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Abstract

Background: Genotyping platforms such as single nucleotide polymorphism (SNP) arrays are powerful tools to study
genomic aberrations in cancer samples. Allele specific information from SNP arrays provides valuable information for
interpreting copy number variation (CNV) and allelic imbalance including loss-of-heterozygosity (LOH) beyond that
obtained from the total DNA signal available from array comparative genomic hybridization (aCGH) platforms. Several
algorithms based on hidden Markov models (HMM:s) have been designed to detect copy number changes and copy-neutral
LOH making use of the allele information on SNP arrays. However heterogeneity in clinical samples, due to stromal
contamination and somatic alterations, complicates analysis and interpretation of these data.

Methods: We have developed MixHMM, a novel hidden Markov model using hidden states based on chromosomal
structural aberrations. MixHMM allows CNV detection for copy numbers up to 7 and allows more complete and accurate
description of other forms of allelic imbalance, such as increased copy number LOH or imbalanced amplifications. MixHMM
also incorporates a novel sample mixing model that allows detection of tumor CNV events in heterogeneous tumor
samples, where cancer cells are mixed with a proportion of stromal cells.

Conclusions: We validate MixHMM and demonstrate its advantages with simulated samples, clinical tumor samples and a
dilution series of mixed samples. We have shown that the CNVs of cancer cells in a tumor sample contaminated with up to
80% of stromal cells can be detected accurately using lllumina BeadChip and MixHMM.

Availability: The MixHMM is available as a Python package provided with some other useful tools at http://genecube.med.
yale.edu:8080/MixHMM.
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Introduction

Chromosomal structural abnormalities leading to copy num-
ber changes, including deletions and amplifications, are common
in cancer and certain regions are commonly altered, suggesting
their role in the pathogenesis of this disease [1,2]. Copy number
variation (CNV) in the germ line is increasingly recognized as
contributing to developmental defects and susceptibility to
diseases including cancer, similar to single nucleotide polymor-
phisms (SNP) [3,4]. Copy number somatic alterations (CNA, also
referred as CNV here after, as we use the same algorithm for
detection) have been reported as an important factor leading to
cancer [5]. Higher resolution detection of CNV contributes to
the basic understanding of tumor progression and to the
development of biomarkers for prediction of response to therapy
[6]. Advances in the understanding of the relationships of CNV
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to basic genomic and epigenomic features of tumors make it
important to extract as much information as possible from the
data available.

The methods for identification of CNV have improved since the
first low resolution cytogenetic and comparative genomic
hybridization studies [7]. Array comparative genomic hybridiza-
tion (aCGH) uses arrays of bacterial artificial chromosome, cDNA,
or synthetic oligonucleotides to probe specific chromosomal
regions for differences in copy number [8,9]. The aCGH
hybridization signal is segmented by chromosomal location
[10,11], and changes in intensity over a region reflect changes in
copy number.

Compared to aCGH methods, whole genome genotyping arrays
based on SNPs (such as the Illumina BeadArray) allow for
combined copy number analysis and allelic imbalance analysis at
high resolution [12]. Starting from the signal intensities of two
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SNP alleles, the Illumina platforms yield two transformed
parameters after self normalization and comparison with reference
normal samples: log R ratio (LRR) derives from the total signal
intensity of both alleles and only depends on the copy number,
while ‘B’ allele frequency (BAF) derives from allele signal intensity
ratio and depends on the allele ratio (i.e. proportion of ‘B’ in a
genotype composed of ‘A’s and/or ‘B’s). The values of LRR and
BAF for each SNP can be plotted along the entire genome in the
position order. A LRR plot of a diploid chromosomal region
displays a band centered at 0, and a region with copy number
changes will be reflected by an upward or downward shift of the
band. A BAF plot of a sample which is either normal or contains
balanced amplifications (both alleles are amplified to the same
copy number) displays as a three-band pattern, with homozygous
genotypes clustering at 0 or 1 and heterozygous genotype
clustering at 0.5. A LOH region, representing the most
imbalanced form of CNV, lack any heterozygous bands, while
an allelic imbalanced region other than LOH will be reflected as a
split of the heterozygous band in the BAF plot. In tumor samples,
both alterations in copy number and ‘contamination’ of stromal
cells (which are typically seen) can contribute to the more complex
band patterns [12,13].

