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Abstract

Background: As the oceans simultaneously warm, acidify and increase in PCO2, prospects for marine biota are of concern.
Calcifying species may find it difficult to produce their skeleton because ocean acidification decreases calcium carbonate
saturation and accompanying hypercapnia suppresses metabolism. However, this may be buffered by enhanced growth
and metabolism due to warming.

Methodology/Principal Findings: We examined the interactive effects of near-future ocean warming and increased
acidification/PCO2 on larval development in the tropical sea urchin Tripneustes gratilla. Larvae were reared in multifactorial
experiments in flow-through conditions in all combinations of three temperature and three pH/PCO2 treatments.
Experiments were placed in the setting of projected near future conditions for SE Australia, a global change hot spot.
Increased acidity/PCO2 and decreased carbonate mineral saturation significantly reduced larval growth resulting in
decreased skeletal length. Increased temperature (+3uC) stimulated growth, producing significantly bigger larvae across all
pH/PCO2 treatments up to a thermal threshold (+6uC). Increased acidity (-0.3-0.5 pH units) and hypercapnia significantly
reduced larval calcification. A +3uC warming diminished the negative effects of acidification and hypercapnia on larval
growth.

Conclusions and Significance: This study of the effects of ocean warming and CO2 driven acidification on development and
calcification of marine invertebrate larvae reared in experimental conditions from the outset of development (fertilization)
shows the positive and negative effects of these stressors. In simultaneous exposure to stressors the dwarfing effects of
acidification were dominant. Reduction in size of sea urchin larvae in a high PCO2 ocean would likely impair their
performance with negative consequent effects for benthic adult populations.
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Introduction

As the oceans warm and absorb increasing amounts of CO2,

marine biota are faced with a suite of stressors causing major

change to marine ecosystems [1–2]. Climate change models

predict ocean warming by 4uC and a drop in pH by 0.3 to 0.5

units by ca. 2100 [3–4]. Ocean acidification is accompanied by a

decrease in saturation of the calcium carbonate (CaCO3) minerals

required to make skeletons and by increased organism PCO2

(hypercapnia) [5–7]. These stressors are likely to have deleterious

interactive effects; increased temperature has a stimulatory effect

on physiological processes (until thresholds are reached) while

hypercapnia has a suppressive, narcotic effect [6–7]. In assessing

risk to marine biota from climate change it is critical to investigate

interactive effects of stressors in multifactorial experiments as this

better reflects the real world scenario [1,7].

Temperature, pH, PCO2 and CaCO3 saturation are among the

most important environmental factors controlling the distribution,

physiological performance, morphology and behaviour of marine

invertebrates [6–8]. The projected reduction in CaCO3 saturation

presents a major challenge to calcifiers in producing their

skeletons. Fragile larval skeletons may be the weak link for

persistence of some species. For benthic organisms, compromised

larval performance has implications for recruitment success and

persistence of adult populations [1,9].

Despite the well known controlling influence of temperature on

development and the thermal thresholds exhibited by embryos,

investigation of the impacts of climate change on marine life

histories has largely focussed on ocean acidification as the sole

stressor [10–11]. The potential for interactive effects of ocean

warming and CO2 driven acidification on larval development

remains largely unexplored. Single stressor studies of PCO2
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induced acidification show impaired development in echinoderm

and mollusc larvae reared in the acidified/elevated PCO2

conditions projected for 2100 [13–17]. In the single study of

interactive effects of ocean warming and acidification/PCO2 on

early development, echinoid cleavage stage embryos and gastrulae

were most affected by temperature [18]. Decreased pH (adjusted

with mineral acid) and increased temperature both exert a

negative effect on calcification in oyster larvae [19]. For post-

larval and juvenile calcifiers transplanted to laboratory mesocosms

or adults resident near CO2 vents, acidification and warming both

exert negative effects with increased temperature of greatest

concern [20–22].

We investigated the interactive effect of ocean warming and

acidification on the larvae of Tripneustes gratilla, a sea urchin widely

distribution throughout the Indo-Pacific [23]. This species is

ecologically important, especially in sea grass habitats and is a food

source with good potential for aquaculture [23–27]. The

interactive effects of climate change stressors were investigated in

T. gratilla reared in near future conditions in embryos fertilised in

experimental conditions. Fertilization in this species is robust to

near-future ocean warming and acidification [28]. We focused on

the larval stage because it produces a fragile calcite skeleton, and

because this life stage has a planktonic period of days or weeks in

the water column where seawater chemistry and temperature have

a major impact on development. Echinoplutei produce calcite rods

that support their body, and function in swimming and feeding.

