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Abstract

Plasmodium sporozoites are transmitted by Anopheles mosquitoes and infect hepatocytes, where a single sporozoite
replicates into thousands of merozoites inside a parasitophorous vacuole. The nature of the Plasmodium-host cell interface,
as well as the interactions occurring between these two organisms, remains largely unknown. Here we show that highly
dynamic hepatocyte actin reorganization events occur around developing Plasmodium berghei parasites inside human
hepatoma cells. Actin reorganization is most prominent between 10 to 16 hours post infection and depends on the actin
severing and capping protein, gelsolin. Live cell imaging studies also suggest that the hepatocyte cytoskeleton may
contribute to parasite elimination during Plasmodium development in the liver.
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Introduction

Diverse pathogens have developed numerous strategies to

successfully survive and replicate inside host cells. They often

subvert signalling pathways and cytoskeletal components of the

host cell to avoid the host’s immune system and for direct access to

host metabolites [1]. The bacteria Salmonella enterica, for example,

induces host cell actin reorganization and ruffle formation to

facilitate its internalization into non-phagocytic cells [2], while the

vaccinia virus moves along microtubules and polymerizes actin to

form comet tails that allow viral dissemination into non-infected

cells [reviewed in 3]. Besides bacteria and viruses, protozoan

parasites are also capable of manipulating the host cell

cytoskeleton. The apicomplexan parasite Cryptosporidium parvum,

responsible for diarrheal illness, induces the reorganization of the

host’s actin network into a plaque-like structure that separates the

parasite from the cell cytoplasm, thereby creating an intracellular

but extracytoplasmic niche, where it replicates [4]. During Theileria

infection, host microtubules associate with the parasite, which

divides in synchrony with the host cell [5,6]. Invasion by

Toxoplasma gondii induces the formation of a host F-actin ring at

the junction site [7] and, at a later stage of infection, T. gondii

recruits microtubules, proposed to form conduits along which host

organelles are transported to the parasitophorous vacuole [8].

The malaria parasites (Plasmodium spp.) of mammals first replicate

asexually in hepatocytes and later in red blood cells (RBCs). Several

studies show that, within RBCs, Plasmodium exports proteins to the

host cell cytosol that manipulate the host cell cytoskeleton, important

for parasite egress and progression of infection [9,10,11]. However,

during the liver stage of infection, few reports exist on the interaction

of the host cell cytoskeleton with Plasmodium. While no significant

reorganization of host microtubules or actin was reported in fixed

cells at 24 hours of Plasmodium spp. development [12], an F-actin ring

in the cell–parasite junction was observed during invasion of

hepatocytes by sporozoites [7]. Here, we investigate the hepatocyte

actin and microtubule organization during Plasmodium berghei

development, using live cell imaging.

Results and Discussion

Reorganization of hepatocyte actin, but not tubulin,
occurs around developing P. berghei

To investigate a potential reorganization of the hepatocyte

cytoskeleton during Plasmodium infection, we established Huh7 cell
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lines stably expressing mCherry::b-actin or mCherry::a-tubulin

fusion proteins. Anti-a-tubulin antibody or phalloidin labelling

showed that all microtubules stained with the antibody were

positive for mCherry::a-tubulin and all the filamentous actin (F-

actin) structures stained with phalloidin, were also positive for

mCherry::b-actin, showing integration of exogenous proteins into

the microtubules or the F-actin of the living cells, respectively (Fig.

S1). Transformed cell lines were indistinguishable from the parent

lines, with unperturbed key cellular events involving cytoskeletal

dynamics in both mCherry lines (data not shown). Furthermore,

infection of these cells with GFP-Pb proceeded at the same rate as

in control Huh7 cells (Fig. S2).

We next aimed to identify the possible interactions between

these components of the host cell cytoskeleton and the developing

Plasmodium parasite. Cells from both cell lines were infected with

GFP-Plasmodium berghei (GFP-Pb) sporozoites and observed by wide

field fluorescence microscopy at different times after infection.

Time lapse experiments, with 20 seconds acquisition intervals,

were performed between 3 and 34 hours p.i. to follow the host

cytoskeleton dynamics around the parasite during its development.

