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Abstract

The Spindle Assembly Checkpoint (SAC) is an intracellular mechanism that ensures proper chromosome segregation. By
inhibiting Cdc20, a co-factor of the Anaphase Promoting Complex (APC), the checkpoint arrests the cell cycle until all
chromosomes are properly attached to the mitotic spindle. Inhibition of Cdc20 is mediated by a conserved network of
interacting proteins. The individual functions of these proteins are well characterized, but understanding of their integrated
function is still rudimentary. We here describe our attempts to reverse-engineer the SAC network based on gene deletion
phenotypes. We begun by formulating a general model of the SAC which enables us to predict the rate of chromosomal
missegregation for any putative set of interactions between the SAC proteins. Next the missegregation rates of seven yeast
strains are measured in response to the deletion of one or two checkpoint proteins. Finally, we searched for the set of
interactions that correctly predicted the observed missegregation rates of all deletion mutants. Remarkably, although based
on only seven phenotypes, the consistent network we obtained successfully reproduces many of the known properties of
the SAC. Further insights provided by our analysis are discussed.
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Introduction

Proper chromosome segregation is a critical aspect of mitotic

cell division; Failure in this process leads to aneuploidy, that often

result in severe cellular defects, death or cancer [1–4]. The

segregation process requires the polar attachment of the newly

duplicated chromosomes to microtubules emanating from the two

opposite poles. In budding yeast, the Spindle Pole Bodies (SPB),

serve as the main microtubule organizing centers. In early S-

phase, the SPB are duplicated and during metaphase the two SPB

send out microtubules which attach to the chromosomes in a

stochastic manner [5,6]. More specifically, the microtubules attach

to the kinetochore, a large multi-protein complex located on the

centromere region of the chromosome [5]. Once all chromosomes

are properly attached, meaning that precisely one of each

duplicated chromosome is attached to each SPB, the chromo-

somes separate, with one set of chromosomes staying in the mother

cell and the other set is pulled to the future daughter cell.

The Spindle Assembly Checkpoint (SAC) [7–9] is a control

mechanism that safeguards the fidelity of this process (figure 1).

First, if both sister chromosomes are erroneously attached to the

SPBs, the SAC promotes microtubules detachment [10]. Second,

the checkpoint arrests the cell cycle until all chromosomes are

attached to the microtubules. To this end, any unattached

kinetochore emits a diffusible signal that arrests the cell cycle.

The diffusible ‘stop-anaphase’ signal culminates in the inhibition of

Cdc20, a vital activator of cell cycle progression [11]. Cdc20 is a

cofactor of the Anaphase Promoting Complex (APC), a ubiquitin ligase

that regulates many cell cycle processes [12]. When the APC is bound

to Cdc20, the active APCCdc20 complex degrades Pds1 (Securin), an

event that triggers a cascade of reactions, leading ultimately to

chromosome separation. Failure to inhibit Cdc20 therefore increases

the probability of premature chromosome segregation leading to a

quantifiable increase in the chromosomal missegregation rate [13–15].

The stop-anaphase signal originates at the unattached kinetochores

where a set of highly conserved checkpoint proteins reside. Key

proteins implicated in this process include Bub1, Bub3, Mad1, Mad2,

Mad3 (BubR1) [16,17], Mps1 [18,19] and Ipl1 (Aurora B) [20]. These

proteins interact on the kinetochore, forming inhibitory complexes that

diffuse away to inhibit Cdc20. Inhibition of Cdc20 occurs in two

primary ways: First, the inhibitor complexes bind Cdc20 and prevents

it from binding the APC (sequestration) [21]. Second, Cdc20

degradation is enhanced [22]. It is known that Mad2 sequesters

Cdc20 whereas the Mitotic Checkpoint Complex (MCC) composed of

Mad2, Mad3 and Bub3 both sequesters and degrades Cdc20 [23,24].

Other ‘Mad -Bub’ complexes such as Bub3-Mad3 and Mad2-Mad3

might also be formed and/or participate in the inhibition of Cdc20.

Additional mechanisms involved in Cdc20 inhibition might also

include Cdc20 and Pds1 phosphorylation [25–27].

Detailed genetic and biochemical studies revealed a great deal of

information about the interactions between the SAC proteins and the

means by which Cdc20 is inhibited. In addition, recent theoretical

work began addressing some aspects of their integrated functions. In a

previous study, we described a general interplay between the strength
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of Cdc20 inhibition and the rate of checkpoint inactivation. Based on

this analysis, we argued that models in which Cdc20 is inhibited at the

kinetochore itself are inconsistent with the relevant spatial (spindle size)

and temporal (cell-cycle timing) constraints. Rather, the results called

for a model in which Cdc20 is inhibited by a diffusible inhibitor that is

generated on the kinetochore [28,29]. More recently, Sear and

Howard [30] devised the first model for the SAC in metazoan cells

considering the further implication of the large metazoan cells on SAC

performance. This model was later extended by Mistry et al [31], to

include also the Aurora B interaction on the SAC as well as the

kinetochore-microtubule interactions. The effect of different Mad2

conformers in metazoan cells was further analyzed by Ibrahim et al

[32,33] and Simonetta et al [34].

