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Abstract

NOD-like receptors (NLRs) are a group of cytoplasmic molecules that recognize microbial invasion or ‘danger signals’.
Activation of NLRs can induce rapid caspase-1 dependent cell death termed pyroptosis, or a caspase-1 independent cell
death termed pyronecrosis. Bacillus anthracis lethal toxin (LT), is recognized by a subset of alleles of the NLR protein Nlrp1b,
resulting in pyroptotic cell death of macrophages and dendritic cells. Here we show that LT induces lysosomal membrane
permeabilization (LMP). The presentation of LMP requires expression of an LT-responsive allele of Nlrp1b, and is blocked by
proteasome inhibitors and heat shock, both of which prevent LT-mediated pyroptosis. Further the lysosomal protease
cathepsin B is released into the cell cytosol and cathepsin inhibitors block LT-mediated cell death. These data reveal a role
for lysosomal membrane permeabilization in the cellular response to bacterial pathogens and demonstrate a shared
requirement for cytosolic relocalization of cathepsins in pyroptosis and pyronecrosis.
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Introduction

The innate immune system is the first defense against invading

microorganisms, and functions to either clear or limit infection

until an adaptive response can be mounted. Innate immune cells

recognize pathogen-associated molecular patterns through pattern

recognition receptors such as toll-like receptors and nucleotide

oligomerization domain-like receptors (NLRs) [1,2]. NLRs identify

cytosolic danger signal(s) or foreign molecules and activate

protective cellular responses. Some NLRs bind directly, or

indirectly, to caspase-1 (GeneID: 12362) within large molecular

weight complexes called inflammasomes, and facilitate activation

of caspase-1 resulting in processing and release of the proin-

flammatory cytokines IL-1b (GeneID: 16176) and IL-18 (GeneID:

16173) [3]. Multiple types of inflammasomes exist that vary by the

NLR that activates formation (e.g. NLRP3-inflammasome,

Nlrp1b-inflammasome, etc.). In macrophages and dendritic cells

(DCs), NLR-induced inflammasome activation can lead to

pyroptosis, a newly described necrosis-like programmed cell death

[4].

Pyroptosis is induced in response to numerous pathogens

including Shigella, Salmonella, Listeria, Legionella, Pseudomonas,

Mycobacterium, Yersinia, Burkholderia, and bacterial products

flagellin and B. anthracis lethal toxin (LT) [1,4–9]. B. anthracis LT is

produced during infection and typically functions to suppress

innate immunity [10–12]. The NLR family member Nlrp1b (also

known as Nalp1b; GeneID: 637515) recognizes the activity of B.

anthracis LT in the host cytosol, but is highly polymorphic in mice

with only a subset of alleles conferring a pyroptotic response to LT

[9]. Macrophages that express an LT-sensitive allele of Nlrp1b

(LTS) undergo pyroptosis in the presence of this toxin, releasing

inflammatory cytokines that activate innate immunity [9,13]. It is

not understood how Nlrp1b controls recognition of LT or what

downstream events lead to cell death [1,7]. Here we used LT to

investigate the mechanism of cell death that occurs during

pyroptosis.

LT is secreted by B. anthracis as two proteinaceous subunits,

protective antigen (PA; GeneID: 2820165) and lethal factor (LF;

GeneID: 2820148) [14]. The binding subunit, PA, attaches to host

cell receptors and oligomerizes to form a binding site for the

catalytic subunit, LF [15–18]. PA-LF complexes are endocytosed

and trafficked to acidic vesicles, where PA forms a membrane pore

and translocates LF into the cytosol [18]. LF is a zinc-dependent

metalloproteinase that cleaves the N-terminus of mitogen activated

protein kinase kinases (MKKs) 1–4, 6, and 7 [19,20]. Cleavage of

MKKs by LT occurs at or near MKK-MAPK binding sites,
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disrupting downstream MAPK signaling [21,22]. Although

disruption of MAPK signaling alters numerous signaling pathways

and transcription, the activating danger signal(s) that induce

pyroptosis are unknown.

Lysosomal membrane permeabilization (LMP), the loss of

proton gradients in acidic compartments and leakage of lysosomal

proteins into the cytosol, is associated with both apoptosis and

necrosis [23–28]. Severe LMP, characterized by rapid loss of

lysosomal membrane stability, is primarily associated with the final

stages of necrosis while mild LMP, or slow leakage of lysosomal

contents, alters cellular signaling and can induce caspase-

dependent apoptosis or caspase-independent apoptosis-like cell

death [24,27,29,30]. A role for LMP in LT-mediated pyroptosis

was recently described [31]. We provide confirmatory evidence

that LMP occurs during LT-mediated pyroptosis and reveal that

LMP is dependent on the presence of an LT-responsive Nlrp1b.

Results

Acidic compartments are compromised during LT-
induced pyroptosis

A hallmark of LMP is the loss of lysosomal acidity. To

determine if lysosomal pH is affected by LT, we analyzed

macrophages for alterations in acridine orange (AO) staining

following toxin challenge. AO is a cell permeable, lysosomotropic

dye that is protonated and sequestered within acidic compart-

ments such as late endosomes and lysosomes. The fluorescence

emission of AO is concentration dependent, such that at high

concentrations (e.g. in lysosomes) it fluoresces red, while under

diffuse conditions (e.g. in the cytosol) it fluoresces green. LMP can

be recognized by a decrease in red AO fluorescence while

maintaining high green AO fluorescence. RAW 264.7 cells, a

murine macrophage-like cell line that expresses LTS alleles of

Nlrp1b, were pre-loaded with AO and treated with or without LT

for various incubation times then analyzed by flow cytometry. In

LT treated cells, there was a significant increase in a subpopu-

lation of cells that emit low red and high green (LR/HG)

fluorescence compared to control-treated cells (Figure 1A) and this

population increased over time following LT challenge. Of note, a

separate population of cells appeared that displayed both low red

fluorescence and low green fluorescence compared to the entire

population (Figure S1). The loss in fluorescence in both channels is

consistent with loss of cell membrane integrity resulting in the

combined loss of acidic compartments and cytoplasmic contents

containing AO. Indeed, the number of cells in this population was

proportional with duration of LT treatment and analysis of

forward versus side scatter profiles is consistent with non-viable

cells.

