
Vaccination against Human Influenza A/H3N2 Virus
Prevents the Induction of Heterosubtypic Immunity
against Lethal Infection with Avian Influenza A/H5N1
Virus
Rogier Bodewes, Joost H. C. M. Kreijtz, Chantal Baas, Martina M. Geelhoed-Mieras, Gerrie de Mutsert,

Geert van Amerongen, Judith M. A. van den Brand, Ron A. M. Fouchier, Albert D. M. E. Osterhaus,

Guus F. Rimmelzwaan*

Department of Virology, Erasmus Medical Center, Rotterdam, The Netherlands

Abstract

Annual vaccination against seasonal influenza viruses is recommended for certain individuals that have a high risk for
complications resulting from infection with these viruses. Recently it was recommended in a number of countries including
the USA to vaccinate all healthy children between 6 and 59 months of age as well. However, vaccination of immunologically
naı̈ve subjects against seasonal influenza may prevent the induction of heterosubtypic immunity against potentially
pandemic strains of an alternative subtype, otherwise induced by infection with the seasonal strains.

Here we show in a mouse model that the induction of protective heterosubtypic immunity by infection with a human A/
H3N2 influenza virus is prevented by effective vaccination against the A/H3N2 strain. Consequently, vaccinated mice were
no longer protected against a lethal infection with an avian A/H5N1 influenza virus. As a result H3N2-vaccinated mice
continued to loose body weight after A/H5N1 infection, had 100-fold higher lung virus titers on day 7 post infection and
more severe histopathological changes than mice that were not protected by vaccination against A/H3N2 influenza.

The lack of protection correlated with reduced virus-specific CD8+ T cell responses after A/H5N1 virus challenge infection.
These findings may have implications for the general recommendation to vaccinate all healthy children against seasonal
influenza in the light of the current pandemic threat caused by highly pathogenic avian A/H5N1 influenza viruses.
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Introduction

Since 2003, more than 380 human cases of infection with highly

pathogenic avian influenza A virus (IAV) of the H5N1 subtype

have been reported to the World Health Organization (WHO) of

which more than 60% were fatal [1]. Because of the continuous

spread of these viruses among domestic birds, the frequent

introduction into wild birds and the increasing number of human

cases, a pandemic outbreak caused by influenza A/H5N1 viruses

is feared [2–4].

It has been demonstrated in animal models that prior exposure

to an IAV can induce heterosubtypic immunity to infection with

an IAV of an unrelated subtype (for review see [5]). Also in

humans there is evidence that infection with IAV can induce

heterosubtypic immunity [6]. Individuals that had experienced an

infection with an H1N1 IAV before 1957 less likely developed

influenza during the H2N2 pandemic of 1957 [6]. In particular,

the induction of cell-mediated immune responses after infection

contributes to protective immunity against infection with hetero-

subtypic IAVs. The presence of cross-reactive cytotoxic T

lymphocytes (CTL) in humans inversely correlated with the

amount of viral shedding in the absence of antibodies directed

against the virus used for experimental infection [7]. It is well

documented that seasonal human IAVs and avian IAVs share

CTL epitopes located in the internal viral proteins like the

nucleoprotein [8–10]. Thus, cell-mediated immunity induced by

natural infection with seasonal IAVs may confer protection against

heterosubtypic pandemic influenza viruses. In this respect, the

disproportional age distribution of severe human H5N1 cases is of

interest [11]. Especially younger individuals are at risk and

although other confounding factors cannot be excluded, it is

tempting to speculate that young subjects have been infected with

seasonal influenza viruses less frequently and therefore have not

developed protective heterosubtypic immune responses against

infection with the highly pathogenic avian A/H5N1 viruses.

Since seasonal IAVs of the H3N2 and H1N1 subtypes cause

epidemic outbreaks annually associated with excess morbidity and

mortality mainly among infants, the elderly, immuno-compro-

mised and other high-risk patients, influenza vaccination is

recommended for these high-risk groups. In general, the influenza
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vaccines most frequently used are inactivated vaccines, including

subunit preparations that consist of the viral hemagglutinin (HA)

and neuraminidase (NA). Due to the higher risk of complications

and hospitalizations secondary to influenza in children [12,13],

annual vaccination of all healthy children 6 to 59 months of age

was recommended in various countries including the United States

since 2007 [14].