Arm length, and thereby calcite rod growth, has a direct influence

on the efficiency of larval feeding and on vulnerability to predation

[29–30]. Temperature has a major influence on development in

shortening the planktonic period, an effect that decreases

predation pressure and also alters connectivity between popula-

tions [31–32].

Our experiments were placed in a climate and regionally

relevant setting for the SE Australia climate change hot spot

(warming: +3–6uC; acidification: 20.3–0.5 pH units) [4,33]. Due

to changes in ocean circulation, this region is warming

considerably faster than the global average [33]. Fertilisation in

T. gratilla and other echinoids is robust to climate change stressors

[28,34–35] and larval survival in this species decreases at pH 7.0

[15]. We predicted a) that development would be facilitated by

warming up to a threshold; b) that skeletogenesis would be

impaired by increased acidification/PCO2 and, c) due to

temperature enhancement of metabolic processes, increased

temperature would counter the negative effects of decreased

calcite and aragonite saturation on skeletogenesis.

Results

Normal Development
The range of morphology of T. gratilla seen in the treatments on

day 5 is shown in Fig. 1. There was a significant effect of

temperature and pH/PCO2, on the percentage of normal larvae

(temp: p = ,0.003; pH: p = 0.04; Table 1, Fig. 2). The upper

warming, +6 (30uC) approached the thermal tolerance of

development (,30% normal larvae). The percentage of normal

larvae was highest (.85%) in the control pH/PCO2 and 24uC and

27uC treatments. At 24uC and 27uC, the percentage of normal

larvae was .60% across all treatments. The slight decrease in

normal development at 27uC pH 7.8 (Fig. 2) was not statistically

significant (Table 1). Egg source was significant (p = ,0.0001), but

did not interact with the other factors.

The mean difference in PO arm length (larval asymmetry)

differed among the 24uC and 27uC treatments (p = 0.001; Table 2,

Fig. 3). Asymmetry was most marked in the faster growing larvae

reared at +3uC (27uC). Arm asymmetry was not significantly

affected by pH/PCO2 (p = 0.545; Table 2). There was no

interaction between factors.

Larval Growth
Five-day echinoplutei had well developed PO arms and these

were the longest skeletal element (Fig. 1). Arm length significantly

increased with temperature and decreased in acidified conditions

(temp: p = ,0.0001; pH: p = ,0.0001; Table 3, Fig. 1,4). The PO

arms were longer in the +3uC (27uC) treatment than in controls

(24uC), 178.1 mm (SD = 3.9, n = 35) and 138.7 mm (SD = 2.6,

n = 35), respectively. Larvae reared at pH 7.6 and pH 7.8 had

smaller PO arms when compared with those reared at control pH

across both temperature treatments (TK 7.6 = 7.8,8.15; Table 3,

Fig. 1). However a +3uC warming diminished the negative effects

of low pH/high PCO2. This is seen in the similar PO arm length of

larvae reared at 27uC/pH 7.6 and 27uC/pH 7.8 and those reared

in control temperature and pH (Fig. 4). As TLC is largely

comprised of the PO arms, this measure followed a similar pattern

(temp: p = 0.0001; pH: p = ,0.0001; Table 3; Fig. 4). There was

no interaction between temperature and pH (Table 3).

Discussion

In this first study of the effects of simultaneous exposure to

warming and CO2 driven acidification on calcification in marine

invertebrate larvae reared in experimental conditions from

fertilization, we show the positive and negative effects of these

Figure 1. Tripneustes gratilla larvae reared for 5 days in 3 pH and 2 temperature treatments. A-B. Control pH 8.15, largest larvae were from
+3uC (27uC) treatments. PO, post oral arms; BR, body rod. C-D. pH 7.8. E-F. pH 7.6. With increased acidity/PCO2 larval size decreased and there was an
increase in abnormal development.
doi:10.1371/journal.pone.0011372.g001
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stressors. Larval growth in T. gratilla was positively correlated with

increased temperature across all pH treatments until the thermal

threshold was breached, supporting our first prediction. In

contrast, larval growth was negatively correlated with increased

acidity/PCO2 and decreased calcite and aragonite saturation,

resulting in smaller larvae, supporting prediction two. Warming

countered to some extent the negative effects of acidification,

providing some support for prediction three.

