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Background. Season of birth (SOB) has been associated with many physiological and psychological traits including novelty
seeking and sensation seeking. Similar traits have been associated with genetic polymorphisms in the dopamine system. SOB
and dopamine receptor genetic polymorphisms may independently and interactively influence similar behaviors through their
common effects on the dopaminergic system. Methodology/Principal Findings. Based on a sample of 195 subjects, we
examined whether SOB was associated with impulsivity, sensation seeking and reproductive behaviors. Additionally we
examined potential interactions of dopamine receptor genes with SOB for the same set of traits. Phenotypes were evaluated
using the Sociosexual Orientation Inventory, the Barratt Impulsivity Scale, the Eysenck Impulsivity Questionnaire, the
Sensation Seeking Scale, and the Delay Discounting Task. Subjects were also asked about their age at first sex as well as their
desired age at the birth of their first child. The dopamine gene polymorphisms examined were Dopamine Receptor D2 (DRD2)
TaqI A and D4 (DRD4) 48 bp VNTR. Primary analyses included factorial gender6SOB ANOVAs or binary logistic regression
models for each dependent trait. Secondary analysis extended the factorial models by also including DRD2 and DRD4
genotypes as independent variables. Winter-born males were more sensation seeking than non-winter born males. In factorial
models including both genotype and season of birth as variables, two previously unobserved effects were discovered: (1)
a SOB6DRD4 interaction effect on venturesomeness and (2) a DRD26DRD4 interaction effect on sensation seeking.
Conclusion. These results are consistent with past findings that SOB is related to sensation seeking. Additionally, these results
provide tentative support for the hypothesis that SOB modifies the behavioral expression of dopaminergic genetic
polymorphism. These findings suggest that SOB should be included in future studies of risky behaviors and behavioral genetic
studies of the dopamine system.
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INTRODUCTION
Season of birth (SOB) has been associated with such diverse

physiological and psychological human traits as birth weight [1],

adult height [2,3], body-mass index (BMI = weight in kg/height in

m2) [4,5], eating disorders [6], blood pressure [7], life expectancy

[8], handedness [9], age of menarche [10], fecundability [11], sex-

ratio of offspring [12], age at menopause [10], suicide[13–16],

schizophrenia [17,18], autism [19], panic disorder [20], university

grades [21] and morning versus evening preference [22–24]. Of

particular interest for our study, winter-borns exhibit increased

novelty seeking [25–27] and sensation seeking [28] relative to

those born during the remainder of the year.

Suggested explanations for the associations between SOB and

this wide array of psychological and physiological phenotypes

include variations in infectious disease exposure, nutrition,

temperature, maternal hormones, maternal egg quality, birth

complications and photoperiod [6,17,29]. Photoperiod is perhaps

the best explored and supported hypothesis as to why SOB bears

an association with risky behaviors. It is hypothesized that

variation in daylight during gestation or perinatally impacts the

dopamine-melatonin balance regulating circadian and seasonal

rhythms and serotonin turnover [24,28,30,31]. The serotonin

metabolite, 5-hydroxyindoleacetic acid (5-HIAA) and dopamine

metabolite, homovanillic acid (HVA) have both been shown to

vary with SOB [31]. Consistent with an effect of photoperiod on

risky-behaviors, HVA increases with increasing novelty seeking

and dopamine turnover reaches its extremes with the solstices

[30]. A somewhat different type of risky behavior, suicide, also

seems to be inter-related with SOB and 5-HIAA [30].

Consistent with the dopamine-melatonin hypothesis, traits

associated with SOB have also been linked to genetic polymorphisms

in the dopamine system. These include BMI [32–34], eating
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disorders [35–37], blood pressure [38], fertility [39–41], novelty

seeking [42,43, but 44], and sensation seeking [45]. Additionally,

there is evidence of interactions between SOB and specific genetic

polymorphisms, such as the dopamine receptor D4 (DRD4) 48 bp

VNTR polymorphism, on psychiatric disorders [46,47] and BMI [5].

