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Abstract

Background: Variation of the gene coding for D2 receptors (DRD2) has been associated with risk for schizophrenia and with
working memory deficits. A functional intronic SNP (rs1076560) predicts relative expression of the two D2 receptors
isoforms, D2S (mainly pre-synaptic) and D2L (mainly post-synaptic). However, the effect of functional genetic variation of
DRD2 on striatal dopamine D2 signaling and on its correlation with prefrontal activity during working memory in humans is
not known.

Methods: Thirty-seven healthy subjects were genotyped for rs1076560 (G.T) and underwent SPECT with [123I]IBZM (which
binds primarily to post-synaptic D2 receptors) and with [123I]FP-CIT (which binds to pre-synaptic dopamine transporters,
whose activity and density is also regulated by pre-synaptic D2 receptors), as well as BOLD fMRI during N-Back working
memory.

Results: Subjects carrying the T allele (previously associated with reduced D2S expression) had striatal reductions of
[123I]IBZM and of [123I]FP-CIT binding. DRD2 genotype also differentially predicted the correlation between striatal dopamine
D2 signaling (as identified with factor analysis of the two radiotracers) and activity of the prefrontal cortex during working
memory as measured with BOLD fMRI, which was positive in GG subjects and negative in GT.

Conclusions: Our results demonstrate that this functional SNP within DRD2 predicts striatal binding of the two radiotracers
to dopamine transporters and D2 receptors as well as the correlation between striatal D2 signaling with prefrontal cortex
activity during performance of a working memory task. These data are consistent with the possibility that the balance of
excitatory/inhibitory modulation of striatal neurons may also affect striatal outputs in relationship with prefrontal activity
during working memory performance within the cortico-striatal-thalamic-cortical pathway.
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Introduction

Susceptibility to schizophrenia is explained for the largest

fraction by genetic variation [1]. While the specific genes

conferring risk for schizophrenia are still undetermined, several

studies and meta-analyses point to the potential involvement of the

gene for dopamine D2 receptors (DRD2) [2,3]. Moreover, several

lines of evidence suggest involvement of the dopamine system and

of D2 signaling in the pathophysiology of schizophrenia [4–6].

Indeed, all antipsychotics available on the market block dopamine

D2 receptors (even though other receptors may also be involved).

Phenomenologically, schizophrenia is characterized by cognitive

deficits, in particular in the working memory domain [4]. Working

memory deficits in schizophrenia have been associated with

dysfunction of the prefrontal cortex [7,8] and of the dopamine

system [4,6]. Indeed, several authors have hypothesized that

altered working memory performance and related prefrontal activ-

ity can be part of a systems level pathophysiological mechanism
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also involving dopamine D2 receptors in the striatum [4,6]. The

key anatomical and molecular mechanisms regulating the rela-

tionship between DRD2 genetic risk, dopamine dysregulation

of D2 signaling, and working memory dysfunction remain

undetermined.

A large series of studies in animals indicates that prefrontal

neuronal activity during performance of working memory tasks is

regulated by dopamine [9]. In the prefrontal cortex both D1 and

D2 receptors are involved in working memory, with the latter

more specifically implicated in the response phase [9]. In this

regard, genetically modified mice lacking D2 receptors exhibit

behavioral working memory deficits and reduced activity of the

prefrontal cortex during treatment with D1 agonists [10].

Moreover, behavioral performance and prefrontal neuronal

activity during working memory (WM) performance are also

regulated by dopamine and D2 receptors in the striatum, a key

node within the cortico-striatal-thalamic-cortical circuit [11]. In

this regard, an experiment inducing developmental over-expres-

sion of striatal D2 receptors demonstrated specific working

memory deficits and altered prefrontal activity to D1 stimulation

[12]. These experiments in animals indicate that genetically

modified striatal D2 signaling has systems-level effects in dopamine

modulation of prefrontal cortical activity and related behaviors.

Data in humans have been consistent with these studies

demonstrating that infusion of D2 receptor agonists or antagonists

is respectively associated with relative improvement or deteriora-

tion of working memory performance [13] as well as of prefrontal

and striatal activity [14,15]. Other imaging studies in humans have

also demonstrated that striatal dopamine and D2 signaling are

correlated with prefrontal activity or behavioral performance

during different cognitive operations [16–18].