No significant host microtubule reorganization was observed

around 238 GFP-Pb parasites (Fig. 1A; Movie S1). However, clear

host cell actin reorganization events, characterized by changes of

mCherry::b-actin fluorescence around the parasites, were ob-

served around 77 out of 562 developing GFP-Pb (1462%)

analysed between 3 and 34 hours p.i. (Fig. 1A; Movie S2). Host

actin reorganization events were highly dynamic, comprising

cycles of polymerization and depolymerization around the parasite

(Movie S2). Data analysis showed that, although present

throughout infection, this phenomenon occurred preferentially

between 10 to 16 hours p.i. (2363%, p,0.01) (Fig. 1B). Although

not much is known about the biological processes occurring during

intra-hepatic Plasmodium development, the interval between 10 and

16 hours p.i. may coincide with an important step in the

preparation for the extensive nuclear replication that starts soon

after that period [13]. We next determined whether actin

polymerization around developing GFP-Pb also occurs during

liver infection in vivo, by staining liver slices of BALB/c mice

24 hours p.i., with the F-actin binding toxin fluorescent conjugat-

ed, phalloidin. Clear actin rings were observed around approx-

imately 4% (3 out of 76) of the exoerythrocytic forms (EEFs)

analysed by fluorescence confocal microscopy (Fig. 1C). Thus, our

observations show that hepatocyte actin reorganization events also

occur during EEF development in the liver of infected mice. The

lower percentage of actin rings around mouse liver EEFs,

compared to the live cell imaging experiments formerly presented,

is also observed in vitro around fixed EEFs (data not shown). This is

probably due to the fact that the observed actin polymerization

events are extremely dynamic, as shown in our live cell imaging

experiments, and as such much more difficult to capture in fixed

conditions.

Dynamic actin reorganization is not only associated with certain

intracellular microorganisms, such as bacteria and viruses, but also

with plasma membrane perturbations or even with inert particles,

like beads [14]. Thus, we decided to investigate whether the actin

reorganization that was being observed around developing P.

berghei EEFs was a Plasmodium-induced phenomenon, common to

apicomplexan parasites or simply occurring in response to the

presence of a foreign body. To that end, time lapse experiments

were performed with: (i) 3 mm polyamino uncoated beads

(corresponding to the size of P. berghei parasites between 10 and

16 hours p.i.) internalized by Huh7 mCherry::b-actin cells and (ii)

Huh7 mCherry::b-actin cells infected with another apicomplexa

parasite, GFP-expressing T. gondii tachyzoites. Although Huh7

Figure 1. Hepatocyte cytoskeleton reorganization around
developing P. berghei in vitro and in vivo. (A) Actin but not
tubulin is reorganized in Huh7 cell lines infected with GFP-Pb parasites
(red and grey: mCherry::a-tubulin or mCherry::b-actin; green: GFP-Pb).
Plot profiles represent the pixel intensity (gray values) of the regions
indicated in the pictures (lines); o represents the parasite. Pie plots
represent the percentages and absolute numbers of parasites
associated (&) or not (%) with host cytoskeleton reorganization. (B)
Distribution of the percentage of P. berghei parasites associated with
host cell actin reorganization in different infection periods. Numbers of
parasites associated with actin reorganization/total numbers of
parasites analysed are indicated above the bars. (C) Hepatocyte F-actin
around P. berghei EEFs at 24 hours p.i. in BALB/c mice livers (red and
grey: Phalloidin AlexaFluor 594; green: GFP-Pb; blue: nuclei). The pie
plot represents the percentage and absolute numbers of parasites
associated (&) or not (%) with host actin reorganization. Plot profile
represents the pixel intensity (gray values) along the white line; o
represents the parasite. Error bars represent Standard Errors ** p,0.01,
scale bars represent 10 mm.
doi:10.1371/journal.pone.0029408.g001

Hepatocyte Actin and Plasmodium
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cells are not professional phagocytes, they clearly internalize beads

following a 1 hour starvation period. These experiments were

performed between 10 and 16 hours post-bead internalization or

T. gondii infection, corresponding to the interval of P. berghei

infection where there is the highest percentage of Plasmodium

parasites associated with host actin reorganization, employing

experimental conditions that mimicked infection by Plasmodium

(see Material and Methods).