Most approaches to analysis of whole genome genotyping arrays
have used either segmentation or probabilistic approaches. A
number of segmentation algorithms have been developed to
combine BAF and the total DNA signal, generally by removing
homozygous SNPs from the BAF and transforming the BAF of the
remaining SNPs so they are independent of the specific allele,
using some relationship to the normal heterozygous position of 0.5
[13,14]. These methods require user defined or adaptively derived
thresholds and the biological assumptions are usually unrealistic;
for instance, Assie et al. [14] assumed that all the amplifications
are three copy. Hidden Markov models (HMM) are elegant and
powerful methods addressing the probabilistic approach. The
model proposed by QuantiSNP [15] and adapted by PennCNV
[16], was specifically devised to take advantage of the total DNA
and allele specific data that is provided by genotyping platforms.
They have provided valuable tools for the analysis of the
homogeneous samples. However, they were not designed for the
precise delineation of allelic imbalance (only copy-neutral LOH
can be detected), nor to take into account the fact that tumor
samples may frequently contain DNA that comes from a mixture
of tumor and stromal cells. dChip and overunder are two
algorithms which were designed to deal with tumor samples but
do not handle admixtures with stromal cells [17,18]. In a very
recent publication, Sun et al. [19] have addressed the problem of
stromal contamination, but the CNV assignment is inaccurate in
tumor samples with a considerable proportion of normal stromal
cells (see results).

Using a HMM with up to 20 states representing copy numbers
from O through 7, we developed a novel computational
framework (MixHMM) for detecting copy number and allelic
imbalance accurately. By combining with a novel sample mixing
model, we demonstrate that MixHMM can also detect the CNV
states of tumor cells in a heterogeneous sample contaminated
with normal cells (i.e. in a biopsy sample). The remainder of the
paper is structured as follows. First, we present the underlying
assumptions, the CNV states, our definition of allelic imbalance
and the HMM. Second, we present the sample mixing model
which allows us to detect copy number changes and allelic
imbalance in mixed tumor samples. We then validate the
algorithm on simulated data and illustrate the essential features.
Next, we show the results of dilution series in which tumor DNA
is mixed with normal DNA. Finally, we demonstrate that the

@ PLoS ONE | www.plosone.org

Tumor Copy Number Analysis

algorithm can be applied with either pure or mixed tumor
samples from patients.

Results

The CNV states and Hidden Markov Model

Copy number variation (CNV) events such as deletion and
duplication/amplification can be detected from genotyping array
data, which give BAI" and LRR values for each SNP based on the
signal intensities of both SNP alleles [12]. Figure 1 is a schematic
representation of those CNV events up to copy number 4. We use
T” and ‘M’ throughout to represent each of a pair of homologous
chromosomes inherited from parents. We make the assumption that
each CNV state originated from the underlying normal two copy
state (‘FM’) with one or both chromosomes deleted or amplified.
The upper part of Figure 1 demonstrates that there are nine
distinctive CNV states from 0 to 4 copies. We always use fewer or an
equal number of “‘M’s in a state name because a state like ‘TMM” is
not distinguishable from ‘FFM’ by genotyping array data. Each
state defined as above is distinct from the other states based on the
combination of its copy number (CN) and its allelic imbalance (AI).

In Table 1, we list all the possible CNV states for copy number
up to seven. For a quantitative measurement, we define allelic
imbalance of a CNV state as 1/2— MCP, where MCP stands for
the proportion of the minor copy allele (i.e. the proportion of ‘M’s
in a state name in Figure 1 and Table 1). Thus, by definition, the
allelic imbalance is a value between 0 and %2 (including borders).
Allelic imbalance of the normal state (‘FM’) or a balanced
amplification states (containing equal numbers of ‘I’ and ‘M’, such
as ‘FFMM) is 0; that of a LOH state (with only F’s in name) is 1/
2; that of an imbalanced amplification (in which both alleles are
present in increased but unequal numbers, such as ‘FFM’) will be a

value between 0 and 0.5 (for state ‘FFM’, MCP=1/3 and allelic

1

1
imbalance Al = - — 5 = 6) Therefore, by using the CNV states

defined above as the hidden states in the hidden Markov model
(HMM), we can detect forms of allelic imbalance other than LOH,
such as imbalanced amplification.

Using ‘A’ and ‘B’ to represent the two investigated alleles for
each SNP, the bottom track in Figure 1 shows that each CNV state
can include up to four different genotypes (each genotype should
be read vertically), with each genotype corresponding to a
characteristic horizontal band in a BAF plot for a homogeneous
sample. Each LOH state has exactly two distinctive genotypes;
each allele balanced state has three distinctive genotypes; and each
imbalanced state other than LOH has four distinctive genotypes.
As shown in Table 1, we classify genotypes of each state into four
classes based on the original germline genotypes (‘AA’, ‘BB’, ‘AB’):
derived from original ‘AA’ (04), derived from original ‘BB’ (03),
derived from original ‘AB’ with an equal number or more of ‘A’s
compared to ‘B’s (e4), and derived from original ‘AB’ with equal
number of or more of ‘B’s compared to ‘A’s (ep). Let pp be the
population frequency of ‘B’ allele at a SNP locus, then the
probabilities of observing each genotype in a normal state (‘FM’)
are (1= pg)’. p}. ps(1—ps). ps(1 —pp) for genotypes 0,4,05.¢4.¢5
respectively.

