� �{1

is the a priori probability distribution vector

at td , which can be calculated using the master equation. The last

two factors are the probability density vectors calculated by

dividing the total lineage into two sublineages A,D1 and D2. Each

of these two sublineages has fewer cells than the original lineage

and a first division time that occurs after td . Because each of these

sublineages is smaller than the original lineage, we can calculate

pA,D1,D2
(td ) using a divide-and-conquer algorithm, as described in

Figure 2.

Figure 2. Procedure for integrating lineages. (a) Run the forward observer on each cell, breaking up the lineage so that each segment is only
counted once. (b) Run the backward observer on each cell and ‘‘pinch’’ together a cell and its ancestor when the birth of a cell is observed. One
forward and backward sweep of the lineage determines the posterior probability distribution pT

A,D1,D2
(t) for tƒtd , where td is the first division time.

Calculating this probability distribution is sufficient for parameter estimation. To calculate posterior state estimates for twtd , run an additional
forward sweep on each cell, integrating the colony estimate with the results of the forward and backward observer.
doi:10.1371/journal.pone.0047151.g002
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Once the a posteriori probability distribution vector at td is

calculated, we can calculate the probability distribution for all

times less than td using the backwards observer.

pT
A,D1,D2

(t)~pT
A,D1,D2

(tzd ) diag pF (t{d )
� �� �{1

eQ td {tð Þ

diag pF (t)ð Þ for td{1vtƒtd :
ð5Þ

To find the probability distribution for the state of each cell at

times after td , we use the results of running the forward and

backward observers on each of the individual cells and run a

forward sweep on each cell, starting with pT
A,D1,D2

(td ). For each

cell, the probability distribution is updated according to the

equation

pT
A,D1,D2

(t)~pT
A,D1,D2

(tk)diag pA(tk)ð Þdiag pA,D1
(tk)

� �{1

exp½Q(t{tk)�diag pA(t)ð Þ{1
diag pA,D1

(t)
� �

Details of the derivation are found in the Section 1 of Supporting

Information S1.

Identifiability of Models
When performing an experiment in order to conduct model

discrimination, an important question to answer beforehand is to

determine whether or not the models are identifiable, i.e.,

regardless of what outputs are observed, will it be possible to

converge on a point estimate in the model space?

Consider a set of models M1, M2, . . ., Mk. Suppose that the

true underlying model is Mj . The set of models fMigk
i~1 is

distinguishable if for all i, the following property holds: for all w0
and av1, there exists a time Tw0 such that for all twT ,

Pr (v : D(v)~0DEvE~t)v , ð6Þ

where v : ½0,t�?X is a trajectory generated by the underlying

model and D(v)~1 if there exists an i such that Pr (Mi Dh(v))wa
and 0 otherwise. If none of the models in the set describes the true

system, then, if this condition holds, the model Mj is distinguish-

able as the ‘‘best approximation’’ of the true system in that it is

most likely to have produced the observed output.

For a stochastic chemical reaction network with reversible

transitions in which the probability that any of the species

populations increase without limit is zero, the underlying

continuous-time Markov chain is positive recurrent and thus

there exists a unique steady-state distribution pss [15]. However,

even though the unobserved chain has an a priori steady-state

distribution, neither the forward observer pF (t) nor the backward

observer pB(t) reaches a steady-state as t tends to infinity, because

new observations result in discrete jumps in their evolution.

For simplicity of presentation, we consider the case where where

each state x generates a single noiseless output y. For each output,

we can then describe rout, the rate at which a transition from a

state with the output y to a state with a different output occurs, as

rout(y)~
X

xi :h(xi )~y

X
xj :h(xj )=y

Qij Pr (x):

The output rate rout(y) is dependent on the probability

distribution p and thus varies as a function of td , the dwell time

of the system in the set of states with output y. When the

unobserved chain is in its a priori steady-state distribution, rout,ss,

the value of rout at steady state, does not depend on the entire

output history, but instead depends only on the current output y,

the previous output y
0
, and the dwell time in the current output t.

As a result, it follows that two models M1 and M2 are

indistinguishable if and only if

rout,ss,1(y,td Dy
0
)~rout,ss,2(y,td Dy

0
) for all y,y

0
, and td : ð7Þ

The proof of this theorem is included in Section 2 Supporting

Information S1. The proof also demonstrates that the distinguish-

ability of models does not, in theory, depend on the frequency of

observation. However, because the distinguishability condition is

an asymptotic condition that allows for an unlimited amount of

time to distinguish between the models, more frequent observation

is likely to lead to faster model discrimination in practical

situations. Determining the rate at which discrimination occurs

is intractable in general, however, Komorowski et al. [16] provide

a solution for this problem in the case where the continuous-time

jump Markov process is approximated using the linear noise

approximation.

