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Abstract

The growing accessibility to genomic resources using next-generation sequencing (NGS) technologies has revolutionized
the application of molecular genetic tools to ecology and evolutionary studies in non-model organisms. Here we present
the case study of the European hake (Merluccius merluccius), one of the most important demersal resources of European
fisheries. Two sequencing platforms, the Roche 454 FLX (454) and the Illumina Genome Analyzer (GAII), were used for Single
Nucleotide Polymorphisms (SNPs) discovery in the hake muscle transcriptome. De novo transcriptome assembly into unique
contigs, annotation, and in silico SNP detection were carried out in parallel for 454 and GAII sequence data. High-
throughput genotyping using the Illumina GoldenGate assay was performed for validating 1,536 putative SNPs. Validation
results were analysed to compare the performances of 454 and GAII methods and to evaluate the role of several variables
(e.g. sequencing depth, intron-exon structure, sequence quality and annotation). Despite well-known differences in
sequence length and throughput, the two approaches showed similar assay conversion rates (approximately 43%) and
percentages of polymorphic loci (67.5% and 63.3% for GAII and 454, respectively). Both NGS platforms therefore
demonstrated to be suitable for large scale identification of SNPs in transcribed regions of non-model species, although the
lack of a reference genome profoundly affects the genotyping success rate. The overall efficiency, however, can be
improved using strict quality and filtering criteria for SNP selection (sequence quality, intron-exon structure, target region
score).
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Introduction

The European hake (Merluccius merluccius, Linnaeus, 1758;

Merlucciidae, Actinopterygii) is a widely distributed species

inhabiting the North-Eastern Atlantic Ocean and the Mediterra-

nean Sea, whose respective stocks are managed by the Interna-

tional Council for the Exploration of the Seas (ICES) and the

General Fisheries Commission for the Mediterranean (GFCM). It

represents one of the most important demersal target species of

Western European and Mediterranean commercial fisheries [1,2].

According to the FAO report on 2008 fishery statistics [3],

European hake ranks first within Mediterranean and among the

ten top demersal fish species in North-East Atlantic in terms of

catches, and at present stocks are under heavy exploitation and

rebuilding action plans [4,5]. Despite its relevance as a fishery

resource and growing concerns on fishery stock sustainability,

population structure and management units of European hake are

only roughly defined and poorly supported by fishery-independent

data, such as life-history traits and population genetics. At present,

three large stock units of European hake have been recognized in a

management framework, two in the North-Eastern Atlantic (i.e.

the Northern and Southern stocks which extend northward and

southward to the Cape Breton submarine canyon in the Bay of

Biscay, respectively) and one in the whole Mediterranean, from

the Gibraltar Strait to the Levantine Sea. Population genetic

structure assessed at six potentially neutral microsatellite loci

supported a distinction between Atlantic and Mediterranean

stocks [6,7], while the high connectivity and temporal variation

among Atlantic populations [6–10] questioned the separation

between Northern and Southern Atlantic stocks [11,12]. However,

the subtle genetic differentiation among population samples at the

neutral loci revealed a relatively weak population structure and
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prevented the robust assignment of individual fish to the stock of

origin [7]. On the other hand, genetic loci potentially under

selection might be more efficient in detecting locally adapted

populations and associated potential management units for

conservation in marine fish [13,14]. In European hake populations

a significant correlation between the allele frequency variation at

the glyceraldehyde-3-phosphate dehydrogenase locus and the

latitudinal gradient in surface salinity has been previously detected

[15]. Identification of other genetic loci potentially under selection

might provide promising tools to resolve population structure and

traceability of this species at a smaller spatial scale.

Recently, major technological advances have opened innovative

opportunities in the application of molecular genetic tools to study

evolutionary processes in natural populations of marine species

[14,16]. The emergent field of population genomics [17] has

shown the potential of exploring genetic variation at a genome-

wide scale and offered the opportunity to gain insights into the

evolutionary mechanisms of adaptive divergence in the wild [18–

20]. The growing interest in developing genomic resources is due

mainly to the rapid development of next-generation sequencing

(NGS) technologies (see review by Metzker [21]), allowing the

production of massive volumes of data at relatively modest and

decreasing costs compared to the traditional Sanger sequencing

method. The opportunity to obtain extremely large collections of

expressed sequence tags (ESTs) at reduced cost, potentially

provides an unprecedented trove of genetic markers located in

functionally relevant regions of the genome [22–26]. Although

EST data mining has mainly been used so far to identify

microsatellite loci, the application of single nucleotide polymor-

phisms (SNPs) is rapidly catching up [27], because they are the

most abundant and widespread genetic variants in the eukaryote

genome, with great potential in ecological and evolutionary studies

[28,29]. Compared to microsatellites, SNPs show lower genotyp-

ing error rates, higher data quality and genomic coverage and low

probability of homoplasy [28], with the further advantage of easier

‘‘portability’’ of genotypic data across laboratories. A major benefit

of utilizing SNP markers associated with transcribed regions of the

genome concerns the prospect of identifying outlier genetic

markers, showing significantly increased or decreased differentia-

tion among populations compared to neutral expectations [17,30].