Next, we tested whether appearance of the AO LR/HG

subpopulation depends on Nlrp1b allelic variations. RAW 264.7

cells are derived from BALB/c mice which express LTS Nlrp1b,

whereas IC-21 macrophage-like cells are derived from LT-

resistant (LTR) Nlrp1b expressing C57BL/6 mice and do not

undergo pyroptotic death in response to LT. IC-21 cells showed

no increase in LR/HG population in response to LT (Figure S2A).

To directly test whether Nlrp1b allelic differences were sufficient to

explain differential AO staining, we tested bone marrow derived

macrophages (BMDMs) derived from C57BL/6 mice expressing a

transgenic LT-responsive Nlrp1b allele from 129S1 mice (C57BL/

6Nlrp1b(129S1) mice; Tg+), or littermate controls (Tg2). C57BL/6

Tg- BMDMs showed no change in geometric mean fluorescence

when subjected to flow cytometry following AO staining and LT

treatment (Figure 1B). However, C57BL/6Nlrp1b(129S1) Tg+

BMDMs showed a time-dependent shift into LR/HG following

Figure 1. LT causes LMP in LTS macrophages. (A) RAW 264.7
(RAW) cells pretreated with AO and subjected to LT (3 mg/mL LF and
1 mg/mL PA) for 60 or 75 minutes or media alone (NT). Cells were
analyzed by flow cytometry, live cells were gated based on forward and
side scatter and cells were analyzed for red (FL3) and green (FL1)
fluorescence. Cells are depicted here as a density plot. Upper left
quadrants represent cells with low red and high green fluorescence (LR/
HG). Numbers correspond to percent of cell population in LR/HG
quadrant. (B) C57BL/6Nlrp1b(129S1) BMDMs (B6 Tg+) or littermate controls
(B6) were pretreated with AO and subjected to either LT (1 mg/mL LF
and 1 mg/mL PA) for 85 or 95 minutes or media alone (NT). Cells were
analyzed as in (A). Density plot represent BMDMs from one of three
C57BL/6Nlrp1b(129S1) or C57BL/6 littermate controls and are representa-
tive of results obtained. (C) C57BL/6Nlrp1b(129S1) BMDMs were treated
with 1 mg/mL of LF, PA, LF and PA (LT), PA and LF-H719C (PA/mLF), or
10 ng/mL of lipopolysaccharide (LPS) for 90 min. Cells were collected
and analyzed for red and green fluorescence as in (A). BMDMs from
three C57BL/6Nlrp1b(129S1) were used for each condition and error bars
represent standard deviation.
doi:10.1371/journal.pone.0007913.g001

LT Induces Nlrp1b-Mediated LMP
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LT-treatment (Figure 1B). Thus, in both BMDMs and immortal-

ized macrophage-like cell lines, LT causes relocalization of AO

that is dependent on expression of an LT-responsive Nlrp1b allele.

During intoxication, PA forms cation-selective, ion-conducting

channels in endosomal membranes that translocate LF in a

voltage-dependent manner [18]. To determine if the LR/HG

population observed in response to LT was due to PA pore

formation rather than LMP, we performed AO staining of cells

treated with PA alone or PA in the presence of a catalytically

inactive lethal factor, LF-H719C, which binds but does not cleave

MKKs [32]. We observed a pronounced increase in LR/HG only

in cells treated with the catalytically active LF and PA in both

C57BL/6Nlrp1b(129S1) BMDMs (Figure 1C) and RAW 264.7 cells

(data not shown). Therefore, alterations in AO staining in response

to LT are not explained by PA pore formation, but rather require

the catalytic activity of LF.

A measured decrease in acidic compartments could be due to

LMP or from loss of acidic vesicles through exocytosis, macro-

autophagy or disintegration of lysosomal membranes. To

determine if LT-treated cells show signs of lysosomal loss or

fusion, we stained and visualized acidic vesicles with Lysotracker

Red, a fluorescent probe that associates with the membranes of

acidic compartments, but unlike AO, continues to stain de-

acidified lysosomes. When added prior to a cytotoxic stimulus,

Lysotracker Red will continue to stain lysosomal membranes that

undergo LMP, but will disperse throughout the cell if the

lysosomal membrane disintegrates or fuses with the plasma

membrane [33,34]. Likewise, fusion of lysosomal membranes with

other compartments would result in a decrease in fluorescence

intensity or an increase in acidic vesicle size [35,36]. In LT treated

cells, Lysotracker Red-stained lysosomes were clearly visible

following LT-treatment up to the time of death (Figure 2).

Interestingly, Lysotracker Red continued to stain lysosomal

membranes up to 30 min following cell death, as determined by

membrane permeability to trypan blue (data not shown). This

observation is consistent with LMP, in which lysosomes lose

acidity and release lysosomal contents but appear structurally

normal [24,37]. Furthermore, no significant increase in lysosome

size was observed following LT treatment, indicating that

macroautophagy does not occur under the assay conditions

employed here (Figure 2) [38,39]. Therefore, the increase in the

AO LR/HG population following LT treatment is not due to

major lysosomal exocytosis or lysosomal fusion with non-acidic

vesicles, but is consistent with LMP.

Cathepsin B is active in the cytosol and inhibition of
cathepsins blocks LT-mediated pyroptosis

Cathepsins are a subtype of lysosomal acid hydrolases that

participate in protein turnover, antigen processing, pro-hormone

activation and, when released into the cytosol, cell death [40].