Application to the Thattai-van Oudenaarden Model
The Thattai-van Oudernaarden model [13] is a simple model of

stochastic transcription, translation and degradation. It consists of

three species: D (DNA), M (messenger RNA), and P (protein). The

four reactions in the model are

D DzM M MzP

M 1 P 1:

We denote this model byM1 and set the rates as k1~0:01 s{1,

k2~0:0058 s{1, k3~0:006 s{1, k4~0:000192 s{1 [17]. We

select the initial conditions nD(0)~1, nM (0)~10, and nP(0)~0.

Panels (a) and (b) of Figure 3 show a sample trajectory for a

colony from model M1, generated using the Gillespie stochastic

simulation algorithm [18]. Panel (a) shows the dynamics of species

M and panel (b) shows the dynamics of species P. The population

of species D does not change as a result of any of the reactions and

is not shown. We assumed the cells divide every 20 minutes. When

a cell divides, we assumed that a copy of D is made so that there is

one DNA strand in each cell in the colony at all times. We also

assumed that each molecule of M and P is equally likely to join

both daughter cells.

Figure 3(c) shows the estimate of the population of M generated

by the forward observer for each cell in the colony with a sampling

time of one minute. This estimate was generated by implementing

Eq. 1 and the top three panels of Fig. 2. Each time a cell divides at

a time td , the probability mass function for each of the daughter

cells at time tzd immediately following cell division was calculated

from the probability mass function at time t{d by the equation

Discrimination of Stochastic Biochemical Circuits
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Figure 3. Using the observer to estimate mRNA population. (a) The unobserved mRNA population from a Gillespie SSA run of a colony where
cells divide every 20 minutes and the system is observed every minute. (b) The observed protein number from the same Gillespie SSA run. (c) The
estimate of the mRNA population in each cell as a function of time generated by the forward observer. (d) The estimate of the mRNA population in
each cell as a function of time generated by the backward observer. In this example, we assumed that, when the cell divides, each molecule of mRNA
and protein was equally likely to join both daughter cells. Each cell’s ancestor is the cell lineage is indicated by a red vertical line connecting the plot
for a daughter cell to that of its mother cell. Brighter shades of green indicates mRNA populations that are more probable.
doi:10.1371/journal.pone.0047151.g003
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Pr (NS(tzd )~m)~
X
n§m

n

m

 !
(:5)n Pr (NS(t{d )~n),

S[fM,Pg:

Figure 3(d) shows the estimate of the population of M generated

by the backward observer for each cell in the colony. This estimate

was generated by implementing Eqs. 3–5 and the bottom three

panels of Figure 2. Each time a cell divides at time td , we

‘‘pinched’’ together the probability mass functions of the daughter

cells by applying Eq. 3 to determine the probability mass function

as tzd . We then calculated the estimate of mRNA population at

time t{d using the equation

Pr (NS(t{d )~n)~
X
mƒn

Pr (NS(tzd )~m) Pr (NS(tzd )~n{m),

S[fM,Pg:

Note that the output of the backwards observer is continuous

with time except at each multiple of 20 minutes when cell division

occurs.

We also demonstrate how to use the idealized forward observers

for model discrimation. Panel (a) of Figure 4 shows a sample

trajectory for a single cell generated using the SSA from the same

model M1.

We consider two alternate models. The first,M2, has the same

structure as M1, but the rates of protein production and

degradation are increased by an order of magnitude. The four

reactions in M2 are

D DzM M MzP

M 1 P 1:

A Gillespie simulation from this model is shown in Panel 4(b).

The second alternative model,M3, also has the same structure as

M1, except here the rates of mRNA production and degradation

are increased by an order of magnitude. The reactions inM3 are

Figure 4. Using the observer to discriminate between models.
We consider three models in this figure: M1 , a standard Thattai-van
Oudenaarden model of transcription and translation,M2 , a structurally-
identical model in which the rates of protein production and
degradation are increased by a factor of 10, and M3 , another
structurally-identical model in which the rates of messenger RNA
production and degradation are increased by a factor of 10. Each
subfigure contains three plots: the unobserved mRNA number from a
stochastic simulation run (top), the observed protein number from the
same SSA run (middle), and the idealized observer estimates as to the
posterior probabilities of each model (bottom). The system is observed
continually. (a) Results from simulated data generated from M1 . (b)
Results from simulated data generated from M2 . Note that the
observer decision is very quick in this scenario, as the observable
protein dynamics in M2 differ from those of both M1 and M3 . (c)
Results from simulated data generated fromM3 . Note that despite the
similar appearance of the protein number trajectory here and in (a), the
observer is able to determine which unobservable mRNA dynamics are
responsible for the observed behavior.
doi:10.1371/journal.pone.0047151.g004
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M3, also has the same structure asM1, except here the rates of

mRNA production and degradation are increased by an order of

magnitude. The reactions in M3 are

D DzM M MzP

M 1 P 1:

A Gillespie simulation from this model is shown in Panel 4(c).