Our previous work focused on the essential properties of the SAC,

but did not attempt to capture the full details of the network. Here, we

attempted to proceed beyond this general description and examine

the possibility of deducing the detailed interactions between the

checkpoint proteins using the quantitative phenotype of gene deletion

mutants. To this end, we began by formulating a general model that

enables predictions of chromosome missegregation rate for any given

set of interactions between the SAC proteins. Following our previous

analysis, this model relies on the generation of diffusible Cdc20

inhibitors from the kinetochores. Our general model allows us to

screen over many different putative SAC networks, corresponding to

different assumptions about which molecular species participate in

the inhibitory complexes, which proteins facilitate the formation of

these complexes on the kinetochore, and the means by which these

complexes inhibit Cdc20.

In the second stage of the analysis, we measure the chromosome

loss rates of seven yeast mutant strains, each deleted of one or two

of the key protein components of the SAC. Finally, we screen for

networks that are consistent with these values. We find that we

these seven phenotypes are sufficient to tightly constrain the

possible models. The predicted network reproduces many of the

known features of the SAC and provides new insights about the

function of this checkpoint.

We view our study as only one of the initial steps towards devising

formal approaches for reverse engineering of biological systems in

general, and the SAC in particular. Therefore, before describing the

approach details, we would like to draw the attention to some of its

limitations. First, our approach although comprehensive, did require us

to make some simplifications and assumptions about the behavior of

this system. At present, experimental evidence is not sufficient to justify

or refute some of these assumptions. For example, we only look at the

system in steady state and thus do not capture any of the dynamical

interactions needed to assemble the SAC proteins on the kinetochores

and to initiate the checkpoint. In reality it is likely that recruitment to

the kinetochore does involve non-linear interactions. Regulatory

feedbacks are also hard to rule out. Similarly, we assumed that

chromosome missegragation rate is proportional to the level of

APCCdc20. While it is highly likely that these two are indeed correlated

in a monotonic fashion, it is also plausible that the relationship is non-

linear. The number of free parameters over which we screened was

rather large, and we compared them to only seven quantitative

phenotypes that were derived to a limited resolution. In addition, some

parameters not screened over were fixed by literature values, which are

again, known only to some limit.

It is interesting that despite these inevitable limitations, the

reverse engineering theme was quite successful in pinpointing the

key features of the checkpoint. This make us optimistic regarding

further developments in this direction.

Results

Overview of our reverse-engineering approach
Extensive genetic and molecular studies have revealed the core

protein components of the SAC and described many of the

interactions between them. In this work, we asked whether it is

possible to ‘‘reverse engineer’’ the network topology using

information about the quantitative phenotypic effects of deleting

individual protein components. Specifically, we wished to define

the active SAC (in steady-state during Metaphase) by the

following: Characterizing the interactions between the different

network proteins during their activation on the kinetochore and

defining the means by which the activating complexes inhibit

Cdc20 through sequestering or degradation. As a quantitative

phenotype, we considered the Chromosome Missegregation Rate

(CMR). Since the main function of the checkpoint is to prevent

Figure 1. A schematic of the SAC. A. During metaphase, microtubules from the mitotic spindles stochastically search for the kinetochores (red
dots) located on the chromosomes. Once microtubules have attached in a bipolar manner, tension (green arrows) is applied and the kinetochore-
microtubule connection is stabilized. Meanwhile, the unattached kinetochore sends out a signal that stops anaphase commencement (red-blue
gradient). B. After some variable time, all kinetochores are properly attached to the mitotic spindles and the ‘‘stop-anaphase’’ signal ceases. C.
Anaphase commences rapidly after proper attachment. D. If a kinetochore pair is attached in a non-proper way (here a synthelic attachment is
shown) the checkpoint detaches the faulty kinetochore-microtubule connection.
doi:10.1371/journal.pone.0006495.g001
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chromosome missegregation events, deletion of any SAC protein is

expected to affect the missegregation rate in a manner related to

the specific role of this protein in the checkpoint. The CMR can

thus provide a link between a quantitative, observable phenotype

and the molecular interactions within the SAC network.

Our reverse-engineering strategy is shown schematically in Figure 2.

As a starting point, we formulated a general model that describes the

interactions between the SAC proteins during their activation on the

kinetochore and in the cytoplasm. We assume that the kinetochore-

associated activation of the SAC proteins culminates in the generation

of active molecular species/factors (active protein or an active complex)

that diffuse to the cytoplasm to inhibit Cdc20. Each of the kinetochore-

bound SAC proteins (Mad1, Mad2, Mad3, Bub1 and Bub3) can

promote the association and binding of any of the other proteins to the

kinetochore. Outside factors such as Ipl1 and Mps1 can also promote

kinetochore association. This activation of factor ‘‘A’’ by factor ‘‘B’’

(resulting for example from promoting kinetochore association or

complex formation) is quantified by a single parameter. Notably, by

choosing different parameters (and by assigning a certain subset of

parameters to zero) this general model can describe distinct network

topologies. Hence, the output of this first part is a set of molecular

species (single proteins or complexes) capable of inhibiting Cdc20, each

produced at a certain rate and released to diffuse in the cytoplasm.

Next we assumed that each of the inhibitory factors can

potentially both sequester Cdc20 and promote its degradation.

The relative contribution of each factor to these reactions is

quantified, again, by a single parameter. Hence, given some

specific network topology, this modeling framework provides us

with a quantitative estimate of the degree by which each of the

SAC-protein contributes to the total sequestering and degradation

rates. It should be emphasized that the model only gives us the

overall contribution of each protein in the context of some specific

network. It doesn’t say anything about the timescales in the system

or the relative fractions of proteins binding each other.