D2 receptors in the striatum are both pre- and post-synaptic and

affect the final output of the striatum to the thalamus, providing an

important regulation of prefrontal cortex stimulation [19]. At

present, however, it is unknown whether genetic determination of

pre- and post-synaptic striatal D2 signaling as modulated by

dopamine is a mechanism contributing to neuronal activity in

prefrontal cortex in humans. The D2 receptor gene (DRD2) codes

for two isoforms, D2S (short) and D2L (long). D2L receptors

mainly mediate post-synaptic signaling. D2S receptors mainly

serve as auto-receptors on pre-synaptic neurons [20], even though

they are also found on post-synaptic neurons [21]. Moreover, pre-

synaptic D2 receptors strongly contribute to physically regulate

density and activity of the dopamine transporter (DAT) [22–29].

An intronic DRD2 polymorphism (rs1076560, G.T) is associated

with mRNA splicing [30]. More specifically, the minor T allele is

associated with relatively reduced expression of D2S in prefrontal

cortex and striatum as well as with altered activity of the striato-

thalamic-prefrontal pathway during WM in healthy subjects [30]

and in schizophrenia [31]. However, the effect of this SNP on

prefrontal cortical activity may be also because of indirect effects

via the striatum [11]. The effects of this genetic variant on pre-

and post-synaptic signaling of dopamine in the striatum are not

known. In this study in healthy humans, we hypothesized that this

functional DRD2 variant, rs1076560, would be associated: with

differential binding of [123I]IBZM measured with SPECT, which

reflects availability of post-synaptic D2 receptors [32]; with

differential binding of [123I]FP-CIT measured with SPECT,

which reflects availability of pre-synaptic DAT [33]; and with

how a factor score of the two radiotracers identifying striatal D2

signaling would predict prefrontal activity measured with BOLD

fMRI during performance of a working memory task. Moreover,

in an effort to test the relative specificity of these associations,

subjects were also genotyped for COMT Val158Met genotype

(rs4680). COMT is a key enzyme for dopamine catabolism in

prefrontal cortex but not in striatum [34,35] and this polymor-

phism alters activity of the enzyme in association with prefrontal

function [36].

Materials and Methods

Participants to [123I]FP-CIT SPECT, [123I]IBZM SPECT, and
BOLD fMRI Studies

Thirty-seven healthy subjects (16 males, mean age6SD

23.563.0 years) participated to [123I]FP-CIT SPECT. Thirty-

two of these subjects underwent [123I]IBZM SPECT and twenty-

eight also underwent Blood Oxygen Level Dependent (BOLD)

functional Magnetic Resonance Imaging (fMRI) during perfor-

mance of the N-Back task. Exclusion criteria included history of

significant drug or alcohol abuse (no active drug use in the past

year), head trauma with loss of consciousness, and any significant

medical condition. Parental socio-economical status (Hollingshead

Scale 40.4614.9), handedness (Edinburgh Inventory 0.7460.4),

and total IQ (WAIS-R, 108.1614.8) were measured. The present

study was approved by the local IRB. After complete description

of the study to the subjects, written informed consent was

obtained.

Genotype determination. DRD2 rs1076560 genotypes were

determined as in [29–31]. SNP rs1076560 was analyzed with

allele-specific PCR primers as described [37] or SNaPshot

(Applied Biosciences (ABI), Foster City CA) [38]. Consistent

with the distribution observed in earlier studies [38], no DRD2 TT

subjects were observed in this sample. COMT Val158Met genotype

(rs4680) was determined as a restriction fragment length

polymorphism after PCR amplification and digestion with NlaIII

[39,40]. The allelic distribution of DRD2 and COMT was in Hardy

Weinberg equilibrium (DRD2 df 1, chi2 = 2.1, p.0.1, COMT df 2,

chi2 = 1.3, p.0.4).

Acquisition of SPECT data. Each subject was injected

intravenously with an average of 150 MBq (range 111–186 MBq)

of commercially available [123I] FP CIT or [123I]IBZM

radiotracer (GE Healthcare, Amersham, UK) [41–43]. These

two radiotracers bind to dopamine transporters [33] or D2

receptors [32], respectively. Potassium Iodide solution (Lugol) was

administered at least 3 hours before and 12 hours after

radiopharmaceutical injection to block thyroid uptake of free

radioactive iodide. Images were acquired 3–6 h after [123I]FP-CIT

injection [44] or 1.5 hours after [123I]IBZM injection [45]. A dual-

head gamma camera (Infinia, General Electric) equipped with

parallel-hole, low-energy high-resolution collimators was used.