Comparison of actin reorganization events, during P. berghei

infection (22.963%), T. gondii infection (3.3%, s.e. = 3%,

CI95 = (0.1%,17%)) or after internalization of beads (7.6%,

s.e. = 3%, CI95 = (3.5%,14.5%)), showed that the events observed

around T. gondii or beads were significantly less frequent than those

occurring around Plasmodium (Fig. 2). The few events occurring

around beads or T. gondii were also less intense and dynamic than

those observed around P. berghei in the same period of time (Movie

S3). Previous work by Yam and colleagues show that similar actin

dynamics can be observed around E-cadherin covered beads, E.

coli and Listeria-containing phagosomes in MDCK cells [14].

However, our work shows that, in hepatocytes, the actin dynamics

around Plasmodium is significantly more frequent and intense, when

compared to the one observed around uncoated beads or the

related parasite, T. gondii. This suggests that, although the

phenomena that we observe may be part of the normal actin

dynamics of the cells, specific features of the Plasmodium, or of its

parasitophorous vacuole membrane, also play an important role in

the process.

Dynamics of hepatocyte actin reorganization events
associated with developing P. berghei

We termed the actin reorganization events around Plasmodium

actin clouds. The dynamics of actin clouds were characterized by

the accumulation of actin in close vicinity of the PV, which

appeared either asymmetrical, moving around the vacuole

(Fig. 3A; Movie S4), or symmetrical, surrounding the entire PV

(Fig. 3A; Movie S2). Actin clouds could also rearrange into polar

structures reminiscent of actin tails (Fig. 3B; Movie S5). Actin

reorganization could last for the whole duration of the movie, e.g.

2 hours, while others lasted for just a few minutes or even seconds.

In all cases, actin clouds were very dynamic, as seen in Movies S4

and S5.

The parasites associated with actin clouds usually showed a non

progressive movement (Movie S4). However, some parasites

associated with tail-like actin clouds were clearly prone to

translocation inside the cell. The longest distance observed for

an intracellular parasite translocation event was 60 mm, which

occurred between two positions separated by 19 mm within the cell

(Fig. 3C). No specific directional pattern was observed from 12

moving parasites.

Host cell actin reorganization observed around P. berghei

resembles the type of actin dynamics associated with other

pathogenic systems, such as Listeria-containing phagosomes [14],

or even with normal cellular functions, such as the movement of

endosomes or other intracellular vesicles inside the cell cytosol

[15,16]. Similarly, Plasmodium is also surrounded by the para-

sitophorous vacuole membrane, suggesting that actin dynamics

observed around this apicomplexan parasite might originate at this

membrane. Indeed, it has been demonstrated that membranes can

be associated with actin polymerization events, depending on their

lipid content [17]. Considering this, it is tempting to hypothesize

that the actin dynamics observed around Plasmodium might be

related with active vacuole membrane remodelling as part of the

vacuole maturation process during parasite development.

Gelsolin is involved in host actin reorganization
associated with developing P. berghei

We next sought to identify actin related proteins involved in the

dynamic events observed around the developing Plasmodium. A

recent microarray screen of Plasmodium-infected versus non-

infected cells [18] showed that gelsolin (GSN) transcripts are

significantly up-regulated throughout infection, during all time

points of infection analysed in that study (Fig. 4A). GSN severs

actin filaments and remains attached to the barbed end of the

short filament, preventing elongation. When GSN uncaps these

filaments, many actin polymerization points become available in

the cell cytosol to generate new actin filaments [19]. We confirmed

the microarray data by quantitative RT-PCR (qRT-PCR),

comparing infected Huh7 cells 12 hours p.i. and non-infected

cells (Fig. 4B). When infected Huh7 cells were stained with an anti-

GSN antibody, structures resembling actin clouds were observed

(Fig. 4C).