Notably, while the model defines the relative contribution of each

protein to the total sequestering and degradation rates, the actual

value of these rates still needs to be determined, as does their effect

on the level of APCcdc20. To determine this, we first solved a

simplified model of the interactions between Cdc20 and the APC

and the inhibitory complex(es). This simplified model does not

consider the detailed formation of the inhibitory complexes, but

summarizes the network function by two parameters: the rate of

Cdc20 sequestration, and the rate of Cdc20 degradation. With the

exception of these two parameters, all other parameters of this

model were defined based on available data. As we show below, we

find that optimal performance (minimal level of active APCCdc20) is

obtained for some optimal values of the sequestration and

degradation rates. We assumed that the wild-type network complies

with these optimal levels, thus minimizing the level of APCCdc20.

Finally, the CMR was assumed to be linearly proportional to the

level of active APCCdc20. Taken together, this framework allowed us

to predict, for any given set of putative SAC interactions, how gene

deletions or other perturbations would affect the CMR.

With this model at hand, we proceeded to measure CMR in

mutants deleted of the SAC-proteins. Using these measured rates

as a template, we performed a computational screen to define the

set of parameters (or network topologies) which properly explain

the deletion phenotypes. Below we provide more details about this

procedure and discuss its results.

A generic model for the SAC
The SAC-proteins interact on the kinetochores to form

inhibiting factors that diffuse to sequester and degrade

Cdc20. SAC signaling originates on the unattached kinetochores,

where all SAC core proteins (Bub1, Bub3, Mad1, Mad2 and Mad3)

assemble, interact and promote the creation of the diffusible factors

(individual proteins and protein complexes) that inhibit the Cdc20

during metaphase. Here we describe a model which determines, for

a given network topology, the relative contribution of each SAC

protein to the rates by which Cdc20 is degraded or sequestered.

Our generic kinetochore model consists of five nodes, each

representing one of the five SAC proteins. Five possible edges are

attached to each node: four edges connecting it to the other checkpoint

proteins, and one additional edge for potential outside interactions (e.g.

inputs from Ipl1/Mps1, see below and figure 3A). Each edge in the

network is assigned a value between 0 and 1. The value of the edge,

say, from Mad1 to Mad2 describes the (relative) strength by which

Mad1 ‘‘activates’’ Mad2 on the kinetochore. An edge of strength

‘‘zero’’ corresponds to a non-existing interaction (see section 1 and 7.2

in supporting information S1 for more details about how the weights

were chosen). Since the kinetochore serves as a scaffold for the SAC

proteins, we assume that all edges are unidirectional, i.e. A can recruit

B, or B can recruit A, but both recruitments are not possible.

Figure 2. An overview of the SAC model. The main function of the stalling part of the SAC is to prevent premature activation of APCCdc20. Failure
to do so results in premature anaphase entry which leads to chromosome missegregation. A general model connecting the phenotype (chromosome
missegregation) with the interactions of the SAC proteins on the kinetochore and in the cytoplasm was formulated. A–B All SAC proteins assemble
on the unattached kinetochores, interact, and promote the creation of activated diffusible factors (proteins and complexes) composed of Mad2,
Mad3 and Bub3. C These factors inhibit the Cdc20 by degradation and sequestering. The relative contribution of each SAC-protein to the
sequestering and degradation rates is determined. D Cooperation between Cdc20 sequestering and degradation minimizes the APCCdc20 (arrow) and
determines the actual level of the inhibition rates. E Further, a quantitative relation between the APCCdc20 and the CMR is assumed. Hence the SAC
topology is connected to the phenotype. Knowing the CMR rate and the rate for all single SAC-deletions it is possible to compare any given putative
topology with the real CMR values and thus search for solutions whose behavior is consistent with the observed phenotype.
doi:10.1371/journal.pone.0006495.g002
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Note that we are only interested in the general wiring of the

network but do not attempt to capture the nature of the activation.

The output of this kinetochore network is the relative levels of

activated Mad2, Mad3 and Bub3. This means that the kinetochore

network here represents a fully loaded kinetochore which stays loaded

until anaphase commences. The activation strengths thus represent

the overall contributions from/to each protein to a final time-

invariant state. It is very likely that the dynamical assembling of the

kinetochores is a much more complex process [31]. Here, however,

we only look at the already assembled kinetochores (see figure 3 and

section 1 in supporting information S1).

As an illustration, we show in Figure 3B one particular example

of a putative kinetochore network. For this specific case, the

activated levels of the different proteins are calculated as follows:

Bub1ð Þ~only contribution external activation~1

Mad1ð Þ~0:5 Bub1ð Þz0:1 external activationð Þ~0:6

Mad3ð Þ~0:1 Mad1ð Þz0:05 external activationð Þ~0:11

Bub3ð Þ~1 Mad1ð Þz1 Mad3ð Þ~0:71

Mad2ð Þ~1 Mad1ð Þz0:01 Bub3ð Þ&0:61

ð1Þ

In this example, the kinetochore activates Mad2, Mad3 and Bub3

with relative strengths of 0.61:0.11:0.71, so that Bub3 is the

potentially strongest Cdc20 inhibitor. Note that Bub1, the most

upstream component in this example, is activated by some

undefined external factor.