However, annual vaccination may prevent the induction of

heterosubtypic immunity by infection with seasonal influenza virus

strains. In addition, it is unlikely that seasonal inactivated influenza

vaccines, unlike live attenuated vaccines, induce heterosubtypic

immunity since they induce cross-reactive CTL responses

inefficiently [15,16].

Thus, we hypothesized that vaccination against seasonal flu

prevents the induction of cross-protective cell-mediated immunity,

which consequently may lead to more severe clinical outcome of

infection with a future pandemic virus. Here we show in a mouse

model that protective immunity against lethal infection with H5N1

IAV Indonesia/5/05 (IND/05) was induced by infection with

H3N2 IAV HongKong/2/68 (HK/68), which was prevented by

effective vaccination against the A/H3N2 virus. The lack of

protection against IAV IND/05 correlated with reduced virus-

specific CTL responses.

Results

Antibody responses against IAV HK/68 (H3N2) after
vaccination

Mice were vaccinated with subunit vaccine with or without

Alum or were ‘mock’ vaccinated (table 1). HI antibody titers were

detected 28 days after the first vaccination with subunit and Alum

(groups 2 and 5) and in 3 out of 26 mice vaccinated with

unadjuvanted subunit vaccine (group 6). Four weeks after the

second vaccination, geometric mean titers (GMTs) increased to

244 and 218 in mice from group 2 and group 5, respectively. Four

mice of group 6 developed detectable HI-antibody responses with

a GMT of 48, the other mice of this group did not seroconvert

(figure 1A). Sera of mice were also analysed for the presence of

virus neutralizing (VN) antibodies. Four weeks after the second

vaccination, mice vaccinated with adjuvanted subunit vaccine

developed VN antibodies with a GMT of 38 and 29 in group 2

and group 5 respectively, while only two mice of group 6

developed detectable VN antibody titers (figure 1B).

Outcome of infection with IAV HK/68 (H3N2)
Mice that developed HI-antibodies against IAV HK/68 (all

mice of group 2 and four of group 6) were protected from weight

loss after infection with IAV HK/68, while mice of other groups

lost weight until day seven post infection (p.i.) and showed mild

clinical symptoms for 2–3 days (figure 2A). Clinical signs and

weight loss after infection correlated well with virus titers in the

Table 1. Experimental groups and design of the study.

Experimental group Vaccination Infection

Subunit Adjuvant HK/68 IND/05

1 2 2 2 2

2 + + + +

3 2 2 + +

4 2 2 2 +

5 + + 2 +

6 + 2 + +

7 2 + + +

Mice were divided over seven groups and were either vaccinated twice with
subunit vaccine with or without adjuvant (Alum), PBS, or adjuvant only as
indicated. Four weeks after the second vaccination, mice were infected with IAV
HK/68 (H3N2) or mock-infected. Twenty-nine days after the infection with IAV
HK/68, mice were challenged with IAV IND/05 (H5N1).
doi:10.1371/journal.pone.0005538.t001

Figure 1. Induction of serum antibodies against IAV HK/68 (H3N2) by vaccination. Serum antibody levels were determined before and at
the indicated time points after vaccination of mice with PBS (groups 1, 3 and 4; #), subunit vaccine with alum (groups 2 and 5; m), subunit vaccine
only (group 6; &) and alum only (group 7; 6) by HI assay (A) and VN assay (B).
doi:10.1371/journal.pone.0005538.g001

Flushot Prevents H5N1 Immunity
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lungs of infected mice 4 days p.i.. No virus was detected in lungs of

mice vaccinated with adjuvanted subunit vaccine, while the

average lung virus titer of mock-vaccinated mice was 108.1

TCID50/gram lung. Similar titers were observed for the mice in

groups 6 and 7 with the exception of one mouse in group 6 with a

HI antibody titer of 40 induced by vaccination with unadjuvanted

subunits that had a lung virus titer of 105.7 TCID50/gram lung

(figure 2B). The virus titers detected on day 4 p.i. correlated with

the absence or presence of virus infected cells in the lungs detected

by immunohistochemistry (data not shown).