SPECT data were acquired using the following parameters:

1286128 matrix, rotation of 360u, 60 view, 6u view angle, 45 s for

projection. Slice thickness was 3.68 mm, acquisition time was 22

minutes; total brain counts .1 million were achieved in all

examinations. Reconstruction was performed by filtered back-

projection with a Butterworth filter (cut-off frequency: 0.3 cycle/

cm, 10th order) to provide transaxial slices that were attenuation

corrected. Attenuation correction was performed according to

Chang’s method, (attenuation coefficient: 0.12 cm21), after

manually drawing an ellipse around the head contour [46].

System spatial resolution (full width at half-maximum) at a radius

of rotation of 15.9 cm is 11 mm, as reported elsewhere [47]. For

analysis of striatal radiotracer uptake, slices were reoriented

parallel to the canthomeatal line.

Processing of SPECT data. The irreversible binding

characteristics and the stability of regional [123I]FP-CIT and of

[123I]IBZM uptake have been shown to allow estimation of the

specific-to-nondisplaceable equilibrium partition coefficient (V30),

DRD2 and Prefrontal Activity
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which is proportional to free transporter or receptor density

(Bmax) [48,49]. V30 can be calculated as indicated earlier [48,50].

Under equilibrium conditions between a compartment with

specific binding and a compartment representing nonspecifically

bound and free activity, V30 is proportional to Bmax given that

the dissociation constant and the volume of distribution of the

nonspecifically bound and free activity compartment (V2) are

relatively invariant. The occipital region was selected as the

background region because 1) the density of dopamine D2 and

DAT proteins is negligible compared with the striatum [51,52]; 2)

this region can be identified with greater reliability than the

cerebellum [53]; 3) in humans [123I] IBZM activity in the occipital

region is equal to the nonspecific activity in the striatum [54].

Therefore, as in earlier studies [53,55,56], the occipital region was

used to model non-specifically bound and free activity

compartment. V30 can be calculated in all voxels with the

formula as in [50]:

counts per minute=voxelð ÞVT

{ counts per minute=voxelð ÞV2

�
counts per minute=voxelð ÞV2

where VT represents specific binding, and V2 the nonspecifically

bound and the free activity compartment.

Image transformation, calculation of V30 and statistical analysis

was performed using SPM5 (Wellcome Department of Cognitive

Neurology, London, UK). V2 was calculated with a ROI of the

occipital lobe from the WFU Pickatlas (http://fmri.wfubmc.edu/

cms/software#PickAtlas) [57–59]. Since parametric images of

[123I]FP-CIT and [123I]IBZM V30 lack anatomical detail, an

indirect approach was employed for spatial normalization as

detailed in [50,60]. Briefly, the raw [123I]FP-CIT and [123I]IBZM

SPECT data of each subject were normalized on the SPECT

template in MNI (Montreal Neurological Institute) space [50] with

a 12-parameter affine transformation of the raw data onto the

template image followed by estimation of the nonlinear deforma-

tions between the applied images. A mean image of the previously

normalized raw data acquisitions was then computed and used as

a template image. For each individual SPECT acquisition, a

parametric V30 image was calculated. The raw data image was

transformed to the template image and the resulting transforma-

tion parameters were then applied to the corresponding subject’s

parametric V30 image. The spatially normalized parametric

images were convolved with a gaussian kernel (66666 mm) for

smoothing.

Statistical analyses of SPECT data. Two sample T tests

were used within SPM5 to evaluate potential differences between

genetic groups with a statistical threshold p,0.005, with further

correction for multiple comparisons within ROIs in putamen

obtained with the WFU_PickAtlas tool, p = 0.05.

Binding of [123I] FP-CIT and of [123I] IBZM is associated with

protein density and affinity for the radiotracer as well as with the

relative concentration of endogenous dopamine occupying these

proteins [61,62]. Moreover, there is an extensive literature

detailing the interaction between dopamine transporters and D2

receptors [22–29,63]. Therefore, we hypothesized that the effects

of DRD2 genotype on striatal dopamine D2 signaling would be

additive and therefore identifiable with a measure reflecting the

shared and not the unique variance derived by the two radiotracer

binding measures. This index derived by factor analysis would

reflect individual dopamine D2 signaling and could be used for

correlation with fMRI activity. Therefore, we used a factor

analysis approach using a principal component analysis (PCA,

total variance used) as a reduction method [64] to combine

binding data from the two radiotracers into a single factor. We

performed a factor analysis using Principal component Analysis

(PCA) with STATISTICA (StatSoft, Tulsa, Oklahoma). [123I]FP-

CIT and [123I]IBZM V30 data were extracted in each subject from

a basal ganglia ROI, which included bilateral caudate and

putamen. ROIs were identified using the WFU PickAtlas software

(Functional MRI Laboratory at the Wake Forest University School

of Medicine, http://www.rad.wfubmc.edu/fmri) [57–59]. One

principal component (PC) that is a linear combination of the two

binding measures was estimated. This PC represents average

dopamine D2 signaling weighted by the variance of the binding

measures. For each subject we calculated a factor loading, which

indicates the weight of each subject bindings in the PC. PC

loadings were then used as predictors in random effects analyses to

identify potential relationships with the fMRI data in SPM (see

below).