Next, we consider the inhibition of Cdc20 by the diffusible

inhibitors generated by the network above. We consider the three

proteins known to participate in this inhibition: Mad2, Mad3 and

Bub3, as well as all possible complexes that can be formed between

them totaling to seven inhibitory factors (figure 3C). The relative

contribution of each inhibiting factor to the sequestering and/or

degradation rates is calculated as the product of the ‘activity ‘of

each of its components, as described above.

These activities are additionally multiplied by some specific

sequestering and degradation constant which ranges from zero

(when the complex cannot sequester or degrade Cdc20) to one

(strong sequestering or degradation). The relative strength of the

sequestering and degradation for each inhibitor were chosen in the

same way as for the edges in the kinetochore network (see above

and section 1 and 7.2 in supporting information S1). Note that the

activity of Bub3, Mad2 and Mad3 will be determined partly from

the kinetochore and partly from the activity of the sequestering

and degrading complexes. This implies that, when varying all

rates, there will inevitably be redundant solutions. We choose to

keep this formalism for two reasons. First, the prediction of zero

activation (no interaction), for some specific interaction, is non-

redundant. Second, the effect of the checkpoint proteins which are

not directly involved in the sequestration/inhibition (Bub1 and

Mad1) can only be captured through the kinetochore network.

The total sequestering and degradation rates are given by the sums

of all these contributions, with an additional constant term representing

sequestering/degradation mediated by other sources, e.g. Cdc20

phosphorylation (see the supporting information S1 for a discussion

about the choice of these constants). Together, we obtain the overall

sequestration and degradation rates (Seqtot and Degtot, respectively):

Seq:total~ks1 Bub3ð Þ Mad2ð Þ Mad3ð Þzks2 Mad2ð Þ Mad3ð Þ

zks3 Bub3ð Þ Mad2ð Þzks4 Bub3ð Þ Mad3ð Þzks5 Bub3ð Þ

zks6 Mad2ð Þzks7 Mad3ð Þzconst:

ð2Þ

Deg:total~kd1 Bub3ð Þ Mad2ð Þ Mad3ð Þzkd2 Mad2ð Þ Mad3ð Þ

zkd3 Bub3ð Þ Mad2ð Þzkd4 Bub3ð Þ Mad3ð Þzkd5 Bub3ð Þ

zkd6 Mad2ð Þzkd7 Mad3ð Þzconst:

ð3Þ

The different rates, ‘k’ are again determined as part of our

screen. As a putative example, consider the network in Figure 3B,

whose kinetochore activation is described in Equation 1, and

consider the case where Cdc20 sequestration is mediated only by

Mad2 and Mad3 (individually), with relative weights of 1 and 0.5,

whereas degradation is carried out by Bub3-Mad3 and by Mad2-

Mad3-Bub3 with relative weights of 0.01 and 0.75 (figure 3D). In

this case the total sequestering and degradation rates are as

follows:

Seq:total~1 Mad2ð Þz0:5 Mad3ð Þ~0:61z0:5 � 0:11&0:66 ð4Þ

Deg:total~0:01 Bub3ð Þ Mad3ð Þz0:75 Mad2ð Þ Mad3ð Þ Bub3ð Þ

~0:01 � 0:71 � 0:11z:::~0:036
ð5Þ

Using this, we can define the relative contribution of each

protein or protein complex to the sequestering and degradation as

follow:

Mad2Seq:~0:61=0:66&0:92

Mad3Seq:~0:055=0:66&0:08

Bub3Mad3deg:~0:0008=0:036&0:02

Mad2Mad3Bub3deg:&0:035=0:036&0:98

ð6Þ

Thus, for these putative parameter values, Mad2 is the main

sequestering agent and the Mad2Mad3Bub3 complex is the main

degrading agent. Deleting Mad2, for instance, will result in ,92%

reduction in the sequestering rate and ,98% reduction in the

degradation. Deletion of Mad3, on the other hand, will result in

only ,8% reduction in sequestration rate, but ,98% reduction in

the degradation rate.

Note that in our actual simulations we first screen to find the best

sequestration and degradation rates and then determine the relative

contributions of the SAC proteins as in the example above. Hence we

cannot say with any certainty that we use the actual values of the total

degradation and sequestration (see below). The expression in Eq. 5 is

only important in describing the relative contribution of each protein to

the total rates, to enable the calculations of deletion mutant

phenotypes.

By combining sequestering and degradation the SAC

promotes maximal inhibition of APCCdc20. The model

discussed above provides the relative contribution of each SAC-

protein to the general sequestering and degradation rates. Next,

we had two objectives: First we wished to determine the actual

values of these rates. Second, we wished to understand how Cdc20

sequestering together with Cdc20 degradation affects the amount

of active APCCdc20.