To determine the contribution of GSN to actin reorganization

events, we performed GSN knockdown experiments in the Huh7

mCherry::b-actin cell line by lentiviral-delivered shRNA (Fig. 5A),

followed by infection with GFP-Pb sporozoites. Time lapse

experiments of Plasmodium infection (10 to 16 hours p.i.) showed

that when GSN expression is efficiently down-modulated

(97.560.5%, Fig. 5A), actin structures are perturbed (Fig. 5B)

and the percentage of parasites associated with actin clouds is

significantly lower than that observed in the control situation

(Fig. 5C). Attempts to deplete other actin related proteins, such as

Arp2 and Arp3 from the Arp2/3 complex as well as N-WASP,

usually involved in this type of actin phenomenon, were made but

without success due to significant cell death after knockdown of

these proteins. The results clearly show that, although other

proteins are also likely to be involved in P. berghei-associated

hepatocyte actin reorganization, GSN is an important player in

this process. Most probably contributing to the actin turnover and

consequently the dynamics of the actin clouds.

Biological relevance of hepatocyte actin reorganization
around developing Plasmodium

Many pathogens hijack the host cytoskeleton for their own

benefit, either to spread from cell to cell or to capture important

nutrients [3]. During live cell imaging experiments we noticed the

disappearance of some parasites to coincide with extremely

Figure 2. Hepatocyte cytoskeleton reorganization depends on
the presence of P. berghei. Percentage of parasites (P. berghei and T.
gondii) and beads associated with hepatocyte actin reorganization
between 10 and 16 hours p.i. or bead internalization. Numbers of
parasites or beads associated with actin reorganization/total numbers
of parasites or beads analysed are indicated above the bars. Error bars
represent Standard Errors * p,0.05 *** p#0.001.
doi:10.1371/journal.pone.0029408.g002

Hepatocyte Actin and Plasmodium
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dynamic actin events. Indeed, 5.2% of the parasites recorded

during actin reorganization events disappear (Fig. 6; Movie S6;

Table S1). In the experiment shown in movie S6, a progressively

stronger actin cloud around the vacuole was observed, which first

deformed and finally eliminated the parasite leading to an

apparent vacuole closure (Fig. 6). In contrast, only 0.8% of the

parasites not associated with actin reorganization show the same

phenotype (Table S1). This significant difference (p = 0.015, odds

ratio of 6.5, Fisher’s Exact Test) implies that hepatocyte actin

dynamics is positively associated with parasite elimination

throughout infection and that it is 6.5 times more likely that a

parasite disappears associated with an actin event than in the

absence of that event. The observation that not all actin

reorganization events were associated with parasite elimination,

might be due to the fact that some parasites are more fit than

others and therefore offer more resistance to intense actin

polymerization and consequent mechanical elimination. However,

strong accumulation of actin as the one shown in Fig. 6/movie S6

Figure 3. Dynamics of hepatocyte actin clouds around developing P. berghei. Asymmetrical and symmetrical actin clouds (A) as well as tail-
like actin clouds (B) are present around GFP-Pb (red and grey: mCherry::b-actin; green: GFP-Pb), surface plots represent the intensity of the pixels of
the mCherry::b-actin channel in the selected region (square). (C) Translocation of a GFP-Pb, associated with a tail-like actin cloud. The tracked path is
indicated in blue (red and grey: mCherry::b-actin; green: GFP-Pb). Scale bars represent 10 mm. Some frames present the same time points as the
acquisition interval between individual images was 20 s ( = 0.0056 h) and thus too small to annotate in consecutive frames, when using a time scale
of hours.
doi:10.1371/journal.pone.0029408.g003

Hepatocyte Actin and Plasmodium
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was never observed around parasites that did not disappear.

Importantly, the disappearance of parasites as shown here,

appeared not to be a consequence of photobleaching. We

observed photobleaching in several cases (Table S2; Fig. S3) and

invariably found that it occurred gradually, usually in the end of

the time lapse experiments and in the absence of vacuole closure

after GFP bleaching. In contrast, elimination, as scored in the

above numbers, could occur at any time point of the experiment

and be associated with vacuole closure after GFP disappearance

(Fig. S3; see Material and Methods). This clearly begs the question

of where the parasite goes. One possibility would be that the

parasites are ‘‘expelled’’ into the extracellular space as has recently

been shown for cryptococci [20]. Clearly, new assays will be

needed to dissect this process further.