v2 is an effect size measure which estimates the proportion of

variance in a dependent measure accounted for by independent

categorical variables in the population from which the sample was

drawn. Thus, we used v2 to measure the amount of variance

accounted for by DRD2 genotype. v2 is given by the equation:

v2~ SSeffect { dfeffectð Þ MSerrorð Þð Þ= MSerrorzSStotalð Þ.

BOLD fMRI Data Acquisition and Processing
N-Back working memory paradigm. During fMRI, all

subjects completed a blocked paradigm of the N-Back task with a

2-Back working memory condition and a non-memory guided

control condition 0-Back [40,65]. This paradigm has been

extensively used to evaluate activity of prefrontal cortex. ‘‘N-

back’’ refers to how far back in the sequence of stimuli the subject

had to recall. The stimuli consisted of numbers (1–4) shown in

random sequence and displayed at the points of a diamond-shaped

box. There was a visually paced motor task which also served as a

non-memory guided control condition (0-Back) that simply

required subjects to identify the stimulus currently seen. In the

working memory condition, the task required recollection of a

stimulus seen two stimuli (2-Back) previously while continuing to

encode additionally incoming stimuli. Performance data were

recorded as the number of correct responses (accuracy) and as

reaction time.

BOLD fMRI acquisition parameters. Each subject was

scanned with a 3T MR scanner (GE) with a gradient-echo echo-

planar imaging (EPI) sequence using the following parameters:

20 contiguous axial slices, slice thickness = 5 mm, echo time =

30 msec, repetition time = 2000 msec; field of view 24 cm; matrix

64664, voxel size after normalization = 3.75 mm isotropic

[40,66]. We used a simple block design in which each block

consisted of eight alternating 0-Back and 2-Back conditions (each

lasting 30 seconds), obtained in 4 min and 8 sec, 120 whole-brain

fMRI volumes. The first four scans of the time series were

acquired to allow the signal to reach a steady state and were not

included in the final analysis.

BOLD-fMRI image analysis. Preprocessing and statis-

tical analyses. Analysis of the fMRI data was completed using

statistical parametric mapping (SPM5; http://www.fil.ion.ucl.ac.

uk/spm). Images for each subject were realigned to the first

volume in the time series to correct for head motion (,2.5 mm of

translation, ,1.5u rotation), spatially normalized into a standard

stereotactic space (Montreal Neurological Institute, MNI,

template) using a 12 parameter affine model and smoothed to

minimize noise and residual differences in gyral anatomy with a

Gaussian filter, set at 10 mm full-width at half-maximum. Voxel-

DRD2 and Prefrontal Activity
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wise signal intensities were ratio normalized to the whole-brain