Temperature is considered to be the primary environmental

factor controlling the physiology, phenology, planktonic larval

duration and biogeography of marine invertebrates [31–32,36–37].

The response of T. gratilla larvae to increased temperature

reflected the typical pattern seen in echinoids and other

invertebrates with a balance between facilitation at certain levels

of warming and failure at upper thermal limits [32,37–41].

Temperature is well known to control the pace of development in

marine larvae. A +3uC warming resulted in faster growth and

increased size in T. gratilla larvae.

Developmental thermotolerance varies greatly between echi-

noids with a +4uC warming above ambient approaching the

thermal limit of many species [34]. Embryogenesis in tropical

species such as T. gratilla and Echinometra spp. is more robust to

thermal increase [37,38,41]. For T. gratilla, 30uC approximates the

lethal threshold for development in both high and low latitude

populations [41, this study]. This thermotolerance will facilitate

persistence of T. gratilla and possible poleward spread from its

southern limit in Australia where mean SST are not expected to

go beyond ,28uC by 2100, but does not bode well for tropical

populations where SSTs will continue to exceed 30uC [4,33].

A +3uC warming enhanced larval growth of T. gratilla across all

pH/PCO2 treatments, to some extent buffering the negative effects

of these factors. Larvae reared at low pH had significantly shorter

PO arms than those reared in control pH suggesting suppressed

calcification, as in a previous study [15]. This reduction in size is

likely due to hypercapnic suppression of metabolism causing

delayed development and decreased availability of CaCO3 for

skeletogenesis. Decreased biomineralisation in response to near-

future (ca. 2100) acidification is reported for other echinoid larvae

[13,14,17].

Increased ocean acidity, hypercapnia and decreased carbonate

mineral saturation are inextricably linked and are all likely to exert

negative effects on larvae. This may be through direct pH effects

on metabolic systems such as those involved with calcite

precipitation (eg. carbonic anhydrase) and cellular protection (eg.

Figure 2. Percentage of normal T. gratilla larvae. Percentage of
normal T. gratilla larvae in nine treatments (3 pH63 temperature levels)
in the larvae from 3 females. See Table 4 for PCO2, Vcalcite and
Varagonite conditions.
doi:10.1371/journal.pone.0011372.g002

Table 1. ANOVA of percentage normal Tripneustes gratilla
larvae reared in temperature (temp) and pH/PCO2 (as fixed
factors) treatments, with egg source (female) as a random
factor, and Tukey-Kramer post-hoc tests (TK).

Source df MS F p TK

Temp* 2 3.595 35.3 0.0029 (24, 27) .30

pH* 2 0.230 8.0 0.0402 (8.15, 7.8) (7.8, 7.6), 8.15 .7.6

temp 6pH 4 0.126 2.2 0.1598

Female* 2 1.348 30.6 ,0.0001

Temp 6 female 4 0.101 2.3 0.0691

pH 6 female 4 0.028 0.7 0.6243

temp 6pH 6
female

8 0.057 1.3 0.2595

Residual 54 0.044

Total 80

*Significant, p,0.05; df, degrees of freedom; MS, mean square; n = 3 replicates
for each of 3 females.
doi:10.1371/journal.pone.0011372.t001

Table 2. ANOVA on difference in PO arm length (asymmetry)
data for Tripneustes gratilla larvae reared in temperature
(temp) and pH/PCO2 (as fixed factors) treatments.

Source df MS F p

pH 2 0.4 0.6 0.545

Temp* 1 0.9 17.1 0.001

pH 6 temp 2 0.02 0.4 0.687

Residual 12 0.05

Total 17

*Significant, p,0.05; df, degrees of freedom; MS, mean square; n = 3 from the
means of 35 larvae per female.
doi:10.1371/journal.pone.0011372.t002

Figure 3. Mean arm asymmetry in T. gratilla larvae. Mean arm
asymmetry in T. gratilla larvae in six treatments (3 pH 62 temperature
levels) in 35 larvae from each of 3 females (n = 3, 6SE). See Table 4 for
PCO2, Vcalcite and Varagonite conditions.
doi:10.1371/journal.pone.0011372.g003
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heat shock proteins) and direct hypercapnic suppression of

metabolism [6,7,17,42–44]. Although calcite and aragonite

remained saturated in our treatments (Vcalcite 1.6–5.9, Varago-

nite 1.1–4.0), they decreased markedly at low pH, with aragonite

approaching minimal levels. At V ,1, seawater becomes corrosive

causing dissolution and impaired skeleton deposition in larval and

adult sea urchins [8,44].