Under the assumption stated in the first paragraph (all the CNV
states originated from ‘FM’ states with only deletions and/or
amplifications), we can deduce that the probability of observing
each of the four genotype classes of a given SNP is exactly the
same as that in ‘FM’ state. Therefore, we use Equ. 4 (see methods
section for equations) to estimate the probability of observing a
BAF value, given a CNV state and the BAF distribution of each of
the four genotype classes; we use Equ. 3 to estimate the probability
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Figure 1. Chromosome instability events as CNV states for copy number up to four. All nine possible CNV states and genotypes with copy
numbers up to 4 are presented here as a “pseudo chromosome”. (See Table 1 for an alternative representation of 20 states with copy numbers up to
7). All states are assumed to be derived from the underlying normal two copy state (‘FM’) which has regions from both chromosomes (‘F’ in blue, ‘M’
in red). The top track indicates the composition of each state based on the source chromosomes. The second track gives a graphical representation of
the state composition along different regions. The third track gives the copy number for a region, from 0 to 4, which are separated by the vertical
bars. The fourth track shows an example set of haplotypes making up the region (‘A" and ‘B’ are the alternate alleles). There are up to four distinctive
genotypes in each state, with each genotype for an individual SNP shown in a vertical column (for example, the SNP genotype indicated by the red
arrow is ‘AAB’). In the homozygous deletion state (‘O’), both regions are deleted (labeled in gray). In the LOH states (labeled with only ‘F’s), one of the
source chromosomes is deleted, while the other can be amplified one or more times. The normal state (‘FM’) has regions from both chromosomes.
The remaining states harbor regions from both source chromosomes with one or both regions amplified. States such as ‘MM'’, ‘FMM', etc are not
listed because they are not distinguishable from ‘FF’ and ‘FFM’ by genotying array data.

doi:10.1371/journal.pone.0010909.g001

of observing an LRR value, given a CNV state and its LRR However, the BAF normal distributions do change after mixing,
distribution. Under the same assumption, we can also deduce that, and we use Equ. 9 and Equ. 10 and to estimate the BAF
given that there is a state change between two adjacent SNPs, the distribution of each of the four compound ‘genotypes’. Figure 2B
state of the second SNP is independent of that of the first one. shows the results from nine CNV states (as columns), representing
Therefore, we use Equ. 2 to estimate the state transition copy number 0 through 4, mixed with four different proportions
probabilities, given the prior probabilities of state changing. These (as rows) of normal cells. As expected, the BAF distributions for the
estimates are subsequently used in the Viterbi algorithm to decode mixed samples for each state converge to the BAF distributions of
the hidden states of each SNP locus in each chromosome. ‘M’ state as the proportion of the normal cells increases. Different

kinds of states are affected in different ways. Specifically, the
Model update in tumor samples mixed with stromal DNA balanced states (FM’ and ‘FFMM’) stay the same and are not

To detect the CNV states in a non-homogeneous tumor sample affected by the presence of normal cells. The homozygous deletion
‘contaminated’ with a known proportion (p) of the stromal cells state (‘O’) approaches the normal state as normal cells are added to
(assumed to be in ‘FM’ state by default), we update the LRR and the mixture. For the LOH states (‘F°, ‘FI°, ‘FFF’, ‘FFFF’), two
BAF normal distributions using separate mixing models. heterozygous bands emerge as the result of e4 and ep genotype

We use Equ. 6 and Equ. 7 to calculate the LRR distributions for mixing respectively. For example, e4 in ‘F’ state (*A’) is mixed with
each CNV state mixed with normal state. Figure 2a shows the eq in ‘FM’ state (‘AB’). Imbalanced amplifications (‘FFM’,

results for five different copy number states (0 to 4 copies) mixed ~ ‘FFFM’), which already have two heterozygous bands, also
with different proportions of normal (‘FM’) cells. When there is no converge to the ‘FM’ state as the proportion of normal cells
normal tissue included (p=0), the LRR distributions are exactly increases.
the same as those of pure tumors. With the proportion of normal Thus, it is evident that the predictive power of MixHMM
cells increasing, the mixed signals are more influenced by the decreases with the increasing noise level in the data caused by
normal DNA; thus, the LRR distributions (for both mean and ‘contamination’ of stromal cells. We will show below, however,
variance) of all other copy number states start to shift toward the that in both simulations and real tumor samples, MixHMM can
distribution of the diploid state (2n, the green line in Figure 2A). As reliably detect the CNV states up to seven copies in a sample
a consequence, the power to discriminate different states mixed with up to 0.6 proportion of normal cells. We can also see
decreases, especially for the states with a higher copy number. from Figure 2 that the correct assignments of CNV states in tumor
Assuming that each CNV region in tumor cells is derived from can be negatively influenced by inaccurate estimation of the
the corresponding region in the mixed stromal cells, we can proportion of cells in normal state. For example, ‘FFM’ mixed
deduce that each compound ‘genotype’ in a mixed sample comes with a 0.5 proportion of ‘FM’ has an identical BAF distribution as
from the genotypes of the same class in tumor and normal DNA that of ‘FFFM’ mixed with a 0.75 proportion of ‘FM’ (subplots
(see Table 1). For example, when a ‘FFM’ tumor state is mixed indicated by arrows in Figure 2); and the mixed copy numbers are
with the ‘FM’ normal state, the BAF distribution of the mixed e4 also identical, which is 2.5. Therefore if the proportion 0.5 is
‘genotype’ must come from a mixture of tumor ey genotype inaccurately estimated to be 0.75, the ‘FFM’ state is likely to be
(‘AAB’) and normal e, genotype (‘AB’). Thus the distribution misassign ed to ‘FFFM state. Assuming that the mixed samples are
probabilities for the four genotypes stated in Equ. 4 composed of homogeneous pure tumor cells and homogeneous
(p{z‘1 ,p%,p 4PB-papp) still applies. stromal cells, we use Equ. 11 to estimate the proportion of normal
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cells from the characteristic BAF value of the compound ey
genotype for a given tumor CNV state, and we found that the
CNV detection of MixHMM is pretty robust with proportion