To this end, we used a simplifying modeling approach to

examine how the different modes of Cdc20 combine to limit the

level of APCCdc20. We formulated a generalized model that

captures the inhibition reaction, and the association of Cdc20 with

the APC. Cdc20 can either bind the APC (forming active

APCCdc20-complex), or be sequestered by some diffusible inhib-

itory factor ‘‘M’’ (giving rise to a sequestered Cdc20, ‘‘MCdc20’’),

(figure 4A). The sequestered Cdc20 can also bind the APC

forming inactive APCMCdc20. Further we assumed that both

APCCdc20 and APCMCdc20 can degrade Cdc20. The model was

Reverse Engineering of the SAC
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Figure 3. The SAC-proteins promote Cdc20 sequestering and degradation. A. A model representing the interactions of the SAC core
proteins on the kinetochores was formulated. Each SAC protein was represented by a node and each node was connected to five edges. The edges
represented possible activations from the four other SAC proteins or from some external source. The ten edges connecting the SAC proteins were all
assigned a direction and a value between 0 and 1, representing the relative strength of the interaction. The five external activations were only
assigned a value. An interaction whose value is set to zero does not exist. Hence by randomizing the interaction directions and their weights our
model can capture a vast number of different kinetochore interaction networks. In the end the relative activity of Mad2, Mad3 and Bub3 was
obtained. B. An example kinetochore interaction network. C. Mad2, Mad3 and Bub3, whose relative activity level was determined by the kinetochore
interactions, can inhibit Cdc20, either by forming complexes or by themselves. Each activated factor (protein/complex) is assigned two values: one for
its relative sequestering strength and one for its relative strength of degradation. Again, the values varied between 0 and 1. The relative degree of
sequestration and degradation for each factor was calculated as the product of the kinetochore activities of all its components multiplied by the
specific sequestration/degradation rate for this factor and normalized with the ‘total’ sequestering/degradation (see Equations 2–6). It is known that
Bub3 alone does not promote Cdc20 inhibition [51] and that Mad2 alone does not degrade Cdc20 [52] hence we exclude these activated proteins
from the computational screen. D. An example set of sequestering and degrading proteins and complexes: for simplicity, the constant contributions
are omitted here.
doi:10.1371/journal.pone.0006495.g003
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formulated using the following set of differential equations:

d Cdc20½ �
dt

~k0zk{seq MCdc20½ �{ Cdc20½ � k{0zkseq M½ �zk1 APC½ �
� �

d MCdc20½ �
dt

~kseq M½ � Cdc20½ �{ MCdc20½ � k{seqzk1 APC½ �
� �

d APCCdc20
� �

dt
~k1 APC½ � Cdc20½ �{k2 APCCdc20

� �

d APCMCdc20
� �

dt
~k1 APC½ �MCdc20½ �{k2 1zkdeg

� �
APCMCdc20
� �

d APC½ �
dt

~{ APC½ �k1 Cdc20½ �z MCdc20½ �ð Þzk2 APCCdc20
� �

zk2 1zkdeg

� �
APCMCdc20
� �

d M½ �
dt

~{kseq MCdc20½ �zk{seq MCdc20½ �zk2 1zkdeg

� �
APCMCdc20
� �

mtot½ �~ MCdc20½ �z M½ �z APCMCdc20
� �

apctot½ � ~ APC½ �z APCCdc20
� �

z APCMCdc20
� �

ð7Þ

With the exception of the Cdc20 inhibition rates (kdeg and kseq),

all other rates were fixed as follows: Cdc20 production rate (k0) was

estimated based on reports of Cdc20 half-life and copy–number,

while the APC-independent degradation of Cdc20 (k-0) and its

spontaneous desequestering rates (k-seq) were assumed to be

negligible. The association rate of the APC-Cdc20 complex (k1),

as well as the non-APC dependent degradation rate (k2) had a

minor effect on the results and were arbitrarily fixed (see section 2

in supporting information S1 for details about all rates).

We solved for the level of APCCdc20 as a function of the Cdc20

inhibition rates kdeg and kseq. Surprisingly, a non-monotonic relation

between the APCCdc20 level and kdeg was observed. Upon

increasing kdeg with a fixed kseq, the APCCdc20 levels initially

decreases, as expected, but then exhibit a rapid increase (figure 4B).