Virus-specific CTL and antibody responses after infection
with IAV HK/68 (H3N2)

Four days p.i. with IAV HK/68 the frequency of splenic CD8+
T lymphocytes specific for the NP366–374 epitope of IAV HK/68

Figure 2. Outcome of infection with IAV HK/68 (H3N2). Mice were inoculated with IAV HK/68 (groups 2 (m), 3 (#), 6 (&) and 7 (6)) or PBS
(groups 1 ( ), 4 (,) and 5 (e)). (A) Body weight after infection was determined daily and expressed as the percentage of the original body weight
before infection. (B) Lung virus titers measured on day 4 p.i. in mice from the indicated experimental groups. Horizontal bars represent the average
titers of five mice. The dotted line represents the cut-off value for obtaining a positive result. *This mouse from group 6 had before infection an HI
antibody titer of 40. (C) Vaccination prevented the induction of iBALT after infection. Twenty-eight days post infection with IAV HK/68 iBALT was
detected in mice from group 3, but not in mice from group 2. Lung tissue sections were stained with HE. (D) Virus-specific CD8+ T cell responses
detected 28 days post infection. Splenocytes of mice from the indicated experimental groups were tested for the presence of CD8+ T cells that bound
the H2-Db NPHK Tetramer. Horizontal bars represent the average of 2–4 mice. The difference in %CD8+ Tm+ T cells between groups 2 and 3 was
statistically significant (P = 0.030).
doi:10.1371/journal.pone.0005538.g002

Flushot Prevents H5N1 Immunity

PLoS ONE | www.plosone.org 3 May 2009 | Volume 4 | Issue 5 | e5538



(CD8+ TmHK+ T-cells) as determined by tetramer staining

remained at background levels in all groups (data not shown).

In all infected mice a raise in the frequency of CD8+ TmHK+ T-

cells was detected twelve days p.i.. No statistically significant

differences were observed between the experimental groups.

Essentially the same results were observed using intracellular

IFN-c staining after re-stimulation with peptides representing the

NP366–274 and PA224–233 epitopes of IAV HK/68 (NPHK and

PAHK). The NPHK and PAHK specific CTL induced by infection

with IAV HK/68 cross-reacted to various extents with their

counterparts derived from IAV IND/05 (NPIND and PAIND). The

cross-reactive nature of a proportion of the NP366–374 specific CTL

was confirmed by double staining with TmHK and TmIND (data

not shown).

By day 28 p.i. with IAV HK/68, just before challenge infection

with IAV IND/05, the frequency of virus-specific CTL in the

spleen had declined and virus-specific CTL were not detectable by

intracellular IFN-c staining. However, TmHK and TmIND positive

cells were detected in mice that were mock vaccinated prior to

infection (group 3). Strikingly, the frequency of TmHK positive

CD8+ T lymphocytes was significantly lower in mice of group 2

that were effectively vaccinated against infection with IAV HK/68

(p = 0.030) (figure 2D).

Vaccination prevents induction of iBALT after IAV HK/68
infection

Following infection with IAV HK/68, no significant lesions

were found in lungs of mice vaccinated with adjuvanted subunit

vaccine (group 2), whereas mice that were mock-vaccinated or

vaccinated with Alum or subunit preparation only (mice of groups

3, 6 and 7) developed a multifocal mild subacute necrotizing

bronchopneumonia four days after infection, which on day 12 p.i.

progressed into a multifocal moderate chronic necrotizing

bronchopneumonia. On day 28 p.i., these mice had developed

perivascular moderate proliferation of inducible Bronchus Asso-

ciated Lymphoid Tissue (iBALT), consisting mainly of mononu-

clear cells, which was absent in mice effectively vaccinated against

infection with IAV HK/68 (figure 2C).

Effective vaccination prevents heterosubtypic immunity
against IAV IND/05 (H5N1)

After infection with IAV IND/05, all mice developed clinical

signs (weight loss, ruffled fur, lethargy) from day two p.i. onwards.

Mice that developed clinical signs p.i. with IAV HK/68 (groups 3,

6 and 7) lost weight until day 6–7 after infection with IAV IND/05

and then started to gain weight and fully recovered, while mice of

other groups, not previously infected with IAV HK/68 (groups 4

and 5) and more strikingly, those effectively vaccinated against

infection with IAV HK/68 (group 2) lost significantly more weight

(group 2 versus group 3: p = 0.0001) on day 7 p.i. with IAV IND/

05 and showed more severe clinical signs (lethargy, ruffled fur,

hunched posture) than mice of the other groups (figure 3A).