estimation.

Evaluation with simulated data

To evaluate the performance of MixHMM, we simulated
regions of all states with a 20-state model using the SNP positions
and population ‘B’ allele frequencies (pB) of the Illumina
Human550K BeadChip (Illumina. http://www.illumina.com).

To evaluate the algorithm visually, we simulated each state (in
the same order as in Table 1) as a 300-SNP region on
chromosome 1. The results of CNV detection by MixHMM is
shown in Figure 3A. We show that both copy number and allelic
imbalance are detected accurately for all the 20 states in the
simulated pure tumor sample (p=0). Also, the CNV detection in
simulated tumor sample mixed with up to 80% normal cells are
almost as accurate. With this simulation data, incorrect state
assignments only occur in the bordering area between two
adjacent regions with different CNV states, especially between
regions with the same copy number, hence the same expected
LRR value (data not shown). As homozygous genotypes exist in all
the CNV states (see Table 1), and they have the same expected
BAF values (0/1), when several SNPs of such genotypes are in the
bordering region, it is not possible to draw an exactly correct
border line.

To compare MixHMM with other detection algorithms, the
results of PennCNV [16] and GenoCNA [19] for the same
simulation data as above are shown on the top tracks of Figure 3A.

@ PLoS ONE | www.plosone.org

Table 1. CNV states and Genotypes.

CNV Copy Minor Copy Genotype Classes

state number Proportion 04 ey ep op

(o] 0 NA - - - -

F 1 0 A A B B

FF 2 0 AA AA BB BB

FM 2 1/2 AA AB AB BB

FFF 3 0 AAA AAA BBB BBB

FFM 3 1/3 AAA AAB ABB BBB
FFFF 4 0 AAAA AAAA BBBB BBBB
FFFM 4 1/4 AAAA AAAB ABBB BBBB
FFMM 4 1/2 AAAA AABB AABB BBBB
FFFFF 5 0 AAAAA AAAAA BBBBB BBBBB
FFFFM 5 1/5 AAAAA AAAAB ABBBB BBBBB
FFFMM 5 2/5 AAAAA AAABB AABBB BBBBB
FFFFFF 6 0 AAAAAA AAAAAA BBBBBB BBBBBB
FFFFFM 6 1/6 AAAAAA AAAAAB ABBBBB BBBBBB
FFFFMM 6 1/3 AAAAAA AAAABB AABBBB BBBBBB
FFFMMM 6 1/2 AAAAAA AAABBB AAABBB BBBBBB
FFFFFFF 7 0 AAAAAAA AAAAAAA BBBBBBB BBBBBBB
FFFFFFM 7 1/7 AAAAAAA AAAAAAB ABBBBBB BBBBBBB
FFFFFMM 7 2/7 AAAAAAA AAAAABB AABBBBB BBBBBBB
FFFFMMM 7 3/7 AAAAAAA AAAABBB AAABBBB BBBBBBB
A CNV state is named using ‘O’ (for homozygous deletion) or a combination of ‘F's and ‘M’s, with less or equal number of ‘M’s. Minor copy proportion (MCP) is the
proportion of the number of ‘M’s in a state name. The four genotype classes are defined by their germline origination: 04,05 originate from germline homozygous
genotypes ‘AA’ and ‘BB’, respectivly; e4,ep originate from germline heterozygous genotype ‘AB'.

doi:10.1371/journal.pone.0010909.t001

They only detected the copy number from 0 through 4, and these
detections become inaccurate in samples with a considerable
proportion (p=0.4,p=0.8) of normal cells. For example, the four
copy (4n) regions and TFFFMMM’ (6n) regions tend to be
misassigned as three copy (3n) when p=0.4, all the deletion
regions and many amplicated regions have not been detected
when p=0.8.