global mean. Each experimental condition was modeled with a

box car convolved with the hemodynamic response function

(HRF) at each voxel. Predetermined condition effects at each voxel

were calculated using a t-statistic, producing a statistical image for

the contrasts of 2-Back versus 0-Back (N-Back). All these individual

contrast images were then used in second-level random effects

models at the group level. ANOVA was used to evaluate the main

effects of working memory and of DRD2 genotype. Then, we

performed separate linear regression analyses for the two groups of

subjects (GG and GT) within SPM5. First, we entered the single

subject contrasts (2Back.0Back) with [123I] IBZM or [123I] FP-

CIT binding (from the anatomical ROIs differentiating the two

genotype groups) as predictors. These analyses do not exclude that

the biological effects of DRD2 genotype can result by additive

effects of genetic variants on both pre- and post- synaptic

compartments of D2 systems that would be captured by a D2

signaling factor (as detailed above). Thus, we also regressed

separately for the two genotype groups the single subject contrasts

(2Back.0Back) with factor scores from the factor analysis of the

SPECT data of each individual subject as predictors. All statistical

maps were thresholded at a level of p,0.005 uncorrected, with

further FWE small volume correction for multiple comparisons

with a= 0.05 using a 10 mm radius sphere centered around

coordinates in prefrontal cortex published in previous studies of

working memory. These coordinates included: x 220, y 8, z 56

[65]; x 232, y 14, z 38 [67]; x 252, y 26, z 20 [68]; x 38, y 34, z

11 [69]. The studies used to perform small volume correction of

our data were selected based on the characteristics of the working

memory task that we have used [65,67,69], as well as on the aim of

the present study (i.e. to investigate the impact of variability in

dopamine genes on modulation of the functional activity of the

prefronto-striatal network, [68]). Because we did not have a priori

hypotheses regarding the activity of brain regions outside of the

prefrontal cortex, we used a statistical threshold of p = 0.05,

corrected for multiple comparisons across all voxels, for these

whole-brain comparisons. For anatomical localization, statistical

maxima of activation were converted to conform to the standard

space of Talairach and Tournoux.

Polynomial regression to identify the correlation between

behavior, BOLD fMRI, and SPECT data. Because previous

evidence supports the hypothesis that the relationship between

working memory behavioral performance with dopamine signaling

and prefrontal activity is non-linear [9,70], we performed

polynomial regression to assess this relationship in our data. A

second order (quadratic) polynomial model was fitted to the data

separately in the two genotype groups: behavioral performance at 2-

Back was the dependent variable; the dopamine D2 signaling factor

score (see above) and BOLD fMRI activity in prefrontal cortex

(from clusters correlated with the factor score itself) were the

independent variables. The F-statistic was used to compare the

goodness of fit of quadratic relative to linear model by comparing

the ratio of partitioned variances in the two genotype groups.

Results

Demographics and Working Memory Performance
Results

The two genotype groups did not differ for any of the

demographic measures (See also Supplemental Table S1, all

p.0.1) or for working memory behavioral performance (% correct

responses GG = 83.4614.3, GT = 88.1615.4; Reaction Time

GG = 512.46219.1 msec, GT = 562.06289.5; all p.0.2) thus

allowing us to examine the association of genotypes with brain

activity and dopamine signaling independent of behavioral

variation in this sample.

SPECT Results
Two-sample t test in SPM5 demonstrated that subjects

homozygous for the G allele had significantly greater specific

binding of [123I]IBZM in right putamen (GG N = 21, GT N = 11,

Z = 2.68; k = 7; p = 0.05, corrected; x 30, y 6, z 0, Figure 1)

compared with GT subjects. DRD2 genotype explained 20% of the

variance in [123I]IBZM binding as indicated by v2. Similarly, GG

subjects also had significantly greater specific binding of [123I]FP-

CIT in left putamen (GG N = 26, GT N = 11, Z = 3.1; k = 13;

p = 0.03, corrected; x 230, y 9, z 18, Figure 2). DRD2 genotype

explained 10% of [123I] FP-CIT binding variance.

Figure 1. Association between DRD2 rs1076560 genotype and [123I]IBZM binding. Coronal section of the effect of DRD2 rs1076560 genotype
(GG.GT) on [123I]IBZM specific binding (V30) in right putamen (left) and relative scatterplot of individual data points from the cluster differentiating
the two groups (right).
doi:10.1371/journal.pone.0009348.g001
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Factor Analysis demonstrated that both data from [123I]IBZM

and [123I]FP-CIT basal ganglia ROIs load into one factor (GG

N = 21, GT N = 11, Factor loading for [123I] FP-CIT = 0.76,

factor loading for [123I] IBZM = 0.76, Eigenvalue 1.16, 58% Total

Variance) which presumably reflects dopamine D2 signaling.

In an effort to test the specificity of the association with DRD2,

SPECT data were also grouped and analyzed for COMT

Val158Met genotype (rs4680). Because of the small number of

Met homozygous subjects, Met/Met and Met/Val subjects were

grouped together. Two sample t tests in SPM5 demonstrated no

significant association of COMT genotype with both [123I]IBZM

(Met carriers N = 19; Val/Val N = 8) and [123I]FP-CIT data (Met

carriers N = 20; Val/Val N = 10), even after lowering the statistical

threshold to p,0.01, uncorrected (data not shown).

fMRI Results
Effect of the 2-Back working memory task. As expected

from previous studies with the N-Back task [7,29,31,39,40,

65,71,72], ANOVA within SPM5 demonstrated that perfor-

mance of the 2-Back working memory condition was associated

with activity in a distributed network of brain regions including the

prefrontal cortex, the parietal cortex, and the striatum bilaterally.

Regions that also survived correction for multiple comparisons

include the left middle frontal gyrus (x 229, y 13, z 54, BA 6/8

and 9, Z = 6.79, k = 159, corrected p = 0.000), the left inferior

frontal gyrus (x 251, y 15, z 19, BA 44/45, Z = 5.55, k = 83,

p = 0.000) and the right middle frontal gyrus (x 40, y 40, z 15, BA

10/46, Z = 5.42, k = 66, p = 0.000).