Moribund animals were euthanised when they reached pre-fixed

criteria regarding weight loss (.20%) and clinical signs, which was

used to determine mortality rates. One mouse out of 10 (10%) of

group 2 survived lethal challenge, while all mice but one (91%) of

group 3 survived lethal challenge (n = 11). This difference in

survival rate was statistically significant (p = 0.0003) as was

calculated with the Logrank test (figure 3B). All other mice not

previously exposed to IAV HK/68 became moribund, whereas all

mice not adequately vaccinated against IAV HK/68 (groups 6 and

7) survived.

Replication of IAV IND/05 (H5N1) in the lungs
The lung virus titers at days four and seven p.i. were compared

between groups of IAV IND/05 infected mice. Four days p.i. no

significant differences were found between mice of different

groups. The average virus titer in mice of group 3 was 107.7

TCID50/gram lung, which was similar to that observed in mice

from group 2 that were effectively vaccinated against IAV HK/68

(107.6 TCID50/gram lung). In contrast, there were significant

differences in lung viral titers between mice of the different groups

seven days p.i. (figure 3C). Group 3 mice, not vaccinated against

infection with IAV HK/68, had virus titers of 104.8 TCID50/gram

lung while mice of group 2, vaccinated with adjuvanted subunits,

had significantly higher virus titers with an average of 106.5

(p = 0.025), which was similar to that observed in naı̈ve mice

infected with IAV IND/05 virus (group 4) or those that were

vaccinated against, but not infected with IAV HK/68 virus (group

5). Mice unsuccessfully vaccinated against IAV HK/68 infection

with adjuvant or subunits only also displayed lower lung viral titers

(groups 6 and 7).

Induction of CD8+ T cell responses p.i. with IAV IND/05
(H5N1)

Four and seven days p.i. infection with IAV IND/05,

splenocytes were stained for intracellular IFN-c after incubation

with peptides NPIND and PAIND. Four days p.i., no virus-specific

CD8+ T cell responses were detected in any of the IAV IND/05

infected mice. However, seven days p.i, anamnestic NPIND and

PAIND specific IFN-c+CD8+ T-cell responses were observed in

mice from group 3, which were significantly lower in mice

effectively vaccinated against IAV HK/68 (group 2) (p = 0.038 and

p = 0.002 respectively) (figure 3D)

Histopathology and detection of infected cells after
infection with IAV IND/05 (H5N1)

On day four p.i. with IAV IND/05, mice developed a

multifocal severe subacute necrotizing bronchopneumonia, of

which the severity was similar for all experimental groups.

However, seven days p.i. there were marked differences between

the groups. The mock-vaccinated mice or those vaccinated with

adjuvant only prior to infection with IAV HK/68 had a multifocal

moderate chronic necrotizing bronchopneumonia characterized

by a perivascular core of lymphocytes and plasma cells,

proliferation of bronchiolar epithelium and hyperplasia of

pneumocytes with a type II appearance. In contrast, mice of

groups 4, 5 and especially group 2 had more severe lung pathology

characterized by a multifocal to coalescing severe subacute

necrotizing bronchopneumonia.

In general, the extent of lung histopathology and the lung virus

titers after infection with IAV IND/05 correlated with the

presence of virus-infected cells in the lungs as determined by

immunohistochemistry. Four days p.i., virus-infected cells were

detected in all IAV IND/05 infected mice. In contrast, seven days

p.i., antigen positive cells were found sporadically in lungs of mice

of groups 3 (figures 4C–D) and 7 (figures 4I–J), whereas in the

lungs of mice from group 2 (figures 4A–B), 4 (figures 4E–F) and

5 (figures 4G–H) virus-infected cells were still abundantly

present.

Discussion

Here we demonstrate that successful vaccination of mice against

human IAV HK/68 (H3N2) prevented the induction of hetero-

subtypic immunity against a lethal challenge with IAV IND/05

(H5N1). As a result, H3N2 vaccinated mice had a fatal clinical

Flushot Prevents H5N1 Immunity
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outcome of infection with IAV IND/05, associated with higher

virus titers and more severe histopathological lesions in the lungs

seven days p.i. and reduced virus-specific CD8+ T cell responses

compared to mice that experienced a productive, self-limiting

infection with IAV HK/68.