To evaluate the CNV detection quantitatively, we simulated 20
states (with shuffled order and different chromosomal offset
position) on every autosomal chromosomes. We have used
different region lengths (50, 100, 200, 300 SNPs) in each
simulation. We define recovery rate as the proportion of SNPs
with detected value (copy number or allelic imbalance) exactly the
same as the underlining true value. Figure 3B shows the recovery
results from 100 simulations (220 duplications for each state) with
100-SNP CNV regions. We can see that the detection of copy
number is less accurate when the proportion of normal cells is very
high (p=0.8), especially for regions with a high copy number
(n>4). For states with high copy number, the differences of LRR
values between states are smaller (also see Figure 2A), so CNV
states with similar mixed BAF distributions are more likely to be
confounded with each other (for example, ‘FFFFMM’ and
FFFFFMM?). The detection of allelic imbalance is also less
accurate when p=0.8, especially for regions with a small allelic
imbalance. The BAF of these states look more like that of ‘FTM’
state (also see Figure 2B), so the CNV states with similar mixed
‘copy numbers’ can be misassigned to each other (for example
TFFFMMM’ and FFFFMMM’). However, such misassighments
are almost always between high copy number states, and usually
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Figure 2. LRR distributions and BAF distributions in simulated mixed samples. A) Mixing of LRR. Each line represent a state of a certain
copy number (color code on right) mixed with a proportion of normal ‘FM’ cells (proportion on top), with ‘FM=0" corresponding to a pure tumor
sample. B) Mixing of BAF. Each subplot represent a certain CNV state (name on top) mixed with a proportion of ‘FM’ cells (proportion on left), with

‘FM =0’ corresponding to a pure tumor sample.
doi:10.1371/journal.pone.0010909.g002

do not pose a problem for CNV conclusions. We also found that
even these trivial misassighments become less common with larger
CNV regions (regions with more than 200 SNPs). The recovery
results for 300-SNP regions are included in Figure S1.

Evaluation with dilution series of Cancer Celllines

To test the detection performance of MixHMM on real tumor
samples with known proportion of ‘FM’ cells, we used a dilution
series of breast cancer cell lines studied by [12]. The genomic
DNA from a cancer cellline (ATCC: CRL-2324D) was mixed with
0, 0.25, 0.5. 0.75, 1 proportion of DNA from a normal cellline
(ATCC: CRL-2325D) and hybridized to Illumina Humanl09K
BeadChips. A CNV detetion of the ‘normal’ cell line suggests that
chromosome 6 and chromosome 16 harbor large regions of
heterozygous deletion, so these two chromosomes are excluded in
the following analysis. After the estimation of the BAF value of ‘A’
genotype in each sample, we use Equ. 11 to estimate the
proportion of normal cells. We obtained 0, 0.25, 0.66, 0.86, 1
respectively, which is close to the proportion of normal DNA

@ PLoS ONE | www.plosone.org

decribed above. The slight overestimation probably stems from the
observation that such a cancer cell harbors more DNA than a
normal cell. For example, if equal numbers of such cancer cells
and normal cells are mixed, the proportion of normal cells is 0.5,
while the proportion of normal DNA is less than 0.5.

We performed a CNV detection for each pure and mixed
sample using a 20-state HMM. As detected from the (see Table
S1) pure tumor sample, the breast cancer cellline has a very
complex genotyping profile: the dominating regions are in LOH
states instead of the nomal ‘FM’ state, and more than half (0.52)
of the genome are amplified in various ways. In Figure 4, we
show examples of the copy number results from samples mixed
with different proportions of stromal cells. The left panel shows a
long run of homozygosity (LOH regions) with different regions
from chromosome lp showing a variety of copy numbers. The
middle panel shows three amplified regions (balanced and
imbalanced) from chromosome 5p. The right panel includes a
highly amplified region from chromosome 14q. The underlying
truth about copy numbers in the cancer cellline is unavailable, yet
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cells. The underlying truth simulated is depicted in the panels of ‘simu. CN" and ‘simu. Al'. The BAF and LRR plots are of simulated pure tumor cells
(p=0.0). In the PennCNV and GenoCNA CN tracks, the copy number are from 0 to 4 with the baseline (gray) representing 2n, and flat box (the orange
fragment) is copy neutral LOH. The results of MixHMM are separated to copy number and allelic imbalance. In the CN tracks, the baseline (gray)
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doi:10.1371/journal.pone.0010909.g003
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of normal (‘FM’) cells, the BAF and LRR tracks are for pure tumor sample (p =0). Some putative CNV states as detected with MixHMM from pure tumor
sample are labeled below all tracks. The chromosome and approximate start and end location is labeled on top of each column. The arrow head in
the left panel point to a short region with LRR values between those of 1n and 2n. In the CN tracks, the baseline (gray) represents 2n, and the copy

numbers range from On through 7n.
doi:10.1371/journal.pone.0010909.9g004

the copy numbers detected from tumor samples mixed with 25%,
66% and 86% of normal cells are consistent with those from pure
tumor sample. The copy numbers detected using GenoCNA are
also shown in Figure 4. The MixHMM are more advantagous
when the normal proportion is considerably high (greater than
50%).