Calcification in sea urchin larvae occurs internally, under a

different chemical environment than surrounding seawater

through an amorphous phase of CaCO3 that would dissolve if

exposed to low pH seawater [45,46]. Echinoderms and other

invertebrates adjust internal pH through accumulation of

bicarbonate ions [42], which would alter internal calcite

conditions. Some echinoderms and other benthic calcifiers may

be able to maintain an alkaline environment at the internal

mineralization site despite reduced external pH [46]. What is

poorly understood is how the availability of carbonate ions in the

ocean affects this process.

The effects of ocean acidification on marine calcifiers vary

among phyla, species, life history stages and latitudes/habitats.

With regard to the pelagic life stage, some larvae show deleterious

effects of near future PCO2 driven acidity, while others, even

closely related species are more robust [16,34,47]. Embryos may

be most vulnerable to warming while larvae that survive early

mortality bottlenecks may be more affected by acidification

[13,15,18,34,47]. Regional settings for projected change are also

a crucial consideration. Cold high latitude waters will become

carbonate under-saturated first and so high latitude calcifiers may

be most vulnerable to ocean acidification [5]. However, a recent

study showed that Antarctic echinoplutei were less affected by

acidification than temperate and tropical counterparts [15].

Despite the pervasive effect of ocean warming on development,

this factor is rarely considered in studies of climate change impacts.

Larval performance may differ in experiments when temperature

is brought into the mix of factors assessed. For regions with

significant warming such as SE Australia, temperature is the most

immediate and contemporary climate change stressor. Many

progeny will not reach the calcified larval stage in a warm ocean,

regardless of pH/PCO2 changes [18]. Our data for T. gratilla were

from embryos fertilised and reared in experimental conditions to

the larval stage. The larvae were from the subset of survivors

available for measurement. With regard to comparisons between

climate change stressor studies, some studies translocate embryos

fertilised in present day conditions to experimental treatments and

others rear embryos from the outset in experimental conditions

[34]. Experimental outcomes may differ between these approach-

es, the latter being more realistic.

While our results clearly showed the effects of climate change

stressors on larval development, egg source also exerted a

significant influence. We did not set out to test maternal effects,

but it is important to be cognisant of this factor in considering the

larval responses. Maternal provisioning influences larval tolerance

and ecological outcomes for invertebrate larvae [48–49].

With respect to the benthic life phase of marine calcifiers,

numerous studies investigate the response of juveniles or adults

sourced from field collections or aquaculture translocated from

present day to acidified conditions [21–22,44,46,50–53]. These

studies show varied responses, decreased calcification in some

species, no change in others and increased calcification in others.

A study of arm regeneration in an ophiuroid showed increased

calcification at low pH [53]. Simultaneous exposure to warming

and acidification resulted in increased growth in juvenile sea

stars [52]. The contrasting responses among species are likely to

be due to differences in calcifying systems [46] and the

Figure 4. Postoral arm and total calcite rod length in T. gratilla
larvae. A. Mean post oral (PO) arm length and B. total length of calcite
rods (TLC) of T. gratilla larvae in six treatments (3 pH 62 temperature
levels) in 35 larvae from each of 3 females (n = 3, 6SE). See Table 4 for
PCO2, Vcalcite and Varagonite conditions.
doi:10.1371/journal.pone.0011372.g004

Table 3. ANOVA of mean post oral arm length (PO) and total
length of calcite rod (TLC) data for Tripneustes gratilla larvae
reared in temperature (temp) and pH/PCO2 (as fixed factors)
treatments, and Tukey-Kramer post-hoc tests (TK).

Parameter Source df MS F p TK

PO pH* 2 2105 28 ,0.0001 8.15.(7.8, 7.6)

Temp* 1 3621 48 ,0.0001

pH 6 temp 2 183 2.4 0.1297

Residual 12 75

Total 17

TLC pH* 2 11136 27 ,0.0001 8.15.(7.8, 7.6)

Temp* 1 12448 30 0.0001

pH 6 temp 2 624 1.5 0.2623

Residual 12 416

Total 17

*Significant, p,0.05; df, degrees of freedom; MS, mean square; n = 3 from the
means of 35 larvae per female.
doi:10.1371/journal.pone.0011372.t003
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environmental history of the organisms prior to being placed in

treatments.