Taken together, this data supports the hypothesis that forces

generated by actin polymerization can cause parasite deformation

and disappearance. Thus, host cell actin polymerization occurring

around the developing parasite might constitute a mechanism

through which the infected cell confines and/or eliminates the

parasite mechanically. In fact, mechanisms of host cell actin-

dependent extrusion are used, for instance, by Chlamydia to exit the

host cell [21] or by Cryptococcus in its ‘‘lateral transfer’’ from an

infected to a non infected macrophage [22]. On the other hand,

actin reorganization may not per se be the most relevant

mechanism in the elimination of the parasite, it may be part of

a broader defence strategy to fight Plasmodium and that may

include endosomal vesicles like lysosomes or even autophagolyso-

somes. For instance, in phagosomes containing mycobacteria,

actin reorganization contributes to the fusion of late endocytic

organelles and thus phagosome maturation and bacteria killing

[17]. Although the parasitophorous vacuole is not a phagosome,

the cell may attempt to destroy the foreign vacuole that starts

developing inside its cytosol, by fusing it with lysosomes or by

autophagy for example. Indeed actin has been shown to play a

partial role in autophagy during Shigella infection, as the bacteria

targeted for autophagy are entrapped in septin cage-like structures

in an actin dependent way [23]. Actin has also been implicated in

the defence against pathogens in other biological systems, such as

plants that use the actin cytoskeleton against fungal penetration

and phytopathogenic bacterial infection [24,25]. Interestingly, an

actin-rich structure has been also observed around Plasmodium

ookinetes in the Anopheles mosquito midgut and proposed to act as

a defence reaction from the vector against the invading parasite

[26]. Whether the main biological relevance of hepatocyte actin

reorganization around Plasmodium in both situations is the

elimination of the parasite or whether parasite elimination occurs

as a side effect of the process, remains to be established. An

additional hypothesis is that actin polymerization might also be a

mechanism used by the cell to remove a dead or dying parasite.

Testing these hypotheses will necessitate investments into new

assays, such as those recently established for the study of the

vacuolar rupture after Shigella invasion of fibroblasts [27] as well as

automated high throughput microscopy that allows following

quasi-simultaneously several distantly located developing parasites

in parallel. As such microscopes become available [28] a further

dissection of the molecular events governing actin cloud formation

and its effect on parasite disappearance can be attempted.

In conclusion, our work places developing Plasmodium in the

group of pathogens associated with host actin dynamics. By linking

the appearance of dynamic actin accumulation with the

disappearance of parasites, we hypothesize that the liver cells

cytoskeleton may contribute to the defence against Plasmodium.

Materials and Methods

Parasites and mice
GFP-Pb ANKA (parasite line 259cl2) sporozoites [29] were

obtained from the dissection of infected female Anopheles stephensi

mosquito salivary glands, produced at the IMM insectary. GFP-

expressing Toxoplasma gondii (generously provided by M. Meissner,

Glasgow University, UK) tachyzoites were cultivated in Vero cells

that were maintained in Dulbecco’s modified Eagle’s medium

(DMEM), supplemented with 10% foetal calf serum (FCS), 1%

glutamine (Gibco/Invitrogen) and 20 mg/ml gentamycin (Gibco/

Invitrogen). BALB/c mice, purchased at Instituto Gulbenkian de

Ciência, were housed at Instituto de Medicina Molecular (IMM)

animal house facility. All experimental protocols were performed

according to EU regulations and were approved by the Instituto

de Medicina Molecular Animal Care and Ethical Committee

(AEC_2010_024_MM_RDT_General_IMM).

Stable cell lines
Huh7 cells (16107) were electroporated (Gene Pulser II, Bio

Rad) with 30 mg of the linearized plasmid containing the fusion

construct of mCherry::human b-actin (pEGFP-C1) or mCherry::

human a-tubulin (pEYFP), generously provided by F. Gertler

(MIT, USA) and D. Henrique (IMM, Portugal), respectively. The

selection with geneticin, G418 (0.8 mg/ml), was initiated the next

Figure 4. Gelsolin expression and distribution around developing P. berghei. (A) Microarray data of GSN expression levels in P. berghei-
infected and non infected Hepa1-6 cells at different time points of infection, from [18] (B) qRT-PCR data of GSN expression in P. berghei infected and
non-infected Huh7 cells at 12 hours p.i.. (C) Huh7 cells showing an accumulation of GSN around GFP-Pb in a pattern similar to an actin cloud and tail-
like actin cloud (red and grey: anti-GSN antibody, green: GFP-Pb; blue: nuclei). Scale bars represent 10 mm.
doi:10.1371/journal.pone.0029408.g004