In fact, SOB effects may be directly related to DRD4. In the retina

DRD4 mRNA has been found in photoreceptor cells that indirectly

control melatonin synthesis and have a regulatory role on light

sensitive cyclic adenosine monophosphate [48–51]. Additionally,

dopamine has been found to inhibit retinal melatonin synthesis via

D2/D4 receptors but not through D1/D5 receptors [52].

This paper focuses on SOB and its interaction with dopamine

receptor genes and gender. It is part of a larger series of studies

examining the associations of genetic polymorphisms of the

dopamine system with behavior [53,54]. In this case, we examined

how SOB was associated with measures of sensation seeking,

impulsivity and reproductive behaviors, as well as the interaction

between SOB, gender, DRD2 and DRD4 polymorphisms in

influencing these behavioral outcomes. The phenotypes were

evaluated using the Sociosexual Orientation Inventory (SOI),

Barratt Impulsivity Scale (BIS), Eysenck Impulsivity Questionnaire

(EIQ), Sensation Seeking Scale (SSS), and Delay Discounting Task

(DDT). Additional phenotypes considered included self-reported

virginity status, age at first sexual intercourse, and desired age at

first birth. Three independent scales (BIS, EIQ, and DDT) were

used to assess impulsivity because of the heterogeneous nature of

impulsivity [reviewed in 54]. This is the first such study we are

aware of to examine the interactions between SOB and dopamine

genetic polymorphisms on normal behavioral variation in a non-

clinical population.

We examined two dopaminergic genetic polymorphisms: DRD2

TaqI A and DRD4 48 bp VNTR. The DRD2 TaqI A site is a single

nucleotide polymorphism (SNP) with a major A2 allele, and minor

A1 allele. The A1+ genotype (heterozygous or homozygous A1)

has been most strongly associated with substance abuse,

particularly alcoholism, albeit with some controversy [55]. The

A1+ genotype has also been related to pathological gambling,

novelty seeking, and sensation seeking [45,55]. The DRD2 TaqI A

site is 9.4 kb downstream from the coding region for the dopamine

D2 receptor gene. It is not in any known regulatory region, and

although the A1 allele is associated with a decrease in dopamine

D2 binding and glucose metabolic rates in many brain regions

[55–57], the mechanism by which it affects DRD2 expression is

unknown. The TaqI A polymorphism is also in a nearby kinase

gene, the Ankyrin Repeat and Kinase Domain Containing 1 (ANKK1)

gene, where it causes a GlutamateRLysine substitution [58,59].

The results of the amino acid substitution are not known, but

could impact interactions of the ANKK1 protein with other

proteins including the dopamine D2 receptor [59]. No other

polymorphism has been revealed in linkage disequilibrium with

TaqI A that could easily account for these associations [41,58–60].

The DRD4 48-bp VNTR polymorphism is in exon 3 of the gene

coding for the dopamine receptor D4. The VNTR polymorphism

varies between 2 and 11 repeats of a similar 48-bp coding region

sequence, with a trimodal distribution of 2, 4 and 7 repeat alleles

(2R, 4R and 7R) in most, but not all, populations [61]. Although

the functional significance of the DRD4 VNTR polymorphism has

not been definitively characterized, long alleles (typically 7R as

opposed to 4R) have been generally found to be functionally less

reactive in in-vitro expression experiments [62–66], with some

heterogeneity [67–71]. Additionally, in vivo human pharmaco-

logical studies are also generally consistent with the notion that 7R

alleles are associated with less responsive D4 receptors than 4R

alleles [72–76].

Based on the existing literature, we predicted that winter-borns

would exhibit increased sensation seeking, increased impulsivity,

more promiscuous sexual behavior and a desire for children

earlier. We further predicted that being winter-born would

potentiate the effects of risk-conferring dopamine receptor alleles

on these behavioral traits.