We focussed on the pelagic life phase because this is the crucial

dispersal stage and is considered to be most vulnerable to

environmental perturbations [47]. The thin arm rods of

echinoderm plutei are essential for feeding, swimming and

protection from predation and feeding success is related to arm

length [29–30]. Smaller larvae with a longer planktonic duration

are more vulnerable to predation in a changing ocean, decreasing

chances of survival and recruitment [54]. Projected near future

ocean change may result in a major bottleneck for marine life

histories with negative flow on effects for the integrity of benthic

populations and communities [1,2,9]. Calcifying taxa across many

phyla play important roles in marine ecosystem function as

bioturbators and keystone species and, on a larger scale,

biocalcification plays a critical role in the carbon cycle [55].

Negative impacts on calcifiers in a changing ocean have far-

reaching implications for biodiversity and ocean health.

Materials and Methods

Specimen collection and spawning
Tripneustes gratilla, collected near Coffs Harbour, New South

Wales (30u12.5’S. 153u16.1’E.), were maintained in flow-through

aquaria (,3500 L) at ambient temperature (,24uC). They were

induced to spawn by injection of 2–3 ml 0.5 M KCl. The eggs of

three females were spawned into 500 ml beakers of filtered

seawater (FSW 0.2 mm). Sperm were collected dry using pipettes.

Before use, the eggs were checked for shape and integrity and

sperm were checked for motility. The eggs of each female were

fertilised by sperm from multiple males. Each experiment was

undertaken with independent sources of gametes with replication

based on the three females.

For each egg source ca. 2000 eggs (,20 eggs ml21) were placed

in rearing containers (100 ml), three for each temperature-pH

treatment (see below), in flow-through experimental FSW (flow

rate ca. 0.13 ml sec21, 300–400 turnovers day21) for 20 minutes

prior to the introduction of sperm. The containers had a window

cut from each side as an overflow and a 45 mm mesh set back from

the overflow to retain eggs. The number of sperm required to

achieve a sperm to egg ratio of ca. 1000:1, was determined

through haemocytometer counts. The sperm was briefly activated

(1–2 sec) in experimental FSW prior to addition to containers

holding eggs. The flow-through system was turned off (5 min)

during fertilisation and was then turned back on to remove excess

sperm. This fertilisation procedure was repeated in separate

experiments with the eggs of the three females.

The embryos were reared in experimental conditions to the 5

day echinopluteus stage and were not fed to avoid the potentially

confounding influence of algal introduction. Tripneustes gratilla

embryos have substantial maternal energetic reserves with a long

(8 day +) facultative feeding period during which development

proceeds in the absence of exogenous food [49]. We chose the 5

day endpoint because by this stage the larvae have well developed

arms for measurement and are not nutritionally limited.

Experimental treatments and rearing
The embryos were reared in experimental flow-through FSW in

three temperature (control = 24uC, +3uC, +6uC) and three pH

(control = 8.15, 20.3, 20.5 pH units) levels in all combinations

with three containers of embryos per treatment. Experimental pH

was adjusted using an automatic CO2 injection system. Two pH

controllers (Tunze), set at pH 7.6 and pH 7.8, were attached to

two header tanks (60 L). The controllers, pH probes, solenoid

valves and gas cylinders were connected in series and injected pure

CO2 gas into the header when required, where it was dissolved

using a vortex mixing device (Red Sea). The header tanks were

continuously bubbled with air to aid mixing and to maintain

dissolved oxygen (DO) .90%. A constant volume was maintained

in the headers using a float valve. A control header was bubbled

with air only. This water was fed into sub-header tanks (20 L)

where it was warmed to the required temperature, +3uC (27uC)