For comparison with other algorithms (PennCNV and Gen-
0oCNA) quantitively, we collapse the detected CNV states into six
states used by PennCNV, and calculated the recovery and false
discovery rates (FDRs) using the detection from the pure cancer
cellline as reference. The results are shown in Figure 5. When
mixed with a small proportion of normal cells (p=0.25), the
performance of GenoCNA is comparable with MixHMM except
for its low recovery (0.46) of states with more than three copy
numbers. When mixed with a larger proportion of normal cells
(p=0.66), however, MixHMM has a much better performance.
Note that the recovery of In (‘) state are higher for GenoCNA
but it has a very high FDR too (0.79). Considering the genomic
complexity of the cell line and the low density of the Human109K
BeadChips, the detection results using MixHMM in samples
mixed with up to 66% of stromal cells are satisfactory. The
recovery rate for the In (‘I”) state in the sample with 66% stroma
(0.56) is not as good as expected, because about half of regions
detected as ‘I’ in pure tumor have a considerably higher median
LRR value (an example of such a region is indicated with an arrow
head in Figure 4). A possible explanation is that this ‘pure’ tumor
sample is actually a mixture of two different clones, and their CNV
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states in the troublesome regions are different (for example, one is
in ‘I’ and the other is in ‘FI’).

Analysis of tumor samples

We have also applied our MixHMM algorithm with real tumor
samples, both pure tumor samples and tumor samples ‘contam-
inated’ with stromal cells. In a melanoma pure tumor sample
(‘LAC_mel’, unpublished data from the Halaban Lab) hybridized
on Illumina’s HumanlM BeadChip, we have identified typical
regions in each of the nine states for copy number up to 4 and
some highly amplified regions (CN>4) (see Table SI1 for a
summary). In Figure 6A, we show examples of some detected
regions compared with results of PennCNV. The left panel shows
regions of total deletion (‘O’), one-copy deletion (‘F”), and three-
copy LOH (‘FFF’) from chromosome 11p. The middle panel, from
chromosome 5, shows a region of ‘normal’ state (‘FM’) and regions
of two different four-copy heterozygous states: balanced (‘FFMM’)
and imbalanced (‘FFFM’). The right panel, from chromosome 3p,
shows a region of four-copy LOH (‘FFFI’) and regions of highly
amplified states (CN =15, 6, 7). Although the underlying truth
about the copy number and allelic imbalance are unavailable, the
assignments by MixHMM are consistent with manual annotation
by comparing with the expected LRR and BAF patterns. In
comparison with PennCNV, MixHMM detects more states. Not
only can it detect states with higher copy numbers (up to 7), but
different states with the same copy number can be distinguished by
allelic imbalance. For example, LOH states with high copy
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Figure 5. Comparison of three algorithms in dilution series of a breast cancer cell line (CRL-2324D). Each subplot shows the recovery
(the upper row) and false discovery rates (the lower row) in a cancer sample with a certain proportion of normal cells (proportion labeled above each
column). The collapsed CNV states are labeled on x-axis, with copy number=0 (‘'On’), 1 ("1n’), 2 (‘FF',/FM’), 3 (3n’), >=4 ("4n’). The blue points
(connected with blue solid lines) are results using MixHMM, the red points (connected with red dotted lines) are for PennCNV and the green points
(connected with green dashed lines) are for GenoCNA. When there are no SNPs detected in a state, there will be no point in the plot.

doi:10.1371/journal.pone.0010909.g005

numbers can be detected, which can be biologically important.
MixHMM detection is also more accurate because of the more
comprehensive state definitions. For example, some of the ‘FFI”
regions are misassigned as ‘T’ and some of the ‘FFFM’ regions
are misassigned as 3n by PennCNV.

Breast cancer biopsy samples are rarely pure unless they have
been microdisssected. Here we use the published ‘BT5’ breast
cancer data [20] to demonstrate the power of MixHMM.
Following the procedure described in the methods, we estimate
the proportion of normal cells in this sample (Figure S2) to be
about 30%. In Figure 6B, we show the detection results using both
MixHMM and PennCNV. As expected, the CNV detection using
PennCNV in this heterogeneous dataset tend to be inaccurate. For
example, it tends to assign one copy deletion (‘F” in first column) as
copy-neutral LOH, to assign 4n as 3n (‘FFFM’ in the last column).
MixHMM, however, detects copy number and allelic imbalance in
the cancer cells accurately (consistent with model and manual
annotation)., in spite of the considerable contamination of stromal
cells.

Discussion

High throughout SNP-based genotyping arrays have been
increasingly used to identify copy number variation and copy-
neutral loss of heterozygosity, and have provided invaluable
insight into the complexity of genomic variations, especially for
disease related variations. The accuracy and density of genotyping
arrays have improved rapidly, with current versions having a
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density of over one million SNPs/probes. However, new detection
algorithms are needed to extract more detailed information about
genome complexity from these genotyping data. And new
algorithms are also needed to detect the genome complexity in
tumor samples mixed with stromal cells, which is almost
unavoidable in biopsy samples. Under the assumption that all
the CNV events originate from the underlying normal state, here
we present MixHMM, a novel HMM based algorithm, which can
detect copy number, allelic imbalance and genotype accurately,
from homogeneous samples or heterogeneous samples with tumor
cells mixed with a certain proportion of stromal cells. We validated
the technique using both simulation data and real tumor data
including breast cancer and melanoma.