It has been well established that infection with IAV can induce a

certain degree of protective immunity against infection with an

heterosubtypic strain of IAV, which was already recognized more

than 40 years ago [17]. This so-called heterosubtypic immunity

was not only demonstrated in animal models [17–20] but there is

Figure 3. Outcome of infection with IAV IND/05 (H5N1). Mice were inoculated with IAV IND/05 (groups 2 (m), 3 (#), 4 (,), 5 (e), 6 (&) and 7
(6)) or PBS (group 1 ( ). (A) Body weight after infection was determined daily and expressed as the percentage of the original body weight before
infection. (B) Survival rates after infection with IAV IND/05. The proportion of mice from the indicated groups that survived infection is shown in a
Kaplan-Meier plot. Moribund animals were euthanized when they reached pre-fixed criteria regarding weight loss (.20%) and disease severity score,
which was used to determine mortality rates. (C) Lung virus titers measured on 7 days p.i. in mice from the indicated groups. Horizontal bars
represent the average of 2–6 mice. The difference in virus titers between mice of group 2 and group 3 was statistically significant (p = 0.025). N.S.: not
significant. (D) Virus-specific CD8+ T cell responses on day 7 p.i.. The frequency of CD3+ CD8+ splenocytes specific for peptide NP366–374 and PA224–233

derived from IAV IND/05 was determined by intracellular IFN-c staining. The horizontal bars represent the average frequency of IFN-c+ cells in the
CD8+ T cell population of 2–7 mice in the indicated groups. Differences between group 2 and group 3 were statistically significant for both peptides.
doi:10.1371/journal.pone.0005538.g003
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also direct and indirect evidence that it exists in humans [6,7] and

that cell-mediated immune responses contribute to this type of

immunity (for review see [21]).

Of special interest in this respect is that there is a dispropor-

tionate age distribution of human cases [11]. Especially younger

subjects are at risk for severe A/H5N1 disease and fatal outcome,

which may inversely correlate with the history of infections with

seasonal influenza viruses and the cross-reactive CTL responses

[8] associated with these infections. Also the results from the

Cleveland study indicate that a prior infection with seasonal

influenza virus strains induced protective immunity against a new

heterosubtypic pandemic strain [6]. Nevertheless, severe A/H5N1

infections with fatal outcome do occur. However, little is known

about the history of previous infections of these patients. Although

most adults must have experienced an infection with seasonal

influenza viruses, it is possible that individual cases did not develop

adequate heterosubtypic immunity against A/H5N1 strains.

To test the hypothesis that successful immunization against

seasonal influenza could interfere with the induction of hetero-

subtypic immunity, mice were vaccinated with an Alum-adjuvanted

subunit vaccine. The use of an adjuvant was necessary since

vaccination with subunit alone induced detectable antibody

responses in a small proportion of mice only and would not provide

a useful model for successful vaccination against seasonal influenza.

Indeed, all mice vaccinated with Alum alone and most mice

vaccinated with subunits alone were not protected against infection

with A/H3N2 virus. In contrast, all mice vaccinated with

adjuvanted subunits, were fully protected against infection with

IAV HK/68. This prevented the induction of heterosubtypic

immunity against infection with IAV IND/05 normally seen in

mice that had experienced a productive IAV HK/68 infection. The

severity of the clinical signs and histopathological lesions, the extent

of weight loss, lung virus titers and mortality rates of these mice was

comparable of those that were immunologically naı̈ve prior to

infection with IAV IND/05 (group 4) or that were vaccinated

against IAV HK/68 virus, but not subsequently infected with IAV

HK/68 virus (group 5). It could be argued that in the present study

the vaccine matched the A/H3N2 virus perfectly, while under field

conditions the match may not always be optimal allowing sub-

clinical infections to occur, which may induce heterosubtypic

immunity despite vaccination. However, also in our mouse model

there is indication that in vaccinated mice sub-clinical infection with

influenza virus A/HK/2/68 took place, since weak, short-lived

virus-specific CTL responses were observed, which did not protect

against challenge infection with the A/H5N1 strain.