Cathepsin B (ctsB) activity was reported to be required for LMP-

mediated apoptosis and necrosis in response to multiple insults

including TNF-a, the chemotherapeutic pyrimethamine, the

antibiotics nigericin and staurosporine and the Mycobacterium

tuberculosis vaccine Bacillus Calmette-Guerin [41–46]. We tested

whether cathepsin proteolytic activity is required for LT-induced

cytotoxicity. Using CA074Me and z-FA-FMK, two compounds

that inhibit cathepsins including ctsB and ctsL, we observed that

both C57BL/6Nlrp1b(129S1) BMDMs and RAW 264.7 cells were

protected from LT (Figure 3A and 3B). In addition to their

cytosolic roles in cell death, cathepsins function within the

lysosomal lumen and extracellularly. To differentiate between

effects of CA074Me on intracellular versus extracellular cathepsin

activity, we utilized CA074, a ctsB inhibitor that is not cell

membrane permeable. Neither C57BL/6Nlrp1b(129S1) BMDMs, nor

RAW 264.7 cells, were protected from LT by pretreatment with

CA074 (Figure 3A and 3B). Therefore, the protection afforded by

CA074Me and z-FA-FMK is from inhibition of intracellular

cathepsin activity.

To ensure that cathepsin inhibitors did not negatively impact

LT entry or activity, LF activity was analyzed by probing for

MEK2 cleavage following LT challenge. No detectable change in

LF activity was observed in the presence of z-FA-FMK (Figure 3C).

Although a slight delay in MEK1 cleavage was detected in cells

pretreated with 100 mM CA074Me (data not shown), no defect in

LF activity was apparent at 50 mM (Figure 3C), a concentration

that still provided maximal protection from LT (Figure 3B).

Therefore, inhibition of intracellular cathepsin activity blocks LT-

mediated cell death.

To directly test if ctsB is active in the cytosol during LT-

mediated cell death, we utilized a novel ctsB-specific molecular

probe, Ak-EVD-AMK [47]. This probe specifically reacts with

Figure 2. Lysosome ultrastructure appears unaltered during Nlrp1b-mediated pyroptosis. (A) RAW 264.7 cells were pre-stained with
Lysotracker Red DND-99 followed by LT or untreated (NT) for 75 min and imaged on glass slides at 406magnification. Black arrows correspond to
condensed nuclear DNA observed in pyroptotic cells.
doi:10.1371/journal.pone.0007913.g002

LT Induces Nlrp1b-Mediated LMP
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Figure 3. CtsB is active in the cytosol and inhibition of cathepsin activity blocks LT-mediated pyroptosis. (A) C57BL/6Nlrp1b(129S1) BMDMs
were pre-treated with varying concentrations of z-FA-FMK, CA074Me, or CA074 for 4 hours, followed by addition of 400 ng/mL of PA and 300 ng/mL of
LF (LT), or no treatment (NT), for an additional 3.5 hours. Cytotoxicity was measured using ATP-lite. BMDMs from three C57BL/6Nlrp1b(129S1) were used
with each condition tested in quadruplicate. Error bars represent standard deviation. (B) RAW 264.7 cells were pre-treated with varying concentrations
of z-FA-FMK, CA074Me, or CA074 for 4 hours, followed by addition of 400 ng/mL of PA and 300 ng/mL of LF (LT), or no treatment (NT), for an additional
3.5 hours. Cytotoxicity was measured using ATP-lite. The data presented here are representative of three or more independent experiments. Each point
represents the mean of triplicate or quadruplicate samples from a single experiment, with error bars representing standard error. (C) RAW 264.7 cells
were pre-treated with 100 mM z-FA-FMK or 50 mM CA074Me for 4 hours followed by LT (400 ng/mL PA and 300 ng/mL LF; +) or no toxin (2) for
2.5 hours. Cell lysates were subjected to western blot analysis and probed with an antibody that recognizes the N-terminus of MEK2. (D) Specificity of
the ctsB probe Ak-EVD-AMK was determined by treating RAW 264.7 or NIH 3T3 cells with or without high concentration (5 or 10 mM) of probe.
Cycloaddition assays were performed on Ak-EVD-AMK labeled cellular lysates with azido-rhodamine, and Ak-EVD-AMK labeled proteins were analyzed
by in-gel fluorescence. The pro-form of ctsB is 43 kDa, whereas active ctsB is seen as either 31 kDa or 25 kDa. (E) In-gel fluorescence showing
electrophoretically separated proteins from RAW 264.7 cells treated with 400 ng/mL of PA and 300 ng/mL of LF and/or, low dose (625 nM) Ak-EVD-
AMK. Under these conditions, cytosolic ctsB is preferentially labeled. Cycloaddition was preformed as in (D). The gel was then stained with coomassie to
indicate equal sample loading.
doi:10.1371/journal.pone.0007913.g003

LT Induces Nlrp1b-Mediated LMP
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active but not the pro-form of ctsB by covalently modifying the

active site cysteine of this protease. Ak-EVD-AMK reacts with

both cytosolic and lysosomal ctsB at high concentrations (5-

10 mM) (Figure 3D), but is specific for cytosolic ctsB at lower

concentrations (625 nM). Ak-EVD-AMK contains an alkyne

functional group that allows for subsequent covalent modification

of labeled proteins with azide-containing imaging probes via a

copper catalyzed cycloaddition reaction. RAW 264.7 cells were

treated with LT, labeled with low dose Ak-EVD-AMK to detect

cytosolic ctsB, lysed and the alkyne-modified proteins were

detected by cycloaddition of azido-rhodamine followed by SDS-

PAGE and direct in-gel fluorescence detection (Figure 3E). A

strong increase in Ak-EVD-AMK labeling of ctsB was observed at

low probe concentration in LT treated cells compared with no-

toxin controls. Thus, LT induces ctsB release into the cytosol,

consistent with LMP. Taken together, our data indicate that ctsB is

active in the cytosol during LT-mediated pyroptosis and that

cathepsins are required to induce cell death.