Allelic imbalance revealed by the genotyping data includes not
only classical single copy LOH and copy-neutral LOH but, in
principle, can include other forms of imbalance such as high-copy
LOH and imbalanced amplification. Such information has not
typically been a focus of whole genome analyses, but may provide
nsight into differing mechanisms of amplification at specific loci or
mechanisms differing among individual patients. Our preliminary
analyses suggest such events do occur in tumors. Only algorithms
which can utilize the available data to detect these events will be
able to identify how prevalent such changes are and lead to
determining their functional significance. MixHMM models
multiple states for a high-copy region, for example, three states
instead one are used for a 4-copy region (see Figure 1 and Table 1).
It is not only more genetically meaningful but also allows detection
of all forms of allelic imbalance. Still another benefit of this
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Figure 6. Detection of copy number (CN) and allelic imbalance (Al) in tumor samples. A) A melanoma sample (‘(LAC-mel’) composed of
almost pure tumor cells. B) A breast cancer sample (‘BT5’) with about 30% of normal cells. Choice state regions as detected by MixHMM are labeled
below all tracks.. The top panels are results of PennCNV detection. On top of each panel we show the chromosome arm and approxiate start and end
positions. The range of copy number (CN) is from 0 to 7 with the baseline represent 2n. The range of allelic imbalance (Al) is from 0 (for balanced
states) to 0.5 (for LOH states), the Al of total deletion (‘O’) is set to 0.5 in this analysis. In the PennCNV track, the solid organge fragments on baseline

represent copy-neutral LOH (‘'FF’).
doi:10.1371/journal.pone.0010909.9g006
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modeling strategy is that we can assign a more meaningful
genotype to each SNP, for example, instead of using ‘AB’ for a 4-
copy heterozygous genotype, we distinguish ‘AABB’ or ‘“ABBB’ or
‘AAAB’ instead.

Similarly to other HMMs for copy number analysis, such as
wuHMM [21], MixHMM requires no training data. The six
model parameters for each hidden state (mean and SD of LRR,
mean and SD of e4 BAF, characteristic length of regions,
proportion of SNPs) are provided with the package and can be
easily modified by the users to adapt to special samples. We found
that the CNV detection is robust to the transition parameters but
is sensitive to the emission parameters (distributions of LRR and
BAF).

Mismatches between data and model may cause inaccurate
state assignments. These mismatches can stem from three different
sources. The first type, which is the most common, stems from the
fact that normalization procedures for the original density data
were developed primarily for normal samples. In cancer samples
with complex CNV events, BAF and LRR values of suboptimal
quality are commonly found. The suboptimal quality can be
manifested as asymmetric heterozygous BAF bands, characteristic
LRR values for 2n considerably shifted from 0, genomic wave
effects in LRR values, etc., none of which are biologically. In these
cases, alternative normalization and preprocessing tools should be
applied before CNV detection (see method 4.7). The second type
of mismatch stems from a violation of our assumption that some
regions of the ‘contaminated’ stromal genome are not normal, for
example, in ‘I’ (one-copy deletion) state instead of ‘FTM’ state, as
from for instance, inherited copy number variants. In this case, the
genotyping data from a paired stromal sample is needed for
accurate CNV detection. The third type of data-model mismatch
stems from the fact that the genome of tumor cells are sometimes
not homogeneous (i.e. cancer cells with different copy number
changes mix with each together), and this violates the model
assumption that the input data are from a mixture of two kinds of
genomes (see Figure 4 for an example). In this case, there will be
different apparent proportions of normal cells in different regions,
and small regions with alternating CNA states tend to be detected,
which can be considered as a signal of inaccurate detection. Our
model is not intended to distinguish among multiple clones
because the state and proportion of tumor component cannot
always be uniquely determined from the genotyping data of the
mixed sample. For example a mixture with 50% ‘FFFM’ and 50%
‘FM’ gives BAF and LRR distributions exactly the same as those
from 100% ‘FFM’ (germline CNV). Instead, we use the estimated
global proportion (corresponding to the dominant clone of tumor
cells) for CNV detection. Multiple regions of a tumor could be
analyzed to more accurately deal with heterogeneous tumors [22].