Four weeks after infection with IAV HK/68 virus, the number

of virus-specific CD8+ T cells in the spleen was significantly lower

in mice vaccinated against IAV HK/68 than in unvaccinated

mice. The differences were not observed at earlier time points p.i..

Further evaluation of the CD8+ TmHK+ T cells indicated that the

numbers of CD62Lhigh and CD127+ cells were higher in

unvaccinated mice than in vaccinated mice on day 28 p.i. (data

not shown). This may indicate that the control of IAV HK/68

replication in the lungs had prevented the efficient induction of

virus-specific central and effector memory CD8+ T cell responses.

These results resemble those found in a mouse model for Listeria

monocytogenes infection, in which shortening of the duration of the

infectious period did not impact the size of the primary CD8+ T

cell response, but diminished the memory population of CD8+ T

cells [22]. The analysis of the CD8+ T cells responses seven days

after challenge infection with IAV IND/05 further indicated that

indeed prior vaccination against HK/68 (H3N2) prevented the

efficient induction of memory CTL responses. Both the secondary

response to the NPIND and the PAIND epitope were reduced

compared to the responses observed in un-vaccinated mice.

Although it has been described that the NP366–374 is more

immunodominant than the PA224–233 epitope in secondary CTL

responses [23], a stronger response was observed against the

PA224–233 epitope after infection with IAV IND/05. This could be

Figure 4. Histopathological analysis and immunohistochemis-
try of the lungs of mice infected with IAV IND/05. Mouse lung
sections were stained for influenza A virus nucleoprotein. Cytoplasm of
infected cells stain red, the nuclei of infected cells stain deep red. In the
groups without a history of productive A/H3N2 infection, including
group 2 (A,B), infection with IAV IND/05 led to severe histopathological
changes and to viral antigen expression in cells of the bronchiolar walls
and in the alveoli (group 4: E,F and group 5: G,H). In mice of groups 3
(C,D) and 7 (I,J) that had experienced a productive infection with IAV
HK/68 only moderate histopathological changes were observed and
virus infected cells were detected sporadically (see insert in panel D).
For more information please see text.
doi:10.1371/journal.pone.0005538.g004
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explained by the lower cross-reactivity of CTL directed to the

NP366–374 epitope derived from IAV HK/68 (ASNENMDAM)

with that derived from IAV IND/05 virus (ASNENMEVM)

compared to the cross-reactivity of CTL specific for the PA224–233

epitope as was observed after the analysis of the CTL measured by

tetramerstaining p.i. with IAV HK/68 and IND/05 (data not

shown). Apart from systemic CTL responses measured in the

spleen also local CTL responses may contribute to protective

immune responses, such as in the draining lymph nodes and in the

lung tissue itself [24,25]. Since the frequency of virus-specific

CD8+ T cells in the spleen reflected that in the lymph nodes

[26,27], we analyzed CTL responses in the spleen only. It was of

interest to note that infection with IAV HK/68 resulted in the

formation of iBALT structures. Prior vaccination against IAV

HK/68 infection prevented the formation of iBALT completely.

iBALT consists mainly of B cells, T cells and dendritic cells and it

has been shown that mice with iBALT but without peripheral

lymphoid organs can clear virus infection [28]. Also in humans, T

cells specific for viral respiratory pathogens have been detected in

lung tissue and may play a protective role against subsequent

infections in this species as well [29]. Although no IAV IND/05

cross-reactive antibodies were detected by VN or HI assay on the

day of challenge infection, it is possible that infection with IAV

HK/68 induced M2 specific antibodies that potentially cross-

reacted with the M2 protein of IAV IND/05. However it is

unlikely that these antibodies accounted for the heterosubtypic

immunity induced by primary infection with IAV HK/68 [30,31].