LT-induced LMP is a late event in pyroptosis
Several recent studies have begun to elucidate the pyroptotic

response to LT. Events that occur following intoxication include

(in order of occurrence) cleavage of MEKs and/or an unidentified

target(s), proteasome cleavage of unknown target(s), mitochondrial

dysfunction, potassium efflux, caspase-1 inflammasome activation,

plasma membrane permeability and cellular lysis with release of

IL-1b and IL-18 [9,13,48–52]. To determine the stage at which

LMP contributes to pyroptosis, we performed epistasis experi-

ments using chemical inhibitors and conditions that prevent LT-

induced pyroptosis. The observation that LMP is not detected in

LT-treated wildtype C57BL/6 BMDMs nor IC-21 cells (Figure 1B

and Figure S2A) suggests that LMP is downstream of Nlrp1b

activity. We found that heat shock or the presence of proteasome

inhibitors, two conditions that inhibit LT-induced caspase-1

activation and pyroptosis [48,49,51,53,54], prevented a shift to

LR/HG in C57BL/6Nlrp1b(129S1) BMDMs (Figure 4) or RAW

264.7 cells (Figure S2). Interestingly, the presence of 150 mM

exogenous potassium chloride, conditions that protect macro-

phages from LT lysis (data not shown), did not prevent AO

relocalization (Figure 4B). Of note, potassium chloride protection

from LT-mediated cellular lysis is also downstream of disruption of

mitochondrial membrane potential [48]. Thus, our data supports

potassium efflux as a late event in pyroptosis.

Cellular stress proteins are altered during LT-mediated
pyroptosis

LT-induced pyroptosis appears to be independent of gross

transcriptional changes [55-57], and is likely governed by changes

in the proteome. We investigated the affect of LT on the

macrophage proteome using two-dimensional difference gel

electrophoresis (2D-DIGE). MEK1 was cleaved by 20 min,

MEK2 by 40 min and cellular lysis occurred between 75 and

90 min post-LT challenge under the conditions employed here

(data not shown). We found generalized proteolysis following

70 min of LT intoxication (data not shown), consistent with LMP

or extrinsic apoptosis [26]. Since we detected LF cytosolic activity

by 20 min, we chose to analyze the proteomic changes following

LT challenge at 30 and 40 min post-LT to identify early events in

the pyroptotic death pathway. LF-specific events were further

elucidated by comparison with macrophages treated with the

binding component (PA) alone.

2D-DIGE identified several proteins whose abundance increased

or decreased following LT challenge. The identities of proteins

whose abundance changed most significantly were determined by

excising protein spots, followed by trypsin digestion and mass

spectrometric analysis (Table 1). Proteome changes were validated

by western blot analysis, which confirmed that microtubule-

associated protein, RP/EB family, member 1 (Mapre1; GeneID:

13589), eukaryotic translation elongation factor 2 (EF-2; GeneID:

13629) (Figure 5A) and heat shock protein 70 kDa (Hsp70; GeneID:

15511) (Figure 5B) increase following LT challenge. Interestingly,

we see fluctuations in protein abundance followed by loss of both

Hsp70 and EF-2 at later intoxication time points (Figure 5A and

5B). Bcl-2-associated athenogene 1 (Bag-1; GeneID: 12017) is an

anti-apoptotic gene that associates with Mapre1, Hsp70 and nuclear

Figure 4. Heat shock, proteasome and ctsB/L inhibition, but
not potassium chloride, prevents LT-induced LMP. (A) C57BL/
6Nlrp1b(129S1) BMDMs were heat shocked at 42uC (HS) for 15 min prior to
addition of LT (1 mg/mL of PA and 500 ng/mL of LF) for 90 min.
Proteasome inhibition was accomplished with co-incubation of cells
with 10 mM MG-132 and either LT (1 mg/mL of PA and 500 ng/mL of LF)
or PA only for 90 min. Cells were collected for flow cytometry and % LR/
HG was determined as in Figure 1A. Experiments were preformed using
BMDMs from three C57BL/6Nlrp1b(129S1) and samples were collected in
triplicate. Error bars represent standard deviation. (B) In a separate
experiment C57BL/6Nlrp1b(129S1) BMDMs were pretreated with LT
(400 ng/mL PA and 300 ng/mL LF) or without toxin (NT) for 2.5 hours.
Cells were also either pre-incubated with 50 mM CA074Me for 4 hours
or co-treated with 150 mM potassium chloride (KCl) followed by LT.
Cells were collected for flow cytometry and % LR/HG was determined as
in Figure 1A. Experiments were preformed using BMDMs from three
C57BL/6Nlrp1b(129S1) and samples were collected in triplicate. Error bars
represent standard deviation.
doi:10.1371/journal.pone.0007913.g004

LT Induces Nlrp1b-Mediated LMP
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hormone receptors [58]. We did not, however, observe changes in

Bag-1 protein levels following LT challenge (Figure 5A). Lamin A

(GeneID: 16905) appears to be processed during LT-treatment

since we found Lamin A to decrease in one excised spot while

increasing in another. We also found alterations in levels of a-

enolase, a known substrate of caspase-1 that colocalizes with Nlrp1b

inflammasomes [13,59]. Interestingly, cathepsin 7 precursor (also

known as CTS1 and cts7; GeneID: 56092) is homologous to ctsL

but is understudied and primarily associated with embryonic

development. Cathepsin 7 is expressed in RAW 264.7 cells and

may be proteolytically activated or change subcellular localization

in response to LT. Of the proteins found to change following LT

treatment, the vast majority are activated by or involved with the

cellular stress or heat shock response (Table 1). In addition to

inflammasome formation, it appears that LT activation of Nlrp1b

causes a stress response that results in numerous changes in the

proteome followed by generalized proteolysis.