METHODS

Participants and procedures
Between February and April 2005 a total of 195 subjects were

recruited for participation from the Human Subject Research Pool

at the State University of New York at Binghamton, U.S.A. The

subject pool draws on mostly full time students currently in

psychology courses who participate in research studies for course

credit. No screening measures were placed on who could

participate. All procedures were approved by the Human Subjects

Research Review Committee at the State University of New York

at Binghamton and all subjects gave informed consent. Partici-

pants attended group sessions (maximum = 10), where they were

first provided with oral instructions followed by DNA sample

collection. Participants then completed the delay discounting task

followed by the self-report measures administered in random

order. In addition to the oral instructions, the DDT task and other

measures were accompanied by on-screen written instructions and

experimenters were available throughout the sessions for ques-

tions. The sessions lasted approximately one hour. All data were

collected via personal computers.

Phenotype Assessment
Sociosexual Orientation Inventory (SOI) The SOI measures

restriction of sexual and pair-bonding behaviors. It has been

validated on student populations around the world [77,78]. Those

who score lower on the SOI generally engage in sex later in

relationships that are ‘characterized by reliably greater expressed

love, dependency, commitment and investment’ [77, p. 876]. The

SOI was slightly altered to differentiate heterosexual and

homosexual activity and sexual identity, but because the sample

contained only one subject self-identified as bisexual and four self-

identified as homosexual, they were not distinguished from those

self-identified as heterosexual in the further analyses.

Barratt Impulsivity Scale, Version 11 (BIS-11) The BIS-11

provides a general measure of impulsivity and three subscores:

Attentional Impulsiveness (BIS-AI), Motor Impulsiveness (BIS-MI)

and Non-Planning Impulsiveness (BIS-NPI). The BIS-11 has

undergone psychometric validation [79].

Eysenck Impulsivity Questionnaire (EIQ) The EIQ is

a self-report measure of impulsivity that generates three subscales,

of which two were relevant to the current study: Impulsiveness

(EIQ-I), and Venturesomeness [EIQ-V; 80]. The EIQ has

undergone psychometric validation [e.g., 81].

Sensation Seeking Scale–Form A (SSS) Sensation seeking is

a related construct to impulsivity, and has both been shown to exhibit

moderate positive correlations with self-reported impulsivity and to

potentially share genetically-mediated common biological

mechanisms with impulsivity [82]. The SSS is a psychometrically

validated measure [83] that provides an overall measure of sensation

seeking proneness (SSS-Total) and four relevant lower order factors:

Experience Seeking (SSS-ES), Boredom Susceptibility (SSS-BS),

Disinhibition (SSS-D), and Thrill and Adventure Seeking (SSS-TAS).

Delay Discounting Task (DDT) To capture discounting of

delayed rewards empirically, the DDT poses participants with

repeated choices between a smaller reward received immediately

and a greater reward received after some time delay (e.g., ‘‘Would

Birth Season and Behavior
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you prefer to have $65 today or $100 in a month?’’). Over the

course of the task, the amounts of immediate rewards are

successively modified, as is the duration of delay. The

individual’s responses to the entire array of choices are then

used to empirically derive their discounting function (i.e., how

steeply they discount delayed rewards relative to immediate

rewards, commonly denoted k). The DDT was administered with

hypothetical money via a custom computer program [84] which is

fully described in Supplementary File S1. Model fits of how well

subjects’ discounting functions fit Mazur’s [85] nonlinear equation

used to derive k values are calculated as R2 values. Erratic subjects

and those with R2 values below 0.30 were excluded from principal

analyses [86]. The DDT k value was normalized with a logarithmic

transformation, as is typical in delay discounting research.

Additional Self-Report Questions Subjects were asked their

desired age to have their first child, or whether they did not want

to have children. They were also asked their age at first sex, or if

they were virgins.