Hepatocyte Actin and Plasmodium
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day. Medium containing G418 was replaced daily for 6 days,

eliminating all the non-transfected cells. Transfected cells were

amplified and then sorted in a MoFlo High-Speed Cell Sorter

(Beckman Coulter), using a Melles Griot 568 nm laser and a BP

630/30 filter to detect mCherry. Two populations of cells were

separated, one with an intermediate fluorescent signal and another

with a strong signal. The population with the stronger fluorescent

signal was used throughout this work.

Time lapse experiments and image analysis
Cells were seeded on glass bottom culture dishes (MatTek

Corporation) and infected with 16105 GFP-Pb sporozoites.

Infected cells were analysed by microscopy at different time points

after infection. Time lapse experiments were performed on a Zeiss

Axiovert 200 M inverted widefield fluorescent microscope, with a

motorized stage, and equipped with a CoolSNAP HQ charge-

coupled device (Roper Scientific Photometrics, Tucson, AZ) and

Metamorph 6.1 software (Molecular Devices, Downingtown, PA).

GFP and mCherry fluorophores were detected with the following

filter sets: excitation BP450–490 nm, emission LP515; excitation

540–552 nm, emission LP590, respectively. Images were acquired

with a PlanApochromat 636/1.4 objective, at 20 s time intervals.

T. gondii and beads (Polybead Amino 3 Micron Microspheres,

Polyscience, Inc.) experiments were performed in conditions as

similar as possible to those used for P. berghei: (i) dissection products

of non infected salivary glands were added to cells that had

internalized beads and T. gondii infected cells; (ii) time lapse

experiments were performed between 10 and 16 hours post

internalization or infection, corresponding to the interval of P.

berghei infection where there is the highest percentage of parasites

associated with host actin reorganization and (iii) microscope

settings and acquisition intervals were the same as for Plasmodium

time lapse experiments.

Regarding parasite elimination, only movies showing vacuole

closure after parasite disappearance were considered in the

analysis. GFP parasites that disappeared without vacuole closure

were not considered (Fig. S3B). We attributed those events to

photobleaching as they invariably occurred at the end of a time-

lapse series. Six out of 485 parasites not associated with host actin

reorganization disappeared without vacuole closure and 2 out of

77 parasites, associated with host actin reorganization also

disappeared without the vacuole closing (p = 0.3, Fisher’s Exact

Test). Examples of parasites not considered in the analysis can be

observed in Fig. S3B (Table S2). During all time lapse

experiments, cells were kept at 37uC and 5% CO2. Image files

were processed using ImageJ 1.38 h software.

Immunofluorescence
Cells were plated on 12 mm glass coverslips and fixed in 4%

paraformaldehyde, for 10 minutes. After fixation, they were

permeabilized in 0,1% Triton X-100 (Calbiochem) and blocked

with 10% bovine serum albumin (BSA) before incubation for

1 hour with the respective antibodies or phalloidin (Molecular

Probes/Invitrogen) diluted in blocking solution. Nuclei were

stained with 49,6-diamidino-2-phenylindole (DAPI). Images were

obtained on a spinning disc laser confocal microscope (Revolution

System, Andor Technology, Belfast, UK) or on a Zeiss LSM 510

META (Zeiss, Oberkochen, Germany).