Finally, we also found that Bid (GeneID: 12122), a potential

mediator of LMP-mediated cell death [24,60,61], is processed to

its active form, tBid, in the presence of LT (Figure 5B).

Interestingly, Bid can be cleaved by cathepsins B, H, L, S, K

[30,62], and potentially caspase-1 [63]. Therefore, Bid may

amplify an LMP positive feedback loop (Figure 6A) and is a

potential mediator of LT-induced pyroptosis. Our data supports

pyroptosis as a type of programmed cell death mediated by

Nlrp1b, cathepsins and potentially Bid.

Discussion

Pyroptosis is a pro-inflammatory PCD that occurs in response to

cellular recognition of danger signals [1–3,64]. Although requiring

caspase-1, pyroptosis maintains characteristics of necrosis [65,66],

a caspase-independent cell death. Here we show that LMP occurs

during LT-mediated pyroptosis, which leads to the release of ctsB

into the cytosol and resultant cell death. A causal role for cytosolic

cathepsin activity in pyroptosis is indicated by the ability of

CA074Me and z-FA-FMK, but not CA074, to block LT-mediated

cytolysis. Lysosomal membranes can be observed up to and after

the time of plasma membrane permeability, suggesting that LMP,

rather than lysosomal exocytosis, disintegration or fusion, occurs

during LT-mediated pyroptosis.

Previously, pyroptosis was differentiated from pyronecrosis by

the requirement for caspase-1 and ctsB, respectively [8]. Although

casp-12/2 macrophages show reduced sensitivity to LT, they are

partially susceptible to LT-mediated cytolysis by an unknown

process [9]. In the absence of caspase-1 activity, other mediators of

LMP and pyroptosis, such as cathepsins, may be sufficient to

induce cell death. Since ctsB can induce cell death similar to

Figure 5. Proteomic changes in LT-treated cells. Western blots
showing electrophoretically separated proteins from RAW 264.7 cells
treated with LT for various time points, or untreated (NT). Arrows
indicate protein isoforms detected using protein-specific primary
antibodies and fluorescently labeled secondary antibodies. (A) Identical
cellular lysates were subjected to SDS-PAGE, transferred to PVDF and
probed with different primary and secondary antibodies. b-tubulin was
used as an equal loading control in each experiment. This blot
represents one of three independent experiments showing similar
results. (B) Identical cellular lysates were subjected to SDS-PAGE,
transferred to PVDF and probed with different primary and secondary
antibodies. Anti-Bid antibody recognizes both full-length Bid (FL-Bid)
and the truncated form (tBid). The membrane was exposed to film for
1 sec (low exposure) or 45 sec (high exposure) to detect both FL-Bid
and tBid. tBid protein surfaces at 50 min following LT treatment at high
toxin concentrations. This blot represents one of three independent
experiments showing similar results.
doi:10.1371/journal.pone.0007913.g005

Table 1. Proteomic changes that occur in RAW 264.7 cells
treated with LT.

Accession Protein ID Protein name Stress (*) I/D

NP_034608 Hsp70 * I

NP_112442 Hsc70 * I

NP_062412 Cathepsin 7 precursor I

NP_075608 a-enolase * I

NP_031933 EF-2 * I

NP_598890 SNEV * I

NP_031922 Mapre1 * I

NP_001002011 Lamin A * I/D

NP_079683 M16-peptidase/putative
ubiquinol-cytochrome c
reductase core protein 1

I

NP_080405 ERp29c * I

NP_542364 Nuclear aco2 D

AAA40075 Ribosomal protein S4 D

NP_001002011 Lamin A * D

BAA01862 p66 mot1 * D

NP_034860 annexin A1 * D

Proteins whose abundance was altered at both 30 and 40 min post-LT
challenge in 2D-DIGE were identified through LC-MS/MS. Stars represent
proteins whose abundance change is recorded in the literature to occur
following heat shock or stress. Proteins that increased (I) following exposure to
LT, versus PA only, and those that decreased (D) relative to PA only are
indicated. Fold increase or decrease varied from 0.5 to 3.0.
doi:10.1371/journal.pone.0007913.t001

LT Induces Nlrp1b-Mediated LMP
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pyroptosis in the absence of caspase-1 [8], the role of cathepsins in

pyroptosis may be substantial.

Inflammasome complexes are typically comprised of caspase-1,

caspase-11, a NOD/NLR family member and a caspase adaptor

protein, ASC. Unlike other NLRPs, Nlrp1b lacks a pyrin domain,

the ASC-binding domain, but does encode a caspase recruitment

domain (CARD) that may directly bind caspase-1 [9]. In support

of an ASC-independent role in Nlrp1b-mediated cell lysis, RAW

264.7 cells, which lack ASC expression [67], respond to LT

similarly to ASC-expressing J774A.1 macrophage cell line and

C57BL/6Nlrp1b(129S1) BMDMs (Figure 1) [9,68,69]. Further, size

exclusion chromatography of J774A.1 cells treated with LT

revealed a shift in localization of caspase-1 from a low-molecular

weight fraction containing ASC to a high molecular weight

fraction containing Nlrp1b, but not ASC [13]. Interestingly, ASC

is required for IPAF/NLRC4-mediated caspase-1 activation and

IL-1b production, but is not required for IPAF-mediated

pyroptosis [70–72]. Finally, ASC is not required for human

NALP1 inflammasome activation [73]. Therefore, ASC is not

likely required for LT-mediated cell lysis, but may enhance IL-1b
and IL-18 release in response to this toxin. The role, or lack

thereof, for ASC in Nlrp1b-mediated pyroptosis is currently being

pursued in our laboratory.