Effect of DRD2 genotype. Consistent with earlier studies

[29–31], ANOVA within SPM5 indicated that, despite similar

behavioral performance, GT subjects tend to have greater activity

in prefrontal cortex (x 33, y 21, z 45, middle frontal gyrus, BA 6,

Z = 3.13, k = 41, p = 0.001; x 63, y 8, z 7, inferior frontal gyrus, BA

44, Z = 3.36, k = 16, p = 0.0001) and anterior cingulate (x 10, y 16,

z 40, anterior cingulate, BA 32, Z = 3.27, k = 21, p = 0.001)

compared with GG subjects. However, none of these results

survived correction for multiple comparisons.

Relationship between fMRI and SPECT data. Regression

analyses in SPM5 demonstrated a direct correlation between [123I]

IBZM binding in right putamen with prefrontal cortex in GG

subjects (x 238, y 10, z 37, k = 3, Z = 3.1, p = 0.02, corrected) and

a negative correlation in GT subjects (x 260, y 26, z 16, k = 12,

Z = 3.1, p = 0.05, corrected). However, no correlation was found

in either group between [I123] FP CIT binding and BOLD activity

during performance of the N-Back working memory task. Also,

regression analyses in SPM5 demonstrated a positive relationship

between the factor score obtained from SPECT data and BOLD

activity in prefrontal cortex in GG subjects (N = 18; x 226, y 10, z

54, BA 6, Z = 3.6, k = 5, p = 0.007 corrected; BA 9 x 234, y 16, z

30; Z = 2.98, k = 8, p = 0.03, corrected, Figure 3)) and a negative

one in GT subjects (N = 10; BA 46, Z = 3.36, k = 12, p = 0.03,

corrected, x 259, y 30, z 12; BA 46 Z = 2.77, k = 5, p = 0.09,

corrected, x 37, y 34, z 16, Figure 4; see also Supplemental Table

S2 for further results).

In GG subjects, there was a strong statistical trend for a

quadratic relationship between 2-Back percent correct responses

with the striatal dopamine D2 signaling factor score and prefrontal

activity during working memory as measured with fMRI

(R2 = 0.45, F = 2.67, df = 4,13, p = 0.07; F-statistic for quadratic

vs. linear model (4,13) = 6.44, p = 0.004; Univariate Results: factor

score2 t = 2.5, p = 0.02; BOLD activity in BA9 x 234, y 16, z 302

t = 1.9, p = 0.07, Figures S1 and S2). In GT subjects, no such

relationship was evident (R2 = 0.22, F = 0.3, df = 4,5, p = 0.8).

Discussion

The results of the present study with multimodal imaging in

humans demonstrate that DRD2 rs1076560 genotype predicts

striatal [123I]IBZM and [123I]FP-CIT binding and the direction of

the correlation between a factor score reflecting striatal D2

signaling with prefrontal activity during performance of working

memory. More specifically, carriers of the T allele of rs1076560,

known to be associated with relatively reduced D2S, had reduced

[123I]IBZM and [123I]FP-CIT binding. Consistent with its

Figure 2. Association between DRD2 rs1076560 genotype and [123I]FP-CIT binding. Coronal section of the effect of DRD2 rs1076560
genotype (GG.GT) on [123I]FP-CIT specific binding (V30) in left putamen (left) and relative scatterplot of individual data points from the cluster
differentiating the two groups (right).
doi:10.1371/journal.pone.0009348.g002
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anatomical distribution, with a relatively specific effect of the

DRD2 genotype and with an earlier study which was published

while the present paper was being reviewed [73], COMT rs4680

genotype did not demonstrate any association with SPECT data.

Importantly, the present data also indicate that DRD2 genotype is

associated with qualitatively different relationships between

[123I]IBZM binding and the striatal factor score with prefrontal

activity during working memory. GG subjects have a positive

correlation which is also weakly predictive of behavioral

performance, whereas in GT subjects the correlation is negative.

Earlier studies from our group had provided in vitro, post mortem and

in vivo evidence for the functionality of this SNP and for its

association with activity of the working memory network [30,31].

In the present study we provide evidence for a systems level

genetically determined mechanism correlating striatal D2 signal-

ing with alteration of prefrontal activity during working memory.