Immunohistochemistry of mouse liver slices
BALB/c was infected by intra-venous (i.v.) inoculation with

GFP-Pb sporozoites. For phalloidin labeling, mice were infected

with 500 000 GFP-Pb sporozoites. Livers were perfused with PBS

and harvested 24 hours after sporozoite injection. Tissues were

Figure 5. Gelsolin is important for actin reorganization around
developing P. berghei and parasite disappearance. (A) GSN
mRNA (top) and protein (bottom) expression after knockdown with
shRNA. GSN and a-tubulin bands corresponds to 93 kDa and 55 kDa
molecular weights, respectively. (B) Phalloidin staining of Huh7 cells
transduced with Scramble and GSN shRNA (grey: F-actin). (C) Effect of
GSN knockdown on the percentage of P. berghei parasites associated
with hepatocyte actin reorganization between 10 and 16 hours p.i..
Numbers of parasites associated with actin reorganization/total numbers
of parasites analysed are indicated above the bars. Error bars represent
Standard Errors * p,0.05 ** p,0.01; scale bars represent 10 mm.
doi:10.1371/journal.pone.0029408.g005

Hepatocyte Actin and Plasmodium
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then fixed in 4% PFA for 24 hours at 4uC, washed with PBS for

1 hour and then sliced into 50 mm sections using a vibratome

(VT1000S, Leica). Sections were again fixed for 5 minutes with

4% PFA, permeabilized for 1 hour with 0.3% Triton X-100 and

blocked for 2 hours, with 1% BSA. Sections were then incubated

for 24 hours at 4uC in blocking solution containing rabbit anti-

GFP FITC (Molecular Probes/Invitrogen) and AlexaFluor 594

phalloidin (Molecular Probes/Invitrogen). Nuclei were stained for

30 minutes with DAPI. Images were acquired in a Zeiss LSM 510

META (Zeiss, Oberkochen, Germany).

P. berghei-infected hepatoma cell microarray analysis
The GeneChipH Mouse Expression 430 2.0 array con-

tains45000 probesets, covering 39000 transcripts and variants

from over 34000 well characterized mouse genes. Data was

obtained from previous publication [18] and all raw data is

MIAME compliant and accessible through Array Express or

GEO, accession number: E-MEXP-667.

Lentiviral shRNA knockdown of Gelsolin
Plasmids encoding lentiviruses expressing shRNAs were ob-

tained from the library of the RNAi Consortium (TRC) [30].

Viruses were produced as previously described [30]. Five different

hairpins were initially used and their GSN knockdown efficiency

was compared by qRT-PCR against a scramble hairpin. All shRNA

sequences efficiently knockdown GSN (.80%) and the following

shRNA sequence,CCGGCGACAGCTACATCATTCTGTACT-

CGAGTACAGAATGATGTAGCTGTCGTTTTT, was chosen

to use in the live imaging experiments. For lentivirus infection,

56103 Huh7 mCherry::b-actin cells were seeded on a 96-well plate.

In the following day, 10 ml of virus were added to each well, in the

presence of medium containing 8 mg/ml of polybrene (Sigma) and

the plate was centrifuged at 974 g for 90 minutes, at 37uC. The

medium was then removed and supplemented RPMI was added.

Selection of non-transduced cells started 48 hours later, with 4 mg/

ml of puromycin (Calbiochem). Cells were infected and used in time

lapse experiments after 48 hours of selection, GSN expression was

quantified by qRT-PCR and Western Blot as described before [31].

Antibodies used in the Western blot include anti-GSN (BD

Transduction Laboratories), anti-a tubulin (Sigma) and HRP

conjugated anti-mouse (Amersham).

Statistical Analysis
Several data are presented in the form of percentages. For low

percentages (,8%), we computed exact confidence intervals for

the respective probability. For the remaining percentages, we

calculated traditional asymptotic confidence intervals based on the

standard error (s.e.) associated with the estimates. Pearson

independence test for two-way contingency tables was used to (i)

assess culture-plate effects in time lapse experiments performed on

different days and (ii) compare the frequency of parasites or beads

associated with host actin reorganization. In (i), the null hypothesis

was that all different plates referring to the same infection period

show a similar relative frequency of parasites or beads associated

with host actin reorganization. Since this hypothesis could be

accepted at the 5% significance level, data from different plates

imaged at different days were pooled together for further analysis.