and +6uC (30uC), using aquarium heaters or unmanipulated for

the ambient control. Seawater was delivered to rearing containers

using irrigation drip valves. Temperature, pHNBS, DO and

salinity at the level of the experimental containers with developing

embryos and larvae were measured daily with a WTW multip-

robe. Filtered ambient in flow water was not manipulated and had

a mean temperature 23.51uC (SE = 0.04, n = 10, Range 23.3–

23.8uC) and mean pH 8.13 (SE = 0.004, n = 10, Range pH 8.08–

8.16). The experimental water conditions measured at the level of

the rearing containers remained stable (+3uC: Mean 26.13uC,

SE = 0.14, Range 25.6–26.6uC; +6uC: Mean 30.35uC, SE = 0.25,

Range 29.1–31.9uC) (pH 20.3 units: Mean 7.8, SE = 0.006,

Range pH 7.76–7.87; pH 20.5 units: Mean 7.61, SE = 0.004,

Range pH 7.58–7.65). Total alkalinity (TA x̄ = 2427.1, SE = 5.2,

n = 4) was determined by potentiometric titration (CSIRO,

Hobart). Experimental PCO2 and calcite and aragonite saturation

values (Table 4) were determined from TA, pHNBS and salinity

data using CO2SYS [56]. Data for both carbonate minerals were

calculated because the saturation state of echinoderm magnesian

calcite may be close to that of aragonite [57].

Development
Specimens from each rearing container (n = 100–200, where

available) were placed in 1.5 ml tubes containing 10% formalde-

hyde-FSW for 10 min, followed by rinse in 70% ETOH in FSW.

The first 30 specimens removed randomly from each tube were

examined microscopically to score the percentage of normal

development. Thus there were three replicate data points per

female for this analysis (i.e. 3 containers X 3 temp X 3 pH).

Normal larvae were defined as echinoplutei with two arms and a

Table 4. Temperature (T), pH, PCO2, and calcium carbonate saturation conditions in the nine experimental treatments.

T 24uC 27uC 30uC

pH 8.15 7.8 7.6 8.15 7.8 7.6 8.15 7.8 7.6

PCO2 448 (3) 1142 (8) 1886 (13) 455 (3) 1169 (8) 1938 (14) 460 (3) 1196 (9) 1990 (14)

Vcalcite 5.1 (0.00) 2.6 (0.02) 1.7 (0.02) 5.5 (0.05) 2.8 (0.03) 1.9 (0.20) 5.9 (0.05) 3.1 (0.03) 2.0 (0.02)

Varagonite 3.4 (0.03) 1.7 (0.02) 1.1 (0.01) 3.7 (0.03) 1.9 (0.02) 1.2 (0.01) 4.0 (0.04) 2.1 (0.02) 1.4 (0.01)

Mean (SEM) n = 4
doi:10.1371/journal.pone.0011372.t004
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trapezoidal/triangular body (Fig. 1), including larvae with minimal

asymmetry (i.e. one arm ,30% longer than the other). Abnormal

specimens included larvae with marked asymmetry (one arm

$30% larger than the other), armless arrested larvae and arrested

embryos (Fig. 1).

Larval growth
Larval growth was documented in an image analysis study of

photographs of larvae reared at 24uC and 27uC. The 30uC
treatments were excluded due to high mortality and insufficient

larvae to measure. Haphazardly selected plutei positioned flat to

the plane of focus were photographed using a digital camera

mounted on a compound microscope. For each female 35 larvae

(taken across the three rearing containers) from each treatment

were measured using Image J (NIH, USA). Thus a total of 630

larvae were used (3 females 635 larvae 63 pH62 temperatures).

For each larva the length of the two post oral (PO) arms body rods

(BR) were measured. The mean length of the two PO arms was

determined and the difference in their length was calculated as a

measure of arm asymmetry. Total length of calcite rods (TLC),

determined as the sum of all skeletal elements was used as a proxy

for biocalcification.

Statistics
For the percentage of normal development data where larvae

from three separate rearing containers were scored per female a

three factor ANOVA with pH and temperature as fixed

orthogonal factors and egg source as a random factor was used.

Percentage data were arcsine transformed prior to analysis.

Homogeneity of variance was checked using Cochran’s test. For

the data on difference in PO arm lengths (arm asymmetry), PO

length and TLC where a single mean data point derived from 35

larvae sourced from across 3 rearing containers was determined, a

two factor ANOVA with pH and temperature as fixed factors was

used. The raw data on arm asymmetry was heterogeneous and

was ln(x) transformed prior to analysis to meet the assumptions of

ANOVA. Normality was confirmed by plotting residuals against

normal distributions. Where treatments differed, Tukey-Kramer

(TK) post-hoc tests were conducted to detect differences amongst

means. For the mixed model ANOVA on the percentage normal

data we ran the TK test using the interaction term MS and the

residual MS and note that the results were identical. All statistics

were carried out using NCSS 2007 (V 17).
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