These three models all have the same steady-state distribution,

so, in order to distinguish them, it is necessary to use transient

data. As an example, we assume that the generated trajectories are

observed continually and construct the block-diagonal observer

matrix for model discrimination. According to the distinguishabil-

ity condition, all three models are distinguishable from each other.

Because the system is observed continually, we use the observer

equations from Eq. 2.

Consider the trajectory generated byM2. As Panel 4(b) shows,

the observed protein number fluctuates rapidly as the translation

rates are faster inM2 than they are in the other model. Panel 4(b)

(bottom plot) shows that the observer can distinguishM2 from the

other candidate models with near certainty within 100 seconds.

The trajectories generated by M1 and M3 produce similar

protein number trajectories, but the unobservable mRNA

dynamics vary by an order of magnitude. In the limit as t grows

large, the quantities rout,ss,1(y,tDy
0
) and rout,ss,3(y,tDy

0
) approach the

same value, because the mRNA number approaches the same

steady-state distribution for both models. However, when t is

small, the distributions of the mRNA number are far from steady-

state and thus rout,ss,1(y,tDy
0
) and rout,ss,3(y,tDy

0
) vary. If the

observable protein number changes when t is small, this change

provides information that can be used to determine the speed of

the hidden mRNA dynamics. As Panels 4(a) and 4(c) (bottom plots)

show, the observer is able to distinguish between the two models

within 2000 seconds.

Discussion

A fundamental issue limiting our understanding of the dynamics

of cellular networks is that of sensing. Fluorescent proteins, the

most commonly used sensors in the laboratory today, have

multiple limitations that make their indiscriminate use unadvisable

[19]. These limitations include the limited palette of visible

fluorescence due to overlapping emission and excitation spectra,

which means that we can only observe, at most, three of four

tagged proteins in any one experiment [20]. Also, the effect of

photobleaching in time-lapse fluorescence measurements limits the

number of times that dynamic data can be collected for any one

cell. Finally, the production of fluorescent proteins places a

metabolic load on the cell that does not lead to an increase in

fitness, so cells that fluoresce and provide the experimenter with

information can be outcompeted by those that do not.

In light of these issues with the current state-of-the-art in

sensing, it is imperative that we develop methods to extract as

much information as possible out of the limited measurement

techniques we do have available to us. Model-based approaches

allow the experimenter to extract additional information and

meaning from limited data indirectly through the design of

observation algorithms and platforms, but require a reasonable

amount of confidence in the accuracy of both the model of the

system being studied and the experimental environment in which

the measurements are being carried out.

In this paper, we develop a general theoretical method for

observing the state of a process inside a single-celled organism

based on the assumptions of stochastic chemical kinetics. This

algorithm takes as its input a sequence of observations and outputs

a probability distribution over the state space or parameter space

of the system. We present forward observer algorithms for both

discrete and continual observations, which estimate the state of the

system using only past data, a backward observer algorithm, that

estimates the state using all the collected data, including future

data, and a colony algorithm for integrating the different

trajectories generated by daughters of the same ancestral cell.

For simplicity, in this paper, we presented the algorithm using the

notation of finite-state, time-invariant Markov chains. However,

the observer approach described here is more generally applicable

as long as the system model chosen provides a method of

constructing the transition semigroup [5,15] that corresponds to

the assumptions made by the modeler. Provided that the transition

semigroup can be calculated or estimated efficiently, the funda-

mental concepts of the observer approach developed here can be

extended to time-varying systems, systems with infinite state

spaces, and larger systems that can be solved using approximate

chemical master equation [21] or simulation methods [22].

The two main limitations of our method are the ‘‘curse of

dimensionality’’ and the need for accurate parameterization of the

system and sensor models. The state of a stochastic chemical

kinetic system is a n-dimensional vector, where n is the number of

species in the equation. As a result, the size of the state space of the

underlying continuous-time Markov chain is exponential in n and

the chemical master equation cannot be directly solved if n is large.

For larger systems, it will be necessary to develop methods of

approximating the chemical master equation solution that will

likely be specific to the class of reaction network under

consideration.

The accuracy of the posterior probability distributions calcu-

lated by the observer algorithms is dependent on the accuracy of

the parameters in both the system model and the sensor model.

Therefore, the applicability of our method is limited by the

experimentalist’s ability to determine not only reaction rates and

network structures in the system being studied, but also the

dynamical properties of the type of sensor (e.g., fluorescent

proteins) being used. Due to these limitations, we expect that our

approach will be of more interest to synthetic biologists, who

typically study systems with fewer parameters than those studied

by systems biologists. However, the need for accurate parameter

values is a problem that needs to be addressed in this approach for

systems of all sizes.