This last increase reflects the fact that APC is, in effect, sequestered

by the MCdc20 complex. Increasing Cdc20 degradation lowers

the amount of the MCdc20 complex and consequently results in

the increase of APC. Above some limiting value, this increase in

APC can compensate for the decrease in Cdc20, resulting in an

increase in the level of active the APCcdc20 compex. To proceed, we

assumed that the checkpoint is optimized, so that in the wild-type,

kdeg and kseq are tuned with each other to ensure minimal levels of

APCCcd20. Note that this optimality relation gives a direct

relationship between the degradation and sequestration rates,

but still does not predict their actual values. During the screen (see

below) we found that only one of these sets of rates can accurately

describe the observed phenotype of the deletion mutants. It should

also be noted that all the optimal rates used in the screen fulfill our

previously stated constraints on the SAC (strong APCCdc20

Figure 4. Interplay between sequestering and degradation ensures minimal APCCdc20. A. A general model for the Cdc20 sequestering and
degradation interplay was formulated. The action of the diffusible SAC-proteins/complexes is generalized as a diffusible inhibitor ‘M’. Hence Cdc20 is
being spontaneously generated at some rate k0 and can either bind a free APC, forming active APCCdc20 or be sequestered forming M-Cdc20. The
sequestered Cdc20 can also bind APC forming an inactive APCMCdc20. Both Cdc20 and MCdc20 are degraded by the APC. The degradation of the
inhibited complex is enhanced by the checkpoint (kdeg.k2). For simplicity it was assumed that APC binds free and sequestered Cdc20 at the same
rate (k1). In order to make the model general it was also assumed that Cdc20 can degrade in an APC independent manner (k-0) and that Cdc20 can
desequester (k-seq). Both these rates are small compared to the sequestering and degradation rates. B. The relation between the sequestering, the
degradation and the APCCdc20 level: The level of APCCdc20 varies with the sequestration and degradation rates. We note that for any sequestering rate
there is a degradation rate for which the APCCdc20 inhibition is optimal. See the right panel for the relation between APCCdc20 and the degradation
rate for three different fixed sequestration rates (units are molecules21s21). This holds true for all cases where inhibition is good (APCCdc20/
APCtotal,0.01). We conclude that the wild type sequestering and degradation rates are such that they minimize the APCCdc20. The reason behind this
optimization of the inhibition is that the degradation regulates the balance between the amount of free inhibiting complexes, Cdc20 and APC. C. The
level of APCCdc20 drives the chromosomal missegregation rate: An impaired ability to inhibit APCCdc20 is translated into an increase in the
chromosomal missegregation rate (see main text and supporting information S1 for details).
doi:10.1371/journal.pone.0006495.g004
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inhibition, rapid reactivation and resistance to noise in the Cdc20

production) [28,29] (see section 2.4 in supporting information S1

for more details).

The APCCdc20 level is proportional to the chromosome

missegregation rate. Up to now we describe how we predict

APC20 levels for a given set of parameters both in wild-type cells

(as a function of the inhibition parameters) and in cells that are

deleted in various checkpoint proteins (as a function of the

interactions between them). The last point in our approach is to

connect the level of APCcdc20 to the measurable phenotype,

namely the rate of chromosomal missegragation. It is likely that

CMR is monotonic with the APCCdc20, but the exact functional

form is not known. For simplicity, we assume that the

proportionality is direct (see section 3 in supporting information

S1 for details about this assumption).

Computational screen
Our general model described above depends on a large number

of parameters. Different sets of parameters correspond to different

networks with different properties. Each putative (wild-type)

network is assumed to be optimal, defining a chromosome

missegregation rate of one. As explained above, the model now

provides us with the ability to predict the impact from deletions of

any network component (protein) on the CMR for any network

topology. This is done by setting the rates associated with this

protein to zero and calculating the effect of the deletion on the

APCCdc20. Assuming that the APCCdc20 is directly proportional to

the CMR, we get the following relation for the CMR of some

arbitrary protein A:

CMRDA~
APCCdc20
� �DA

APCCdc20ð ÞWT
ð8Þ

Hence, to try and identify the realization that best corresponds

to the actual checkpoint in yeast, we searched for networks that

properly predict deletion phenotypes (chromosome missegregation

rates) of strains deleted of key checkpoint proteins.

We determined experimentally the chromosome loss rates of

cells deleted of Bub1, Bub3, Mad1, Mad2 and Mad3. This was

done using the ALF-faker assay [35] (see table 1). We also deleted

Sgo1 and measured the associated increase in the chromosomal

loss rate in order to determine how large a fraction of the

measured Bub1 and Bub3 loss rates stems from the detachment

part of the network (see sections 4–6 in supporting information S1

for details). The reason for not using published data of CMR [36]

is that the available data is not complete and uses a different,

noisier assay [37].

We screened through approximately thirty million possible

networks by comparing them with the experimentally measured

values of the single deletion mutants. In the screen we considered

all possible kinetochore networks and inhibiting factors by varying

the kinetochore edge configurations, their activation values as well

as the number of sequestering and degradation complexes and

their weights. The sequestration rate for the putative network was

also varied. The latter determined the location of the wild type

optimum and was found to be constant for all solutions (see

Figure 5 and section 7 in supporting information S1 for details).

This screen identified 105 consistent networks, which correctly

predicted all of the five deletion phenotypes within 5% of the

experimental values. These 105 consistent networks represented

24 different kinetochore-interactions graphs. Next, the networks

were clustered so that all redundant solutions were removed (see

figure 5, and section 7.3 in supporting information S1 for details)

giving us 82 networks representing 20 different topologies (see also

section 7.3 in supporting information S1).

Distinguishing between consistent networks based on the

phenotype of double-deletion mutants. Each of the

consistent networks from the screen was used to predict the

impact of the ten possible double deletions. To further differentiate

between the consistent solutions we choose to test our predictions

for the mad1mad3 and mad2mad3 double deletions which best

differentiated between the models. These double deletion strains

were constructed and tested for the rate of chromosome

missegregation (see figure 6 and table 1). Notably, we predicted

and observed a strong buffering effect for both these mutants since

the missergregation rate is by far lower than the product of the

CMR for the individual deletions of mad1mad3 and mad2mad3.

Of the 82 possible checkpoint networks only two accurately

predicted the chromosome missegregation rates for the two double

mutants. One of those appeared less plausible since it relied on

highly improbable interactions and complexes. More precisely, it

requires the existence of a Mad2-Bub3 complex and interaction

between Mad1 and Mad3. No such complex or interaction is

known to exist. We also note that the only reason this solution

came out of the analysis is the slight experimental difference

between the mad1 and mad2 deletions (table 1). This difference

could however, be due to experimental noise. To ensure against

the possibility that we missed some alternative (redundant)

solutions in the screen we analyzed the resulting network and

Table 1. See supporting information S1 for a comparison with previous measurements of chromosome missegregation and for an
explanation about the rescaling of the Bub1, Bub3 and Mad1 rates.

deletion X-fold increase in missegregation rate Standard deviation Rescaled increase Rescaled standard deviation

bub1 34.7 5.3 1.8 0.28

bub3 21.6 3.0 1.4 0.19

mad1 2.6 0.29 - -

mad2 2.7 0.27 - -

mad3 1.4 0.15 - -

sgo1 24.1 3.7 - -

mad1mad3 1.8 0.27 - -

mad2mad3 1.8 0.22 - -

doi:10.1371/journal.pone.0006495.t001

Reverse Engineering of the SAC

PLoS ONE | www.plosone.org 7 August 2009 | Volume 4 | Issue 8 | e6495



showed that no such redundancy existed (see section 8 in

supporting information S1 for details).