There are conflicting data on exactly where in the cell death

pathway LMP plays a role. On one hand, we find that LMP, like

mitochondrial outer membrane permeability (MOMP), occurs

after involvement of Nlrp1b and the proteasome, indicating that

this is a late event. Furthermore, heat shock prevents LMP and

protects macrophages from lysis even when applied late in the

intoxication process [51]. In contrast, we observed that potassium

chloride, which blocks inflammasome activation in other systems

[74], did not block LMP, suggesting that LMP occurs prior to or

independent of inflammasome activation. Interestingly, Newman

et al. found that the potassium channel inhibitor quinidine did not

prevent LT-induced LMP [31], however data is not shown.

Although preventing cellular lysis, 150 mM KCl supplemented

media does not inhibit LT-induced MOMP [48]. Since

mitochondrial membrane disruption induces LMP [75], we

hypothesize that LT-induced MOMP is sufficient to induce

LMP in an Nlrp1b-independent manner. It would be interesting

to determine if quinidine prevents LT-induced MOMP, thus

preventing LMP.

We propose a model whereby LMP participates in a positive

feedback loop that requires Nlrp1b to amplify an LT-mediated

danger signal (Figure 6). Precedence for such a positive feedback

loop exists. For example, cathepsins released into the cytosol

during LMP cleave the pro-apoptotic protein Bid that induces

MOMP and further LMP [25,26,75]. Cathepsins also cleave and

activate caspase-1 [76], and both cathepsins and caspase-1 cleave

Bid [30,60,62,63], further augmenting a positive feedback

amplification loop. In this model, LMP could be up- or

downstream of inflammasome activation. Indeed, LMP can itself

act as a danger signal, inducing inflammasome activation and cell

death through changes in calcium concentration, cytosolic cathep-

sin activity, oxidative stress, or induction of MOMP [77–79]. It is

possible that initial LMP occurs upstream of Nlrp1b but LMP is not

detected using our AO relocalization assay. In this case, both LTS

and LTR cells would initiate a cell death pathway that involves

LMP, but that only cells containing an LTS Nlrp1b amplify and

propagate the signal. This would coincide with the observation that

Figure 6. Model of LF internalization and activation of LMP and MOMP. LF binds oligomerized PA pre-pore and is internalized into
endosomes where acidic pH triggers PA to form a pore in the endosomal membrane and translocate LF into the host cytosol. Following translocation,
LF cleaves MKKs and induces Nlrp1-dependent pyroptosis. LF directly, or indirectly, causes LMP, resulting in release of cathepsins into the cytosol.
Cathepsins or LMP-mediated signaling may directly activate the inflammasome. Alternatively, LMP may occur downstream of inflammasome
activation, potentially through caspase-1 mediated cleavage of Bid. Activation of caspase-1 or cytosolic release of cathepsins can result in cleavage of
Bid and a positive feedback amplification of LMP, inflammasome activation and mitochondrial outer membrane permeabilization (MOMP).
doi:10.1371/journal.pone.0007913.g006
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cathepsin inhibitors prevent detectable LMP. Therefore, a feedback

loop induced first by minor leakage of cathepsins into the cytosol

could be amplified by increased inflammasome/caspase-1 activa-

tion, Bid cleavage, MOMP and/or activation of unknown signaling

molecules.

Our finding that LMP is involved in LT-mediated cell death

may explain the activity of various inhibitors reported to protect

cells from LT. For example, calpain inhibitors and secretory

phospholipase A2 (sPLA2) inhibitors, both of which protect

against LMP [80–82], also protect cells from LT-induced

pyroptosis [49,83]. In addition, antioxidants such as N-acetyl-

cysteine are potent inhibitors of LMP and prevent LT-induced

release of IL-1b, a downstream product of inflammasome

activation [17,84,85]. Finally, heat shock provides strong

protection against LT-mediated pyroptosis through an unknown

mechanism [54], and Hsp70 protects from both LMP [86–88]

and MOMP [88–93] and is capable of reducing cellular damage

associated with these death pathways. Heat shock leads to

increased levels of Hsp70 and therefore, Hsp70 may play a

substantial role in mediating heat shock-induced resistance to LT.

Of note, all proteomic studies report a change in Hsp70, with one

group reporting a decrease in Hsp70 [94], while other groups

report an increase in Hsp70 following LT treatment [95–97].

Whether Hsp70 overexpression is sufficient to protect against LT-

induced LMP and pyroptosis is currently being explored. We also

report multiple stress response proteins, specifically those involved

in heat shock response, are altered during LT-induced pyroptosis.

A heat shock-type response may be a reaction to LT- or

pyroptosis-associated cell damage, though this response fails to

protect cells from major LMP and cytolysis induced by the toxin

dose used in in vitro studies.

Inflammasome activation and pyroptosis has broad biological

significance. While caspase-1 activation protects the host from

various pathogens during infection, excessive caspase-1 activation

contributes to various inflammatory disorders and septic shock

[3,7,8]. The control of caspase-1 activation and pyroptosis is an

attractive target for protecting cells from both microbial and

autoinflammatory attack. Our data support a role for lysosomal

cathepsins in NLR-mediated pyroptosis. CtsB is recently impli-

cated in activation of NLRP3-inflammasomes by crystalline

structures [77,78] and in caspase-1 cleavage [76]. Here we show

that lysosomal damage and release of cathepsins are central to

pyroptosis initiated by LT.