We demonstrated the algorithm on the Thattai-van Oudenaar-

den model of transcription and translation. Because this model

contains only two species whose populations change with time, it is

possible to solve the chemical master equation with negligible

truncation error and thus to make computationally tractable

estimates of the unobservable mRNA population without resorting

to more advanced approximation techniques. Furthermore, there

exists a standard set of parameters for this model, allowing us to

sidestep the problem of inaccurate parameterization. By applying

the necessary and sufficient conditions for models to be

distinguishable from each other, we can determine in advance

that the observer is potentially effective in detecting differences in

both the protein and the mRNA dynamics, although more time is

needed to distinguish models with different hidden mRNA

dynamics from those with different visible protein dynamics.

However, because the distinguishability result describes the

asymptotic behavior of the observer, it does not guarantee that

the systems can be distinguished in a reasonable amount of time.

Further research is required to quantify the rate of distinguish-

ability for general stochastic chemical reaction networks.
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Hopefully, as the state-of-the-art in computation power and

experimental power continues to grow, the method described in

this paper can be built upon to uncover knowledge of the

dynamics of finer details of cellular operation. To address the

realistic situation where it is not possible to accurately parame-

terize the model before applying the observer, future theoretical

development of the observer algorithm will include the develop-

ment of adaptive observer algorithms to simultaneously estimate

the parameters and the states. To apply the observer to the

estimation of unknown quantities when a parameterized model is

available, we envision the following general procedure. First, select

a few cells or colonies on which the observer algorithm has been

applied for state estimation, and then perform a more expensive

experimental test in order to verify the observer’s predictions.

Once satisfied with the observer’s performance, the experimenter

can then use the observer for high-throughput analysis on live

cells, taking advantage of its indirect sensing method to perform

experiments more rapidly and cost-effectively.

Materials and Methods

All simulations were carried out in MATLAB R2011B. Code is

available in the supporting information.

Supporting Information

Supporting Information S1 Contains proofs of the re-
sults in the main text.
(ZIP)

Supporting Information S2 Contains codes to reproduce
the figures in the paper.
(PDF)

Acknowledgments

This work was performed while D. Thorsley was with the Department of

Electrical Engineering, University of Washington, Seattle, USA.

Author Contributions

Conceived and designed the experiments: DT EK. Performed the

experiments: DT. Analyzed the data: DT. Wrote the paper: DT.

References

1. Shahrezaei V, Swain P (2008) The stochastic nature of biochemical networks.

Current Opinion in Biotechnology 19: 369–374.

2. Munsky B, Trinh B, Khammash M (2009) Listening to the noise: random

fluctuations reveal gene network parameters. Molecular Systems Biology 5.

3. Dunlop M, Cox III S, Levine J, Murray R, Elowitz M (2008) Regulatory activity

revealed by dynamic correlations in gene expression noise. Nature Genetics 40:

1493–1498.

4. Locke J, Elowitz M (2009) Using movies to analyse gene circuit dynamics in

single cells. Nature Reviews Microbiology 7: 383–92.

5. Van Kampen NG (2007) Stochastic Processes in Physics and Chemistry, Third

Edition (North-Holland Personal Library). North Holland.

6. Boys R, Wilkinson D, Kirkwood T (2008) Bayesian inference for a discretely

observed stochastic kinetic model. Statistics and Computing 18: 125–135.

7. Suter DM, Molina N, Gatfield D, Schneider K, Schibler U, et al. (2011)

Mammalian genes are transcribed with widely different bursting kinetics.

Science 332: 472–474.

8. McQuarrie D (1967) Stochastic approach to chemical kinetics. Journal of

Applied Probability 4: 413–478.

9. Cassandras C, Lafortune S (1999) Introduction to Discrete Event Systems.

Boston, MA: Kluwer Academic Publishers.

10. Thorsley D, Teneketzis D (2005) Diagnosability of stochastic discrete-event

systems. IEEE Trans-actions on Automatic Control 50: 476–492.

11. Athanasopoulou E, Li L, Hadjicostis C (2010) Maximum likelihood failure

diagnosis in finite state machines under unreliable observations. IEEE TAC 55:

579–593.

12. Hashtrudi Zad S, Kwong R, Wonham W (2005) Fault diagnosis in discrete-event

systems: incor-porating timing information. IEEE Transactions on Automatic
Control 50: 1010–1015.

13. Thattai M, Van Oudenaarden A (2001) Intrinsic noise in gene regulatory

networks. Proceedings of the National Academy of Sciences of the USA 98:
8614–8619.

14. Kalman RE (1960) Contributions to the theory of optimal control. Boletin de la
Sociedad Matem-atica Mexicana 5: 102–119.
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