In (ii), the null hypothesis is that there is no difference between the

groups. Fisher’s exact test for 262 tables was used to assess

whether the disappearance of parasites was or not associated with

host actin reorganization. The application of this exact test is

justified by the presence of an unbalanced 262 table, which would

lead to unreliable p-values for the traditional Pearson’s indepen-

dence test. Since we could reject the independence hypothesis

between parasite disappearance and host actin reorganization, we

extended further the analysis by calculating the odds ratio and the

respective 95% confidence interval. Student’s T test was used to

analyze the data from the remaining experiments because the data

was following a Gaussian distribution. In all above-mentioned

tests, the null hypothesis was accepted when the p-value.0.05 or

Figure 6. Actin reorganization is associated with P. berghei disappearance. Frames of movie S6 where it is possible to observe parasite
deformation and disappearance coincident with hepatocyte actin reorganization (red: mCherry::b-actin; green: GFP-Pb; grey pictures represent single
channels), scale bars represent 10 mm.
doi:10.1371/journal.pone.0029408.g006
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rejected, otherwise. In the same vein, all confidence intervals were

computed at a 95% confidence level. All statistical data analysis

was carried out using SPSS 11.0. for windows and R software

(http://www.r-project.org).

Supporting Information

Figure S1 Huh7 cells stably expressing mCherry::hu-
man b-actin or mCherry::human a-tubulin. Immunofluo-

rescence of Huh7 mCherry::human b-actin and Huh7 mCher-

ry::human a-tubulin stained with phalloidin or an antibody anti-a-

tubulin respectively (red: mCherry::b-actin or mCherry::a-tubulin;

green: phalloidin Alexa Fluor 488 or anti-a-tubulin antibody; blue:

nuclei), scale bars represent 10 mm.

(TIF)

Figure S2 Comparison of P.berghei infection in Huh7
cells vs Huh7 mCherry:: human b-actin or Huh7
mCherry::human a-tubulin cell lines, 48 hours after
infection. Cells were infected with 36104 GFP-Pb sporozoites

and infection was measured by flow cytometry.

(TIF)

Figure S3 P. berghei elimination versus photobleaching
during time lapse experiments. (A) GFP-Pb elimination in

the absence of host actin reorganization. Note that the left parasite

disappears completely, while the right parasite remains. (B) GFP-

Pb photobleaching. Both parasites gradually lose their fluorescence

during the time lapse experiment. The place where parasites were

visible remains in the mCherry::b-actin channel. Arrows indicate

the position of where the parasite is after bleaching. (red:

mCherry::b-actin; green: GFP-Pb; grey pictures represent single

channels); Scale bars represent 10 mm.

(TIF)

Movie S1 Time lapse experiment showing no tubulin reorgani-

zation around GFP-Pb, representative of the 238 parasites

analysed with this cell line (red: mCherry::a-tubulin; green:

GFP-Pb; grey pictures represent single channels), scale bar

represents 10 mm.

(MOV)

Movie S2 Time lapse experiment of Huh7 mCherry::b-actin

infected with GFP-Pb, showing a transient and symmetrical

reorganization of host actin around the parasite (red and grey:

mCherry::b-actin; green: GFP-Pb), scale bar represents 10 mm.

(MOV)

Movie S3 Comparative actin reorganization events in Huh7

mCherry::b-actin infected with P. berghei (left), T. gondii (middle)

and 3 mm beads (right), respectively. Only mCherry::b- actin

channels are shown. Squares in the initial frames represent the

regions where the parasites or the beads are located. The

permanent fluorescent ring around the bead corresponds to

autofluorescence, as it is also observed in beads imaged in the

absence of cells, when the same microscope settings are employed,

scale bars represent 10 mm.

(MOV)

Movie S4 Asymmetrical actin clouds around GFP-Pb (red and

grey: mCherry::b-actin; green: GFP-Pb), scale bar represents

10 mm.

(MOV)

Movie S5 Tail-like actin cloud associated with GFP-Pb (red and

grey: mCherry::b-actin; green: GFP-Pb), scale bar represents

10 mm.

(MOV)

Movie S6 Host actin reorganization event coinciding with P.

berghei deformation and disappearance (red: mCherry::b-actin;

green and grey: GFP-Pb), scale bar represents 10 mm.

(MOV)

Table S1 GFP-Pb elimination in the presence and absence of

actin reorganization.

(DOCX)

Table S2 GFP-Pb photobleaching in the presence and absence

of host actin reorganization.

(DOCX)
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