Materials and Methods

Cell Culture and Reagents
RAW 264.7 cells and J774A.1 were cultured in DMEM

(Cellgro, Mediatech, Inc cat#10-017-CV) and IC-21 cells were

cultured in RPMI. Cell lines were obtained from ATCC. Femur

exudates from C57Bl/6 or C57BL/6Nlrp1b(129S1) transgenic animals

were cultured for 7 days in DMEM both supplemented with 10%

fetal bovine serum (Atlanta, cat#S11550), 1% penicillin/strepto-

mycin/glutamine (Gibco), 2% 14–22 conditioned media and

incubated in a 5% CO2 humidified incubator at 37uC. BMDMs

from three C57BL/6Nlrp1b(129S1) or C57BL/6 littermate controls

were used as replicates for each experiment. Intoxication medium

consisted of DMEM containing 25 mM Hepes (Cellgro, Media-

tech, Inc. cat#15-018-CV), supplemented with 10% FBS and 1%

PSG. PA, LF and LF-H719C were produced and purified as

previously described [98]. CA074 (N-1475) and CA074Me (N-

1660) were purchased from Bachem (Torrance, CA). LPS was

from Escherichia coli. Z-FA-FMK (cat# 342000) was purchased

from Calbiochem.

Acridine orange relocation assay
Cultured cells (56105 per well) were seeded in 6-well plates in

DMEM the night before intoxication. The next morning, media

was replaced with intoxication media containing 5 mg/ml acridine

orange (Calbiochem, cat# 113000) for 15 min under otherwise

standard culture conditions. Wells were then rinsed twice with

intoxication media and 1 mg/mL PA and 1 mg/mL LF (unless

otherwise stated) was added to LT-treated cells. Cells were

detached by scraping with a rubber policeman, collected by

pelleting at 5,0006 g and washed three times with PBS (1 mL).

PBS with 1% formaldehyde (300 mL) was used to fix cells and

samples were subjected to flow cytometric assessment of red (FL3

channel) and green (FL1 channel) AO fluorescence using a Becton

Dickinson FACSCalibur Analytic Flow cytometer. Analysis was

performed using FLOWJO flow cytometry analysis software (Tree

Star, Inc., Ashland, Oregon).

Lysotracker staining and imaging
RAW 264.7 cells (16105 per well) were seeded on 12 mm poly-

D-lysine coverslips (BD Biosciences cat# 354086) within 12-well

plates the day before experiment. DMEM containing 50 nM

Lysotracker Red DND-99 (Invitrogen-Molecular Probes) was

added to cells for 90 min under normal growth conditions. Cells

were then washed twice with PBS, followed by addition of

intoxication media alone or containing 1 mg/mL of LF and 1 mg/

mL of PA. Coverslips were removed from dish and live cells were

imaged in PBS containing 2 mM MgCl2 using an inverted Nikon

Eclipse TE300 fluorescence microscope.

Cytotoxicity assay
For 384-well plate format, cells were seeded at 26103 cells

per well in white-bottom plates. Toxin and/or inhibitors were

added to a total of 60 mL of total media and incubated for the

time indicated. Experiments were halted with addition of 20 mL

of ATP-lite (PerkinElmer, Waltham, Massachusetts) and lumi-

nescence was measured using Victor 3V (PerkinElmer) plate

reader. Luminescence data is obtained in relative light units

(RLU). Background luminescence was subtracted from all

samples.

Cytosolic ctsB activity assay
Cultured cells (66106) were seeded in 10 cm dishes and treated

with 400 ng/mL PA and 300 ng/mL of LF. After 90 minutes, Ak-

EVD-AMK (625 nM for cytosolic probing; 5 or 10 mM for total

cellular ctsB probing) or DMSO was added to intoxication media

for an additional 30 min. The cells were then collected by gentle

scraping, pelleted by centrifugation at 2,0006g, and washed twice

with PBS (1 mL). Cell pellets were resuspended in 100 mL of ice-

cold NP-40/TEA lysis buffer (1% NP-40, 50 mM triethanolamine

(TEA), 150 mM NaCl, pH 7.4, with Complete Mini protease

inhibitor cocktail (Roche Biosciences, Indianapolis, IN)) for

30 min and then centrifuged at 4uC for 10 min at 13,2006 g.

Post-nuclear supernatants were collected and protein concentra-

tion was determined using Bio-Rad Protein Assay (cat# 500-

0001). NP-40/TEA lysis buffer was added to lysates to equate

experimental sample volumes and cycloaddition reactions were

performed as follows: Azido-rhodamine tag (100 mM, 5 mM stock

in DMSO) was added, followed by 1 mM TCEP (50 mM stock in

H2O) and 100 mM triazole ligand (1.7 mM stock in DMSO:t-

butanol 1:4). The samples were gently vortexed and 1 mM

CuSO4 (50 mM stock in H2O) was added. Samples were vortexed

again and allowed to react at RT for 1 h. Reactions were

terminated by addition of ice-cold acetone (1 mL), incubated at
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220uC for 20 min and centrifuged at 13,2006 g 4uC for 30 min

to precipitate proteins. The supernatants were carefully decanted

and the resulting pellets dried at RT for 5 min to remove excess

acetone. The protein pellet was subsequently resuspended in 2X

SDS-protein reducing buffer and boiled for 10 min. Proteins were

then separated by SDS-PAGE and analyzed by in-gel fluorescent

scanning using a Typhoon scanner (GE Healthcare; excitation at

532 nM, emission at 580 nM).

Immunoblotting
Cells were lysed in 1% Triton X-100 buffer (150 mM NaCl;

50 mM Tris-HCl, pH 8; 0.1% SDS; 1% Triton X-100; 5 mM

MgCl2) with Complete Mini protease inhibitor cocktail (Roche

Biosciences), incubated on ice for 30 min, spun down at

13,2006 g for 10 min unless otherwise noted. Post-nuclear

supernatant protein concentration was determined using Bio-

Rad Protein Assay. Proteins were denatured by addition of 6X

reducing SDS-protein loading buffer and boiled for 10 min.