Figure 4. Correlation between BOLD fMRI activity in prefrontal cortex and the striatal dopamine D2 signaling factor in GT subjects.
3D rendering of the correlation between the striatal dopamine D2 signaling factor and BOLD fMRI activity during the 2-Back WM task in GT subjects
(left) with the relative scatterplot of the correlation in prefrontal cortex showing individual data points (right).
doi:10.1371/journal.pone.0009348.g004

Figure 3. Correlation between BOLD fMRI activity in prefrontal cortex and the striatal dopamine D2 signaling factor in GG subjects.
3D rendering of the correlation between the striatal dopamine D2 signaling factor and BOLD fMRI activity during the 2-Back WM task in GG subjects
(left) with the relative scatterplot of the correlation in prefrontal cortex showing individual data points (right).
doi:10.1371/journal.pone.0009348.g003
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Even though the specificity for the two D2 isoforms is not known,

[123I]IBZM is believed to bind to post-synaptic D2 receptors

[17,32]. [123I]IBZM binding can be modulated by endogenous

dopamine and by receptor density, affinity, and internalization

[53,74,75]. The rs1076560 G allele has been associated with greater

D2S expression, but not with total density of D2 receptors [30].

Thus, reduced [123I]IBZM binding in GT subjects can reflect

reduced D2S receptors, which are also found post-synaptically [21].

Our [123I]-IBZM results are also consistent with earlier studies

investigating the association between DRD2 polymorphisms and D2

binding with different radiotracers [76–78]. These polymorphisms

are in high linkage disequilibrium with rs1076560 and these earlier

studies have reported an average 30% reduction in D2 binding

based on genotype. Our data indicate that GT subjects have an

average 34% reduction in [123I]-IBZM binding compared with GG

subjects. Resting state [123I]FP-CIT measures pre-synaptic binding

to DATs [33]. Given the robust literature providing indication of

the physical and functional relationship between DATs and pre-

synaptic D2 receptors [28,29], reduced [123I]FP-CIT binding in GT

subjects may be because of reduced pre-synaptic D2S. An

alternative interpretation of both SPECT datasets is also possible.

Because GT subjects have reduced pre-synaptic D2S which inhibits

dopamine release [19], reduced [123I]IBZM and [123I]FP-CIT

binding may be because of greater steady-state levels of dopamine

competing with the radiotracer. Consistent with these contentions

and with knowledge that the main factor contributing to a

relationship between pre-synaptic DATs and post-synaptic D2

receptors is dopamine itself, factor analysis of both SPECT datasets

identified a factor that may reflect dopamine D2 signaling (the

major element in common likely affecting binding of the two

radiotracers).

DRD2 rs1076560 genotype was also differentially associated

with the correlation between putative striatal dopamine D2

signaling (as identified with the factor score) and prefrontal activity

during working memory, which was positive in GG and negative

in GT subjects. A plausible cellular mechanism for these effects is

the differential contribution of dopamine D2S and D2L receptors

in modulation of glutamate and GABA transmission on striatal

output. Both D2 isoforms participate in pre-synaptic inhibition of

striatal GABA transmission, while D2S is preferentially involved in

modulation of glutamate release [21]. Therefore, modulation of

excitatory and inhibitory transmission in the striatum is tightly

linked to balance of the two isoforms [21]. In fact, GABA spiny

neurons, which account for the large majority of neuronal

populations in striatum, only fire action potentials when

depolarized by glutamate released by afferents from the cortex

[79]. Since DRD2 rs1076560 genotype alters the relative

expression of the two isoforms, our data are consistent with the

possibility that the balance of excitatory/inhibitory modulation of

striatal neurons may also affect striatal outputs and the relationship

with prefrontal activity during working memory.

Since the present study is in healthy subjects, no direct

conclusion can be drawn about schizophrenia. However, some

speculations as to the relevance of the present findings to

schizophrenia can be discussed. A long debated issue in the

pathophysiology of schizophrenia is whether subcortical dopamine

dysregulation is a primary phenomenon or rather it is associated

with prefrontal cortical dysfunction [4,80–82]. Indeed, heritability

of both these phenotypes has been demonstrated [83–87]. Several

studies and meta-analyses point to potential involvement of DRD2

in susceptibility to schizophrenia. Genome-wide linkage meta-

analyses have pointed to involvement of 11q [88]. Metanalyses of

case-control studies indicate SNPs rs1801028 (Cys311Ser),

rs2283265, and rs6277 (C957T) [2,3] as implicated in risk for

schizophrenia. Other recent family-based and case control studies

have also implicated these SNPs [89,90]. All these SNPs are linked

with rs1076560 in various degrees of LD. Given these earlier

studies in the literature and the present findings, it is possible to

speculate that risk for schizophrenia may involve the effects of

rs1076560 on striatal dopamine signaling and its relationship with

prefrontal activity. This speculation is also consistent with the

above cited animal studies indicating that developmentally

regulated over-expression of striatal D2 receptors is associated

with behavioral working memory deficits and with altered activity

of the prefrontal cortex [12].