The network that emerged from the screen and validation as

being most consistent with the phenotypes of the deletion mutants

is shown in figure 7. In this network, Bub3 is activated by Bub1,

Mad1 is activated by an external factor and Bub1. Bub3 and some

other external factor activate Mad3 and Mad1 activates Mad2.

The Mad2 and the MCC (Mad2-Mad3-Bub3) sequester the

Cdc20 and Bub3Mad3 and the MCC degrade it. Unlike the Mad2

and MCC functions, which are known, the role of Bub3Mad3 as a

Cdc20 degrading complex was not established yet.

Two additional aspects of the solution should be noted. First, the

possibility that Bub1 activates Mad3 on the kinetochore cannot be

ruled out with this method since Bub3 and Mad3 always acts

together in the final consistent topology (this topology was clustered

with the consistent one). We believe, however, that this is an unlikely

connection because Mad3 needs Bub3 (which needs Bub1) for

kinetochore localization [38,39] and because Bub1 and Mad3 are

most likely spatially distant on the kinetochore [40]. Second, we see

a relative large contribution to the sequestering and degradation

that comes from the constant term in equations 2 and 3, (see section

9 in supporting information S1). This might reflect inhibition of

APCCdc20 through Cdc20 and Pds1 phosphorylation. Alternatively,

it could result from an experimental inaccuracy (see section 9 in

supporting information S1 for more details)

Discussion

A working SAC is crucial for chromosomal integrity and

impairments to its function leads to an increase in the chromosome

missegregation rate. We presented an initial approach to reverse

engineering the system. The final outcome of our numerical and

Figure 5. The screen. A. A kinetochore network is chosen and its weights and the contribution from external sources (here denoted ‘Ipl1’ and
‘Mps1’, see main text for details) are randomized. B. One or several activated factors (proteins/complexes) composed of Bub3 Mad2 and Mad3
contribute in a varying degree to the sequestering and degradation rates. Next, the relative contribution of each factor to the total Cdc20
sequestering and/or degradation was calculated. Note that the same complex can contribute to both sequestering and degradation (here MCC does
that). C. The total sequestration and degradation rates from all factors are normalized so that they correspond to rates giving an optimal (minimal)
level of APCCdc20. Here the relationship between the APCCdc20 and the degradation rate is shown for a fixed sequestration rate. D–E. Once the wild-
type network was defined we proceeded to sequentially delete all the SAC-proteins. The impact of deleting Bub3 is shown here. On the kinetochore
Mad3 is less activated and all complexes containing Bub3 also disappears. F. The decrease of the sequestering and degradation is translated into a
new APCCdc20 level. This decrease is represented here by a shift on the x-axis (degradation) and from the blue curve (stronger sequestering) to the
green curve (weaker sequestering). G. The relative impact on the APCCdc20 is than translated into a predicted change in the chromosomal
missegregation rate for this network and this mutation and compared (H.) with the experimental values. The bub3 deletion here does not fall within
the accepted range thus disqualifying this particular topology. For details about the screen see the supporting information S1.
doi:10.1371/journal.pone.0006495.g005

Reverse Engineering of the SAC

PLoS ONE | www.plosone.org 8 August 2009 | Volume 4 | Issue 8 | e6495



experimental analysis is a qualitative description of the structure

and function of the cell cycle stalling part of the spindle assembly

checkpoint. We now discuss some of the results in relation to

existing literature.

The kinetochore and the diffusible inhibitors
Consistent with previous reports [38,41], we found that Bub1 is

the most upstream component on the kinetochore. The nature of

the Bub1 activation is not known; It could be endogenous,

promoted by Ipl1 [42], or induced by some other factor. Although

proposed [43], we could not identify a solution with Bub3 as the

most upstream factor. Below Bub1 the kinetochore network

bifurcates into two branches, consistent with previous suggestions

[7]. In the first branch, Bub1, together with some external factor,

activates (or recruits) Mad1 which, in turn, activates (or recruits)

Mad2. In the other branch, Bub1 activates Bub3 who, together

with some external factor, activate Mad3. It is likely that the

external activations of Mad1 and Mad3 reflect the actions of Mps1

and Ipl1, which were shown to be necessary for their respective

functions [44,45]. Notably, all these interactions were previously

reported [21,38,39,44–46] yet we made no assumptions about

their existence.

The consistent network further predicts that Mad2 and MCC

sequester Cdc20, whereas Bub3-Mad3 and MCC degrade it.