Samples were vortexed, spun down at 13,2006g for 10 minutes

and separated by SDS-PAGE (10% gel for MEK2 and ctsB; 15%

gel for Bid/tBid) followed by transfer to PVDF. Membranes

were blocked with 5% nonfat dried milk in TBST (50 mM Tris,

150 mM NaCl, 0.5% Tween 20, pH 7.6) for 1 hr at RT, then

incubated with primary antibody in 5% nonfat dried milk in

TBST for 1 h at RT or overnight at 4uC. Membranes were

washed 3x with TBST for 10 min and either developed or

probed with secondary antibody (goat anti-rabbit 1:10,000,

Sigma Aldrich) followed by washing 3x with TBST for 20 min.

Membranes were developed using ECL reagents (ImmunoStar,

BioRad) and autoradiography film (HyBlot, Danville Scientific).

To ascertain levels of endogenous proteins, SDS-PAGE gels

were stained with coomasie and photographed or membranes

were probed with anti-tubulin antibody (T5168 from Sigma

Aldrich) followed by goat anti-mouse IgG (cat# 28173 from

AnaSpec, Inc. San Jose, CA). Anti-Bid antibody (# 2003), anti-

Hsp70 antibody (#4872), anti-eEF2 (#2332) were purchased

from Cell Signaling Technology; anti-Bag-1 (C16) antibody

(DB004) from Delta Biolabs, Gilroy, CA, anti-MAPRE1 (EB1,

H-70: sc-15347) antibody and MEK-2 (N-20): sc-524 from Santa

Cruz Biotechnology.

2D-DIGE
Two dimensional difference gel electrophoresis (2D-DIGE)

was performed at Applied Biomics, Hayward, CA. Cells were

seeded the previous day at 107 cells per 10 cm plate. Cells were

treated with either PA (1 mg/mL) or PA and LF (1 mg/mL each)

for 30 or 40 min. Timing of sample collection was carefully

calibrated by western blot analysis of MEK1 and MEK2

cleavage, confirming LF internalization and activity by

20 min. Following LT-challenge, cells were collected by gentle

scraping, washed 3x with PBS, pelleted at 2,0006 g for 5 min

and pellets were flash-frozen in ethanol-dry ice bath and shipped

to shipped to Applied Biomics. Proteins were extracted and

labeled with either Cy3 or Cy5. Isoelectric focusing in the first

dimension was carried out at pH 3–10, and size-based

separation in the second dimension was performed using a 9–

12% linear gradient SDS-PAGE. Proteomic changes were

detected using DeCyder software and spots were cut out at

Applied Biomics and mailed to UCLA. Spots were digested with

trypsin and subjected to LC-MS/MS (UCLA) using either a

QqTOF instrument or nanospray. Peptide sequencing was

accomplished with nanoflow high performance liquid chroma-

tography system (LC Packings, Sunnyvale, CA, USA) with a

nanoelectrospray (nano-ESI) interface (Protana, Odense, Den-

mark) and an Applied Biosystems/Sciex QSTAR XL (QqTOF)

mass spectrometer (Foster City, CA). The samples were first

loaded onto a LC Packings PepMap C18 precolumn

(150 mm63 mm; particle size 5 mm) and washed for two minutes

with the loading solvent, 0.1% formic acid. The samples were

then injected into a LC Packings PepMap C18 column

(75 mm6150 mm; particle size 5 mm) for nano-LC separation

at a flow rate of 220 nL/min. For each LC-MS/MS run,

typically 6 mL sample solution was loaded to the precolumn first

and washed with the loading solvent of 0.1% FA. The eluents

used for the LC were (A) 0.1% formic acid and (B) 95% ACN/

5% H2O/0.1% FA. The following gradient was used: 6% B to

24% B in 18 min, 24% B to 36% B in 6 min, 36% B to 80% B in

2 min and stayed at 80% B for 8 min. The column was finally re-

equilibrated with 6% B for 16 min before the next run.

A New Objective (Woburn, MA) PicoTip tip (i.d. 8 mm) was

used for spraying with the voltage set at 1750 V. Peptide product

ion spectra were automatically recorded during the LC-MS runs

by the information-dependent analysis (IDA) on the mass

spectrometer. Argon was employed as the collision gas. Collision

energies for maximum fragmentation were automatically calcu-

lated using empirical parameters based on the charge and mass-to-

charge ratio of the peptide. Protein identifications were deter-

mined using Mascot database search algorithm (Matrix Science).

Supporting Information

Figure S1 AO relocalization in ungated cells contain a low red,

low green subpopulation. C57BL/6Nlrp1b(129S1) BMDMs (B6 Tg+)

or littermate controls (B6) were analyzed for changes in AO

fluorescence as in Figure 1B, except cells were not gated via

forward and side scatter for normal cell morphology. Density plot

represents BMDMs from one of three C57BL/6Nlrp1b(129S1) or

C57BL/6 littermate controls that were tested with similar results

for each.

Found at: doi:10.1371/journal.pone.0007913.s001 (1.19 MB TIF)

Figure S2 RAW 264.7 and IC-21 cells display a similar

phenotype as BMDMs in AO relocalization. (A) RAW 264.7 cells

pretreated with AO for 20 minutes were treated with LT (500 ng/

mL LF and 1 mg/mL PA) or left untreated (NT) for 3 to 4 hours.

Cells were collected for flow cytometry and analyzed as in

Figure 1A. Results represent duplicate samples from two

independent experiments. Error bars represent standard error.

(B) RAW 264.7 were heat shocked at 42uC (RAW + HS) or left

untreated (RAW) for 15 min prior to addition of AO, followed by

LT (3 mg/mL LF and 1 mg/mL of PA) for 75 and 90 min. Cells

were analyzed for changes in AO fluorescence as in Figure 1A.

Density plot represents one of three independent experiments with

similar results.

Found at: doi:10.1371/journal.pone.0007913.s002 (1.32 MB TIF)
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