Season of birth Subjects were asked their year, month and

country of birth. For SOB analyses, only those born under 25 years

ago in countries that are predominately north of the Tropic of

Cancer were considered. North of the Tropic of Cancer marks

increased photoperiod variation in a consistent direction and a point

beyond which photoperiod variation has been observed to effect

reproductive behavior in non-human primates [87]. Since most of

the sample (181 or 92.8%) was born north of the Tropic of Cancer,

analysis was only conducted on this Northern Hemisphere sample.

The 25 year age limit was employed because SOB effects have been

observed to reverse with age in other studies [24,26–28] and all but

two subjects were under 25 in this study.

Consistent with past associations of SOB with sensation and

novelty seeking [26–28], October to March borns are classified as

high risk-conferring winter-borns relative to those born in the

remainder of the year (not-winter-borns). Because other methods

of parsing SOB have been employed in the literature, we include

our raw dataset as Supplementary File S2 to allow further analysis

by researchers who may want to examine hypotheses beyond the

ones we consider here.

Genotyping
DNA was collected with QuickExtract buccal swabs and extracted

with BuccalAmp solution as directed by the manufacturer

(Epicenter). Subjects were instructed to rinse their mouths out

with water before swabbing. DRD2 TaqI A was typed with a PCR/

RFLP method [based on 88] described completely in Supplemen-

tary File S3. The DRD4 VNTR locus was genotyped using an

adaptation of a previous protocol [89] described fully in

Supplementary File 3. Allele frequency data was submitted to

The Allele Frequency Database (ALFRED; http://alfred.med.

yale.edu/alfred/sampleDescrip.asp?sampleID = ’001775)’).

Data Analysis
All data were examined for outlying data points, distribution

normality, and missing values. To assure missing responses were

not systematically biased by SOB, missing versus non-missing data

for each phenotype scale was analyzed by SOB in 262

contingency tables. Examination of bias in missing data by

DRD2 TaqI A and DRD4 VNTR genotypes has been conducted

previously and are not reported on here [53,54]. Missing values

were not imputed, but excluded from analysis. Fits to HW

equilibria were tested with the HWE program [90], with which the

DRD2 HW equilibrium was tested with Fisher’s Exact and DRD4

with the Markov Chain algorithm.

Based on previous association studies of the DRD2 TaqI A

polymorphism, individuals with at least one A1 allele were

designated as A1+ and those who were homozygous for the A2

allele were designated A1-. Similarly, DRD4 48 bp VNTR

genotypes were separated into long allele (7 repeats or longer)

present (L+) and long allele absent (L2) groups. The principal data

analyses used a tiered analysis. First, since several past studies have

found that SOB effects vary by gender, factorial 2 (Male/

Female)62 (Winter-Born/Not-Winter-Born) ANOVAs were con-

ducted. Then to see if genotype interacted with SOB to effect the

traits in question, DRD2 and DRD4 genotypes were added to each

factorial model (2 [Male/Female]62 [Winter-Born/No-Winter-

Born]62 [A1+/A12]62 [L+/L2], although four-way interac-

tions were considered uninterpretable and are not discussed).

Similarly, categorical dependent variables were first analyzed with

forward conditional factorial binary logistic regression models with

dichotomized SOB and gender and then secondarily include

DRD2 and DRD4. Direct SOB effects and SOB interactions with

genotypes are the main focus of the study. Since this study is only

concerned with sexual dimorphism in so far as it moderates SOB

or genotype associations, main effects of gender are not

commented on. All scales used in this study were previously

examined in relation to the genetic polymorphisms and gender

[53,54] and these results are not reported on here unless the

inclusion of SOB in statistical models reveals new results.

Since this study employs multiple phenotypic scales, the potential

exists for type I errors. For several reasons we have not employed

a correction of our significance criteria for multiple testing [91,92].

The diversity of scales employed in this study should not decrease the

sensitivity of analysis. In addition, because of the exploratory nature

of our analysis [91], and because the phenotypic variables are often

correlated (see Table 1 and Results and Discussion), corrections for

multiple tests are too conservative [92]. Nonetheless, to address the

risk of Type I errors, we have reduced our significance criteria from

the traditional#.05 to a#.01 level for the principal analyses (for the

correlation matrix in Table 1 a traditional#.05 criteria is employed).