Thus prior infection with seasonal influenza viruses, which

generally results in a self-limiting upper respiratory tract infection,

may afford at least partial protection against potentially pandemic

heterosubtypic influenza virus strains. At present vaccination

against seasonal influenza is recommended for all healthy children

6–59 months of age in a number of countries, including the USA

[14]. Also in Europe vaccination of children is currently

considered and a number of countries already decided to

recommend vaccination of healthy children [32]. Although

vaccination is (cost-) effective in this age group [33–37], it may

interfere with the induction of heterosubtypic immunity against

potentially pandemic strains of a novel subtype, e.g. H5N1, by

creating an immunological ‘‘blind spot’’. Furthermore, the use of

adjuvants is considered to increase vaccine efficacy in young

children [38]. Thus during a next pandemic, especially children

that received the annual flu-shot would be at higher risk to develop

severe illness and a fatal outcome of the disease than those that

experienced an infection with a seasonal IAV strain. This of

course, would be of great concern and is supported by the data

obtained in our mouse model. Ideally, seasonal influenza vaccines

are used that also induce heterosubtypic immunity [16,39]. More

research is required in this field to define vaccine preparations that

not only induce protective immunity against seasonal influenza,

but also induce heterosubtypic immunity. With the current

pandemic threat caused by A/H5N1 viruses this would be highly

desirable [40].

Materials and Methods

Viruses
Virus stocks of influenza viruses A/Hong Kong/2/68 (IAV

HK/68) and A/Indonesia/5/05 (H5N1) (IAV IND/05) were

prepared by infecting confluent Madin-Darby-Canine-Kidney

(MDCK) cells. After cytopathologic changes were complete,

culture supernatants were cleared by low speed centrifugation

and stored at 270uC. Infectious virus titers were determined in

MDCK cells as described previously [41].

Vaccine preparation
Influenza subunit antigen derived from IAV X-31 (H3N2) was

essentially prepared as described previously [42]. X-31 is a

reassortant vaccine strain of A/Aichi/2/68 and A/PR/8/34, of

which the HA and NA resemble that of IAV HK/68 closely. The

purity of the subunit preparations was tested by SDS-polyacryl-

amide gel electrophoresis and the absence of the nucleoprotein

and matrix protein of the subunit preparations was tested by

western blotting using monoclonal antibodies against the influenza

A nucleoprotein and the influenza A matrix protein. The protein

concentration was determined using a BCA Protein Assay Kit

(Pierce, Rockford, USA).

Immunization and infection of mice
Female specified pathogens free 6–8 weeks old C57BL/6J (H-2b)

mice were purchased from Charles River (Sulzfeld, Germany). Mice

were immunized twice with an interval of four weeks intramuscu-

larly (i.m.) in both hind legs in a total volume of 100 ml. Mice

(n = 19–40 per group) received PBS (phosphate buffered saline)

(Groups 1,3 and 4), 15 mg subunit vaccine with (Groups 2 and 5) or

without (Group 6) 1 mg Aluminum hydroxide gel (Alum) (Sigma-

Aldrich, Zwijndrecht, The Netherlands) or Alum only (Group 7).

Eight days after the second vaccination, four mice of each group

were bled and spleens were resected. Four weeks after the second

vaccination, mice of groups 2, 3, 6 and 7 were infected intranasally

with 56102 TCID50 IAV HK/68 in a volume of 50 ml. Four and

twelve days post infection (p.i.), 5–7 mice were bled and lungs and

spleens were resected. Four weeks after infection with IAV HK/68,

all mice except mice of group 1 were challenged with 26102

TCID50 IAV IND/05. A dose of 26102 TCID50 was used because

this was the minimal dose resulting in a lethal infection in .90%

mice reproducibly. The day before challenge with IAV IND/05,

mice of each group (n = 2–4) were euthanized and lungs and spleens

were resected as well as on day four (n = 4–6), seven (n = 2–9) and

fourteen (n = 3–8) days after challenge. Vaccinations, intranasal

infections, orbital punctures and euthanasia were performed under

anesthesia with isoflurane in O2. After infection with IAV HK/68

and IAV IND/05, mice were monitored for the presence of clinical

signs, including weight loss. All experiments with IAV IND/05 were

performed under Biosafety Level 3 conditions. An independent

animal ethics committee (DEC consult) approved the experimental

protocol before the start of the experiments.

Serology
Serum samples of mice were collected at various time points

during the experiment and tested for the presence of HA-specific

antibodies against IAV HK/68 and IAV IND/05 using the

hemagglutination inhibition (HI) assay [43] and virus neutralizing

(VN) antibodies using the VN assay [44].To determine the titer of

antibodies against IAV IND/05 before infection with IAV IND/

05, a reverse genetics virus was produced from which the basic

cleavage site was removed. Antibody titers obtained with this

reverse genetics virus was comparable with that against the wild-

type strains (data not shown). Positive control serum specific for

IAV HK/68 was obtained by injecting a rabbit with sucrose

gradient purified virus [45]. Hyper-immune serum obtained from

a swan immunized twice with inactivated H5N2 influenza virus

A/Duck/Potsdam/1402/86 (Intervet, Boxmeer, the Netherlands)

was used as a positive control against IAV IND/05 [46].