A limitation of the present study needs to be addressed. The

time interval between the two SPECT scans was two weeks.

Although it would have been preferable that the SPECT and

fMRI scans were performed closely in time, this was not always the

case and the time interval between the two SPECT scans and the

fMRI scan was variable. On average, 25.663.6 months elapsed

between these scans. Earlier studies have demonstrated good

reproducibility for [123I] IBZM (as good as 6.565.2 [91,92] and

for [123I] FP CIT (5.5364.12%/0.89, [93]). As for fMRI,

reproducibility has been investigated in several studies using

different working memory paradigms. Studies have reported good

reproducibility of Dorsolateral Prefrontal cortex activation in

healthy subjects (Intra Class Correlation (ICC = 0.81) coefficient

[94]). Similar results have also been reported by other investigators

[95,96]. These earlier studies suggest that it is less likely that the

time interval between scans has significantly influenced the results.

Moreover, it is important to underline that the relationships

identified in this study reflect known neurobiological pathways.

Also, there was no statistically significant difference between the

two genotype groups in time elapsed between SPECT scans and

fMRI (t = 0.09, p = 0.9) which may have unduly influenced the

differential correlations. Finally, SPECT and PET studies of DAT

and of D2 receptors have demonstrated between 3 and 7%

decrease of radiotracer binding per decade, especially after 40

years of age [97–101]. Since our healthy subjects are definitely

younger than 40 (mean age6SD 23.563.0), we believe physio-

logical dopamine signaling decline did not significantly affect our

analyses over the time interval of the study. Thus, we interpret

these findings as being consistent with stability of fMRI and

SPECT measures and as suggesting that they reflect neurobiolog-

ical mechanisms.

Another point that needs some discussion is that, at the chosen

statistical threshold corrected for multiple comparisons, we failed

to find a main effect of rs1076560 genotype on prefrontal activity

during performance of working memory in the present dataset. In

three earlier studies, we had already demonstrated association of

rs1076560 with prefrontal activity during performance of the N-

Back working memory task in healthy subjects with sample sizes as

large as N = 142 [29–31]. In the present study, the sample

included 28 healthy subjects. Despite the smaller sample size, GT

subjects had greater activity in prefrontal cortex and anterior

cingulate before correction for multiple comparisons. Earlier

studies have demonstrated that larger sample sizes are generally

needed for imaging genetics studies using corrected statistical

thresholds [102]. Therefore, the present results suggest that the

lack of a statistically significant main effect of rs1076560 is likely

associated with the relatively small sample size of the present fMRI

study. Moreover, the main objective of the present fMRI data was

to evaluate statistically significant DRD2 modulation of the

relationship between striatal dopamine D2 signaling with

prefrontal activity during performance of working memory which

should not be affected by the corrected significance of the above

mentioned DRD2 effect.
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Our data are consistent with earlier studies about genetic effects

on modulation of the relationship between mesencephalic

dopamine and prefrontal cortex activity [103]. Indeed, the ventral

tegmental area in the mesencephalon may be implicated in these

mechanisms. Our data also provide evidence for a genetic

signature that affects striatal dopamine D2 receptor signaling

and its relationship with WM prefrontal activity, a mechanism

potentially involved in schizophrenia and other different brain

disorders [4].
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Table S1 Demographics of all subjects included in the study
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Found at: doi:10.1371/journal.pone.0009348.s001 (0.03 MB

DOC)

Table S2 Results from the correlation between 2-Back WM

activity and the basal ganglia SPECT factor score that were not

corrected for multiple comparisons. No clusters survived the

statistical threshold in the inverse correlations.
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Figure S1 Relationship between behavioral performance and

dopamine D2 signaling. Scatterplot of the non-linear relationship

in GG subjects between working memory behavioral performance

and the factor score extracted from both SPECT data sets in

striatum.

Found at: doi:10.1371/journal.pone.0009348.s003 (0.51 MB

TIF)

Figure S2 Relationship between behavioral performance and
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subjects between working memory behavioral performance and

prefrontal activity during working memory as measured with
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Found at: doi:10.1371/journal.pone.0009348.s004 (0.50 MB
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