It is important for the reader to bear these cautions in mind as they

interpret the results.

RESULTS

Sample Background
The sample is described demographically in Table 2. It had

a roughly equal sex ratio, a narrow age range (as expected in

a college population) and was predominately of European descent.

Genotype and allele frequencies are given for DRD2 TaqI A and

DRD4 48-bp VNTR in Supplementary File S3. Genotype

frequencies were comparable to other samples of mixed popula-

tions with predominately European descent. Both loci were in

Hardy-Weinberg Equilibrium (DRD2, Fisher’s Exact test p = 1.0;

DRD4 VNTR, Markov Chain Algorithm p = 0.38). Descriptive

statistics of each dependent variable are given in Table 3. As can

be seen in Table 1, where the correlations between continuous

dependent variables are given, with the exception of AgeSex (age

at first sex), Kids (desired age at first child) and DDT, the

correlations between scales are all positive, frequently significant,

and generally high. Correlations among each gender separated

can be found in Supplementary File S4.

179 of the 195 subjects (91.8%) met the inclusion criteria for the

SOB analysis. Winter borns made up 52.5% of the sample. SOB

did not systematically vary with gender, DRD4 or DRD2 genotypes

(not shown). Between 2.8% and 14.5% of values were missing

across phenotype scales (Table 3). No heterogeneity of missing

values on the phenotype scales by season of birth was found.

Birth Season and Behavior
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Season of birth and season of birth by gender

associations
Table 4 shows main effects of SOB, gender and interaction effects

of SOB6gender on each phenotype. SOB6gender interactions

were prominent on total sensation seeking and the sensation

seeking subscores, disinhibition and boredom susceptibility. As

illustrated in Figure 1 for the SSS Total score, female winter-borns

were on average less sensation seeking than female not-winter-

borns, while male winter borns were more sensation seeking than

male not-winter borns (the same pattern was evident across the

three significant SSS sub-scales). In post-hoc analysis, the

differences in total sensation seeking, disinhibition and boredom

susceptibility by SOB were significant in males (SSS-Total:

F[1,65] = 11.520, p = .001; SSS-D: F[1,69] = 9.469, p = .003;

SSS-BS: F[1,72] = 8.257, p = .005) but not females (SSS-Total:

F[1,94] = 1.257, p = .265; SSS-D: F[1,96] = 1.712, p = .194; SSS-

BS: F[1,98] = 1.273, p = .262). There was also a trend towards an

SOB6gender interaction effect on self-reported virginity status

(Table 4). This effect of SOB was similarly prominent in males, but

not females (not shown).

Gene by season of birth interactions-multivariate

analysis
To evaluate whether there was a moderating relationship between

SOB and dopamine gene polymorphisms on the behavioral traits

in this study, DRD2 and DRD4 were added as independent

variables in the factorial ANOVA and binary logistic regression

models. We found a significant interaction effect of DRD26DRD4

on total sensation seeking (SSS-Total; F [1,145] = 6.883, p = .010),

which was not observed in previous models that did not include

SOB. Among those without A1 alleles (A12), long DRD4 alleles

(L+) were associated with decreased SSS-Total, but the reverse

was true among those with A1 alleles (A1+). In addition, there was

an interaction effect of SOB6DRD4 on EIQ-V (F[1,156] = 9.878,

p = .002) as illustrated in Figure 2. On all other scales, no new

significant associations were evident.

All significant findings in the gender by SOB analysis (without

genotype variables), were found in this gender6
SOB6DRD26DRD4 analysis (not shown).