Very recently, Sun et al. [19] have developed GenoCNA to
detect the cancer CNV in a tumor samples contaminated with
stroma. We have shown, using simulated samples and dilution
series of cancer celllines, that MixHMM 1is significantly more
accurate in detecting CNV in samples with a considerable
proportion of stroma. In addition, CNV regions with copy
number up to 7 can be detected effectively with the 20-state
MixHMM model. Although detection of higher copy number will
inevitably be less accurate because of the saturation effects in both
hybridization and scanning, it is essential to detect the highly
amplified regions in some cancer samples. For example, detection
of patterns of high level amplification, termed ‘firestorms’ reported
In many breast cancer samples [6], may be relevant for
classification and prognostic significance.

MixHMM is designed to detect CNV states using BAF and
LRR values, which are the typical output of Illumina BeadStudio.
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For other SNP array platforms such as the Affymetrix chip, the
original outputs need to be transformed to BAF and LRR values
beforehand. Fortunately, there are tools available for such tasks.
For example, the PennCNV site (http://www.openbioinformatics.
org /PennCNV) provides a protocol for that transformation.
Although MixHMM currently only works for CNV detection from
autosomes, it can be extended to cope with X, Y if the LRR values
are well normalized.

In conclusion, our novel algorithm offers several distinct
advantages over previous algorithms. MixHMM allows detection
of copy number variations in tumor cells from a heterozygous
sample contaminated with stromal cells, and it allows detection of
higher copy numbers and richer allelic imbalance. MixHMM
requires no training data, and the model can be easily adapted to
special set of samples. These features are critical components of
algorithms which will fully exploit the potential of the rapid
evolving genotyping platforms for the detection of genomic
variances and biomarkers.

Methods

Overview of the Model used by MixHMM

The CNV states listed in Table 1 are used as the hidden states in
the model (20 hidden states for copy numbers up to 7). The initial/
static state distributions (m) are estimated empirically. The state
transition matrix (A4) is not assumed to be stationary, but is
estimated as a function of the distance between two SNP loci (d)
using Equ. 2. The emission probability (B) of an observation given
a state is calculated as a combination of emission probabilities of
both BAF signal and LRR signal using Equ. 3 and 4. For a pure
sample, the normal distributions for LRR and BAF are estimated
empirically. For a mixed sample, the proportion of stromal cells (p)
are estimated using Equ. 11, and the normal distributions for LRR
and BAF are updated Equ. 6, 7, 9 and 10.

The Viterbi algorithm is used to decode the hidden state for
each SNP, which are consequently converted into CNV regions.
The copy number (CN) and allelic imbalance are then calculated
from the state name (composed of I’s and ‘M’s) of each CNV
region (CN=#F+#M, AI=0.5—#M/CN). To view the data
and result in IGB browser (HT'TP://igb.bioviz.org), SGR files are
generated from BAF and LRR, and WIG files are generated from
copy number and allelic imbalance. Genotype for each SNP can
be optionally called after the state assignment: the genotype (one of
four) with the greatest probability density at the BAF value. The
population frequencies of ‘B’ allele (pB) are optional (it is only
important for accurate LOH detection), and we adapted them
from the files in the PennCNV package [16]. To detect CNVs with
a different model, just create a new model file using the provided
model file ‘FM20_0.hmm’ (using more or less states and/or
different model parameters). The time performance of the
algorithm is insensitive to the number of states used.

State transition probabilities

SNP loci are not evenly distributed in a chromosome. When
two SNPs are closely located, the state of one SNP may be
dependent on the other. However, as the distance becomes larger,
the correlation will become weaker. When two SNPs are far apart,
their states would be nearly independent. Here we use an
exponential function to approximate the transition probabilities
that have the above spatial property. Suppose the distance,
measured by the number of nucleotides, between two adjacent
SNPs is d. Let m; denote the probability of the stationary
distribution of state 7, i.e., the proportion of SNPs in a state i.
And let 4; be the average length of regions in state i. Define the
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transition probability from state i to a state other than i as

pi=(—m)(1 —e~/H), )
where L;=;,(1—m;). This definition assumes that the lengths of
regions in state ¢ and in states other than i have means equal to 4;
and 4;(1 —m;)/m;, respectively. It has the following properties:

|

Here both 7; and 4; can be estimated empirically from the data.
For simplicity, if there is a state change, we assume the next state is
independent of current state (this can also be derived from the
assumption and each CNV state originated from the ‘FM’ state).
Therefore, the transition matrix 4 between two hidden states i, is
given by:
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Observation emission probabilities

Similar to PennCNV [16] and QuantiSNP [15], LRR and BAF
are assumed to be independent for estimation of emission
probabilities.

For LRR emission probabilities (the probability of observing a
LRR value r given a state i), following Wang et al. [16], we also
use a mixture of Gaussian and uniform distributions to reflect the
effect of fluctuation (caused by genotyping error) in experiments

L r—tir

P(rli)y=1e(r)+(1—1) &(

) ()

OiR OiR

where 7 is the probability that a fluctuation happens, ¢ is the p.d.f.
of a uniform distribution defined on all possible LRR values, and ¢
is the p.d.f. of the standard normal distribution. y; g,0; g are the
mean and standard deviation (SD) of LRR values in state i. Note
that different states with the same copy number 