These results suggest that the separation of the checkpoint into two

branches also reflect a functional division: The Mad2-branch

promotes Mad2 activation and consequently Cdc20 sequestration,

whereas the Bub3/Mad3 branch induces the formation of the

Bub3-Mad3 complex which promotes Cdc20 degradation. Our

analysis suggests that the MCC is formed in the cytoplasm by

combining Bub3-Mad3 with Mad2-Cdc20. Bub3-Mad3 thus

promotes Cdc20 degradation by forming the MCC which is

necessary for the Cdc20 ubiquitination by the APC. However, our

model does not exclude the possibility that, Bub3-Mad3 degrade

Cdc20 in the absence of Mad2 since Mad3 does bind Cdc20

weakly even in the absence of Mad2 [47]. Interestingly, such a

mechanism, whereby Bub3Mad3 degrade Cdc20 independently of

Mad2, was recently suggested [48] (see section 9 in supporting

information S1 for more details).

The idea that the MCC is produced by the binding of Mad2-

Cdc20 and Bub3-Mad3 was suggested before [7] and is supported

by the fact that Mad2 and Cdc20 (forming the Mad2-Cdc20

complex) show similar kinetochore kinetics as Bub3 and Mad3

[40]. Interestingly, the formation of MCC as a secondary complex

in the cytoplasm might explain the enigmatic existence of MCC in

non-mitotic cells [49,50]. These MCC could be formed long after

the inactivation of the last kinetochore by ‘leftover’ Mad2-Cdc20

Figure 6. Experimental versus predicted values for the double deletions. A. The experimental (green) versus the predicted (blue) values.
The x- and y-axis represent chromosome missegregation rates for the mad1mad3 and the mad2mad3 double deletions whereas the lines extending
from each point represent one standard deviation. B. A zoom-in on the lower left corner of A. The rightmost (worse) predicted value is not likely to
represent the real topology since it contains many highly unlikely interactions (see main text for details).
doi:10.1371/journal.pone.0006495.g006

Figure 7. A proposed mechanism for the SAC. On the
kinetochore, Bub1 is activated either endogenously or by Ipl1 or some
other factor. Once in place, Bub1 together with Mps1 promotes Mad1
activation which in turn activates Mad2. Bub1 also activates Bub3 that,
together with Ipl1, activates Mad3. Subsequently, the active Mad2
diffuses and sequesters Cdc20. The resulting Mad2-Cdc20 complex then
binds to the activated Bub3-Mad3 complex and forms the MCC. The
MCC proceeds to bind the APC where the Cdc20 gets ubiquinated and
degraded. The degradation of the Cdc20 recycles the other MCC
components which restarts the process.
doi:10.1371/journal.pone.0006495.g007
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and Bub3-Mad3. Moreover, these ‘non-mitotic’ MCC would then

have to compete with other non-mitotic substrates to get access to

the APC which might prolong their halftime. It is also possible that

the Cdc20 degradation depends on some other Metaphase specific

event such as Cdc20 phosphorylation which might increase the

MCC longevity in non-mitotic cells.

Sequestering and degradation
Our model of Cdc20 kinetics predicts that the cooperation

between Cdc20 sequestering and degradation creates an optimized

inhibition by minimizing the level of the APCCdc20. The fact that

the sequestering and degradation machinery themselves are

combined into one network makes perfect sense since it ensures

that the coordination between the two modes of inhibition remains

intact.

Our analysis also predicts that increasing the degradation rate is

far more deleterious than down-regulation of either the seques-

tering or the degradation rate. In support of this, over-expression

of Mad3 (a key degrading protein) leads to a higher CMR than

deleting either Mad3 or Mad2 [36]. Another prediction is that

certain combinations of double deletions are buffered. The reason

for this is the non-linear dependence of APCCdc20 on the

sequestering and degradation rates. We verified this predicted

buffering experimentally for both the mad1mad3 and the mad2mad3

double deletion strains.

In conclusion
The SAC is a sophisticated network composed of many different

and partially overlapping functions. In this work, we analyzed one

of the checkpoint functions: the ability of unattached kinetochore

to arrest the cell cycle. Our analysis is by no means complete but,

hopefully, provides some insight into the interrelationship between

the different protein components and the different mechanisms for

Cdc20 inhibition.

Materials and Methods

The A-Like Faker (ALF) assay
The mating tester BE287a (ura4 car2 gal2), the wild type

reference strain (BY4742) and the deletion strains (BY4742

background) were grown overnight in YPD medium at 30uC.

The cells were then diluted and re-grown to exponential phase.

After this, 1 OD unit of the wt reference- and the deletion-strain

(,2.5e7 cells) were mixed with 3OD units of BE287a, the cell

were spun down and the supernatant discarded. Before the OD

measurement of the BE287a they were sonicated at 3 W for

2630 s. The cells were then resuspended in 100 ml sterile double

distilled water and placed on a 0.45 mm filter on a YPD plate and

incubated at 30uC for four hours for mating. After this the cells

were collected from the filter and plated on SC ura2 plates. The

colonies were then counted approximately 40 h after plating. The

chromosome missegregation rates were then calculated as a

function of the wild type loss rate and the deletion strain loss rate

(see supporting information S1 for a detailed description)

The set of ODEs describing the impact of sequestering and

degradation on the APCCdc20 was solved with a custom built

Ringe-Kutta algorithm using MATLAB, also the numerical screen

was performed with custom built software using MATLAB.

Supporting Information

Supporting Information S1 Supporting Information.

Found at: doi:10.1371/journal.pone.0006495.s001 (0.81 MB

DOC)
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