DISCUSSION
We hypothesized that winter-borns would show higher rates of

risk-associated behaviors, including sensation seeking, impulsivity,

and sexual promiscuity. We found support for this hypothesis only

Table 3. Descriptive Statistics of Dependent Variables
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Variable Definition N Mean SD

AgeSex Age at first sexual intercourse 124 16.88 1.46

Kids Desired age to begin having children 163 28.91 2.56

SOI Sociosexual Orientation Inventory 153 57.15 30.59

DDT Delay Discounting Task (patience) 156 21.33 0.71

BIS Barratt Impulsivity Scale

BIS-AI Attentional Impulsiveness 169 17.21 3.46

BIS-MI Motor Impulsiveness 172 21.78 3.76

BIS-NPI Non-Planning Impulsiveness 166 25.46 3.97

BIS-Total General Impulsiveness 157 64.43 9.21

EIQ Eysenck Impulsivity Questionnaire

EIQ-V Venturesomeness 174 9.83 3.45

EIQ-I Impulsiveness 168 10.48 4.34

SSS Sensation Seeking Scale

SSS-D Disinhibition 169 5.89 2.43

SSS-ES Experience Seeking 170 5.52 1.92

SSS-BS Boredom Susceptibility 174 3.17 2.04

SSS-TAS Thrill and Adventure Seeking 174 6.64 2.71

SSS-Total Overall Sensation Seeking Proneness 163 21.25 5.81

Virgins* Are virgins 173 28.30

Want
Children*

Want to have children 172 94.80

*categorical variables: mean of percent responding positively given instead of
mean

doi:10.1371/journal.pone.0001216.t003..
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Table 2. Demographic Information
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Variable Descriptive Statistics

Sex 42% male; 58% female

Age Median = 19.33 (IQR = 18.83–20.35)

Ethnicity 44.1% European, 14.4% East Asian, 11.8% Latin American,
5.1% South Asian, 3.1% Native North American, 1.5%
African American, 1.0% Pacific Islander, 1.0% African, 13.8%
multiracial, 5.6% unknown. (does not sum to exactly
100.0% because of rounding)

Subject Characteristics (n = 195).
doi:10.1371/journal.pone.0001216.t002..
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Table 4. Associations of Season of Birth, Gender and Season
of Birth X Gender with dependent variables.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Variable SOB GENDER SOB X GENDER

F P F P F P

AgeSex 0.73 0.394 0.55 0.460 0.459 0.500

Kids 0.802 0.372 5.649 0.019 2.067 0.152

SOI 0.485 0.487 12.524 0.001 0.035 0.852

DDT 0.425 0.515 1.841 0.177 0.066 0.798

BIS

BIS-AI 0.088 0.767 4.13 0.044 0.005 0.944

BIS-MI 0.262 0.610 15.625 ,.001 1.225 0.270

BIS-NPI 2.255 0.135 2.21 0.139 2.251 0.135

BIS-Total 0.346 0.557 9.59 0.002 0.54 0.464

EIQ

EIQ-V 3.201 0.075 7.825 0.006 0.134 0.714

EIQ-I 0.008 0.929 3.136 0.078 0.542 0.462

SSS

SSS-D 2.878 0.092 1.127 0.290 10.905 0.001

SSS-ES 0.674 0.413 0.023 0.880 1.513 0.220

SSS-BS 2.703 0.102 3.516 0.063 9.179 0.003

SSS-TAS 1.812 0.180 1.303 0.255 1.332 0.250

SSS-Total 3.936 0.049 2.767 0.098 11.457 0.001

Virgins* 0.65 0.420 0.61 0.436 5.32 0.021

Want Children* 0.13 0.716 0.64 0.425 0.00 0.983

*categorical variables: Wald statistic given instead of F value
Bolded values are significant (p#.01)
doi:10.1371/journal.pone.0001216.t004..
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for sensation seeking and in a near-significant trend for virginity

status. Additionally, we hypothesized that both winter-birth and risk-

conferring alleles would together promote more risky-behaviors. We

found only limited support for such an interaction. However, we did

find that including SOB revealed some previously unobserved effects

of the DA receptor genetic polymorphisms. On the EIQ

Venturesomeness scale, the expression of a dopamine gene

polymorphism (DRD4) seemed to be moderated by SOB.