Lung virus titers
Lungs of mice were snap frozen on dry ice with ethanol and

stored at 270uC. Lungs were homogenized with a FastPrep-24

Flushot Prevents H5N1 Immunity

PLoS ONE | www.plosone.org 7 May 2009 | Volume 4 | Issue 5 | e5538



(MP Biomedicals, Eindhoven, The Netherlands) in medium

consisting of Hank’s balanced salt solution containing 0.5%

lactalbumin, 10% glycerol, 200 U/ml penicillin, 200 mg/ml

streptomycin, 100 U/ml polymyxin B sulfate, 250 mg/ml genta-

mycin, and 50 U/ml nystatin (ICN Pharmaceuticals, Zoetermeer,

The Netherlands) and centrifuged briefly. Quintuplicate 10-fold

serial dilutions of these samples were used to infect MDCK cells as

described previously [41]. HA activity of the culture supernatants

collected 5 days post inoculation was used as indicator of infection.

The titers were calculated according Spearman-Karber [47].

Flow cytometry of virus-specific CD8+ T cells
Peptides and intracellular IFN-c staining. Single cell

suspensions of spleens were prepared as described previously [48].

CD8+ T cell responses after infection were measured by incubation

with peptides representing two immunodominant epitopes of IAVs in

C57BL/6J mice (H2-b), PA224–233 and NP366–374 [23,49]. The

peptides of the PA224–233 epitope of influenza A virus were

manufactured at Eurogentec (Seraing, Belgium), while peptides of

the NP366–374 epitope were manufactured at Sanquin Research

(Amsterdam, The Netherlands). Four hundred thousand splenocytes

were cultured for 6 h at 37uC in the presence of 5 mM of either the

NP366–374 ASNENMDAM (NPHK), PA224–233 SCLENFRAYV

(PAHK) peptides derived from IAV HK/68 or the NP366–374

ASNENMEVM (NPIND) or SSLENFRAYV (PAIND) peptides

(derived from IAV IND/05) in IMDM (Lonza, Breda, The

Netherlands) with 5% FCS and Golgistop (BD). After incubation,

cells were o/n stored at 4uC, stained with monoclonal antibody

directed to CD3e-PerCP and CD8b.2-FITC, fixate and

permeabilized with Cytofix and Cytoperm and stained with

monoclonal antibody specific for IFN-c-PE (all from BD

Pharmingen, Alphen a/d Rijn, The Netherlands). Data were

acquired using a FACSCalibur and analyzed with Cellquest Pro

Software (BD).
Tetramerstaining. Splenocytes were washed and stained

with mAbs CD3e-PerCP, CD8b.2-FITC (BD Pharmingen,

Alphen a/d Rijn, The Netherlands) and either the

Phycoerythrin (PE)-labeled H-2Db tetramer with the

immunodominant NP366–374 epitope derived from IAV X-31

ASNENMETM (TmX-31) or IAV HK/68 ASNENMDAM

(TmHK) or the APC labeled tetramer derived from IAV IND/05

NP366–374 ASNENMEVM (TmIND). All tetramers were purchased

from Sanquin Research, Amsterdam, The Netherlands. Following

incubation with tetramers and mAbs for 20 minutes, cells were

washed twice and analysed by flow cytometry using a FACSCanto

in combination with FACS Diva software (BD).

Histopathology and immunohistochemistry
After euthanasia, lungs of mice were inflated with 10% neutral

buffered formalin. After fixation and embedding in paraffin, lungs

were sectioned at 4 mm and tissue sections were examined by

staining for hematoxylin and eosin (HE). Using an immunoperox-

idase method, sequential slides were also stained with a monoclonal

antibody directed against the nucleoprotein of IAV [50].

Statistical analysis
Data for weight loss after infection, viral load in the lungs,

tetramerstaining, and peptide pulsing were analyzed statistically

using the two-sided student’s T test. Survival was analyzed using

the Logrank test. Differences were considered significant at

P,0.05.
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