Season of birth
Our finding of increased sensation seeking in winter borns is

generally consistent with Joinson and Nettle’s finding of increased

SSS in young adult winter-borns [28]. However, Joinson and

Nettle found a trend of increased sensation seeking in both genders

pooled, while we only found the effect in males. Our finding is also

inconsistent with past studies where SOB tends to be more, not less

related to novelty-seeking among females than males [25–27]. It is

unclear why our findings diverge from those of past studies. In

other studies, SOB has been shown to have opposite effects on

different age groups [27,28], suggesting cohort or development

effects. Studies that found stronger effects in females were

conducted on university distance learning students in the U.K.

[28], general population samples in Sweden [25,27] and a high

school sample from Sweden [26]. The fact that our samples

consisted of a subsection of United States (mainly full-time) college

students instead of those from a general population may help

account for our different findings.

It was surprising that SOB was related to sensation seeking

(SSS) and potentially virginity (in 262 factorial models) but not

other related scales such as the Eysenck Impulsivity Questionnaire

(EIQ) or Barrett Impulsivity Scale (BIS) which have been

associated with the dopamine system [93–95] and are related in

this study (Table 1). However, the SSS appears to capture

a distinctive element of impulsivity/risk-taking compared to other

scales including the EIQ [96]. The SSS is oriented more towards

participation in specific activities than the BIS or EIQ, which

require subjects to implicitly compare themselves to others.

Perhaps the effects of SOB on behavior are better assessed by

questions more directly related to behavioral desires rather than

more subjective self-conception.

While we hypothesized that SOB effects on behavior are related

to dopamine-melatonin changes, with our dataset it is not possible

to clearly distinguish the underlying basis for the behavioral effects

of SOB. While the SSS has been related to the DA system, it has

also been related to other neurotransmitters, enzymes and

hormones [reviewed in 97]. However, the associations revealed

when SOB and genotype were included in the same models

tentatively suggests that SOB does impact the dopamine system.

Season of birth and dopamine polymorphisms
Including SOB in genotypic models yielded two new significant

findings not previously observed. One was an interaction effect

between genotype and SOB. This interaction between SOB and

DRD4 in predicting venturesomeness (EIQ-V) is consistent with

our hypothesis that dopamine D4 receptors may be particularly

mechanistically entangled with SOB effects. Such an interaction

may indicate that both SOB and DRD4 act through related

dopaminergic substrates. Additionally, the DRD2 by DRD4

association revealed when SOB was included in models together

with DRD2 and DRD4 tentatively suggest that SOB and dopamine

Figure 1. Mean Sensation Seeking proneness by Sex and SOB. SSS varied significantly by the interaction of Sex and SOB. In post-hoc analysis SSS
varied by SOB in males, but not females.
doi:10.1371/journal.pone.0001216.g001
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polymorphisms control overlapping traits. This DRD26DRD4

associations with sensation seeking (SSS-Total) is consistent with

past findings of an interaction between DRD2 and DRD4 on

impulsivity, where similarly the most extreme impulsive individ-

uals were A1+/L+ [54].

The results presented here provide limited support for the

hypothesis that SOB modulates expression of genetic polymorphisms

of the dopamine system. Thus they add to previously published

studies that have documented SOB interactions with the expression

of dopamine system genetic polymorphisms, including interactive

effects on psychiatric disorders [46,47] and BMI in women with

seasonal affective disorder [5]. However, given the limited sample

size as well as the factorial nature of our statistical models, and the

possibility of type I error, the results must be considered tentative.

Evolution of Season of Birth Influences on Behavior
Circadian rhythms have been found in virtually all organisms that

have been studied [98] and the coupling of photoperiod and

neuroendocrine control of reproductive physiology and behavior is

often important among mammals. A mammalian species complex

that spans wide latidunal swaths shows clinal variation in its

responsiveness to photoperiod (from no response at all to a high

responsiveness), suggesting rapid evolution [87]. In several non-

human primates that live in the higher latitudes of the tropics and

lower temperate zone, photoperiod has been associated with

reproductive and behavioral changes [87].

This rapid evolutionary potential may also be innate in humans,

and subject to natural selection. Although not readily apparent,

SOB could be correlated with other factors that serve as reliable

cues of the environmental quality an individual is likely to

experience throughout their lifetime (e.g. infectious disease load or

nutrition). In order for birth environment to serve as an adaptive

cue to change behaviors, birth environment must be reliably

correlated to the environment experienced many years later.

Alternatively, SOB may cause adaptive behaviors in infants that

are selectively advantageous enough to outweigh maladaptive

behaviors later in life. While it is difficult to imagine how birth

climate, would be a reliable signal of future environments beyond

perhaps a few years [99,100], studies of the paleo-climate may

yield another answer.

One possible way such signals could be functional is if climate

changes were a persistent survival problem for humans. There is

evidence that ‘‘during the present (Holocene) interglacial…cold and

dry phases…[occurred]… on a 1500-year cycle, and with climate

transitions on a decade-to-century timescale’’ [101]. On a smaller

timescale, over the last millennium of Chinese history, climate

changes to cold phases have been associated with decreased harvests,

increased warfare, decreasing population and dynastic changes

[102]. While very speculative, it is possible that physiological and

behavioral plasticity based on birth environment allows better

survival through such turbulent changes. Among early humans living

predominantly in a tropical environment such a signal for plasticity

may not have been obscured by the more marked seasonal variations

now experienced farther from the equator.

Alternatively, early photoperiod may have non-adaptive effects

on development. Stressed pregnant rats have offspring with altered

physiologies and behavior including altered dopamine levels [103–

106]. Early rearing environment of rhesus monkeys is associated

with lower amine activity, including that of HVA [107]. Studies in

rats and mice show that changes in light exposure early in life is

related to sensitivity to light later in life [reviewed in 23]. These

studies give reason to believe that developing human brains may

Figure 2. Mean EIQ Venturesomeness by DRD4 genotype and SOB. Venturesomeness varied significantly by the interaction of DRD4 and SOB.
doi:10.1371/journal.pone.0001216.g002
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be easily affected by early photoperiod. In such a long-lived

species, these effects could represent compensation for early

perturbations in development, rather than adaptive tracks for

later-life behaviors based on early photoperiod.

Summary
Our results tentatively suggest that SOB has a different, but

related, psychological impact than dopamine D2/D4 receptor

genetic polymorphisms on several behavioral phenotypes. This

study replicates the past findings that winter-borns are more

sensation seeking, but differs in that the association was only

evident in males. SOB was unrelated to several behavioral/

psychological phenotypes that were associated with DRD2 and

DRD4 genetic polymorphisms. But, including SOB in factorial

models revealed a previously unobserved association and evidence

of moderation of DRD4 expression by SOB. These results must be

viewed with caution as the number of phenotypic dependent

variables analyzed here may have increased the risk of type I

errors. An adaptive basis for the associations found here and in

other studies of SOB is not clear. The behavioral implications of

SOB remain ambiguous and its interactions with genotype effects are

tentative. To further dissect the association of season of birth with

later behaviors, more comprehensive analysis including experimen-

tal variations of photoperiod in lab animals in utero and early in life,

and analysis of light exposure of pregnant women and later their

young children should be conducted. However, SOB is an easy

variable to collect (requiring only knowledge of the date and location

of birth of subjects) that may help elucidate behavioral genetic

associations. The current results along with those of past studies

provide ample reason to include season of birth as at least a control in

future studies of impulsivity/risky and sensation-seeking behaviors.

Furthermore, season of birth should be included in future behavior

genetic studies of the dopamine system.
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