Outlier loci are presumed to be either directly linked or in tight

linkage disequilibrium with loci subject to natural selection

[19,31]. Scaling up the number of available EST-linked SNPs to

hundreds of thousands of markers extends the genome-coverage,

thereby increasing the probability of identifying loci under

selection, and associated insights into population structuring and

its determinants [32].

The growing accessibility to high-throughput sequencing

technologies and the concurrent development of innovative

bioinformatics tools has enabled the application of wide-scale

SNP discovery based on transcriptome sequencing even in species

for which genomic resources are still limited or absent [25,26,33–

37]. Recently, several studies concerning fish species relevant to

fishery and aquaculture, such as rainbow trout [38], lake sturgeon

[39], lake whitefish [40], sockeye salmon [41], catfish [42] and

turbot [43] have successfully used this approach. However,

experimental evidence on large scale validation of in silico-

identified SNPs is still limited and restricted to EST data sets

obtained with traditional Sanger sequencing [44,45].

The present study reports the muscle transcriptome character-

ization and the discovery and validation of a large set of SNP loci

for European hake, based on NGS technologies. Existing NGS

technologies provide a variety of approaches for transcriptome

characterization, although the two most popular platforms are the

Roche 454 FLX [46] and the Illumina Genome Analyzer [47,48].

The Roche 454 FLX (hereafter 454) is capable of generating one

hundred million nucleotides per run, producing sequences of

length approaching 400 base pairs (bp) with an average

substitution error rate that is relatively low with respect to other

sequencing technologies. The alternative leading sequencing

system, the Illumina Genome Analyzer (hereafter GAII) produces

shorter reads, currently up to 150 bp, with higher average

substitution error rates but much higher throughput and lower

costs [48]. As longer reads facilitate de novo assembly most

published studies on transcriptome sequencing of non-model

organism have to date used the Roche 454 pyrosequencing

platform; however current advances in bioinformatics have

allowed the assembly of shorter reads without reference genome

or transcriptome [41,49]. Using the European hake as a case study

for non-model species, these two approaches (454 and GAII) were

applied in parallel to high-throughput SNP discovery in expressed

sequences. Large scale (1,536 SNPs) validation of discovered

markers was carried out to properly evaluate and compare their

performance. The ultimate goal was to test whether an optimal

and cost effective strategy exists to develop a broad set of SNP

markers linked to functional loci to be used for improved genetic

management of hake fisheries.

Materials and Methods

Samples for cDNA libraries
Muscle tissue samples for transcriptome sequencing were

collected from four geographic regions (Figure 1) considered

representative for the species range: two locations in the

Mediterranean Sea (Aegean Sea and North Tyrrhenian, hereafter

respectively AEGS and TYRS), and two in the Atlantic Ocean

(North Sea and Iberian Atlantic coast, hereafter NTHS and ATIB,

respectively). Animals used in this research were obtained from

commercial fishery catches, therefore approval from any ethics

committee or institutional review board was not necessary. Muscle

tissues were stored in RNA later (Qiagen) at 280uC before RNA

extraction. Two distinct non-normalized cDNA libraries were

constructed and sequenced using 454 and GAII sequencing

systems, following the methods described in detail below. Non-

normalized library were used since, according to Hale et al. [39],

cDNA libraries normalization has little impact on discovery of rare

transcripts when NGS platform are used, due to the depth of

sequencing coverage.

RNA extraction, cDNA library construction and 454 GS
FLX sequencing

Total mRNA was obtained from eight individuals (two for each

sampling location, Figure 1) using the RNeasy Lipid Tissue Mini

Kit (Qiagen). mRNA was isolated using the Oligotex mRNA Mini

Kit (Qiagen) and cDNA was synthesized using the SuperScript

Double-stranded cDNA Synthesis Kit (Invitrogen). Due to the low

amount of available cDNA compared to that specified in standard

protocol for the preparation of a GS FLX sequencing library using

Roche multiplex identifiers (MIDs), it was decided to use a

customized barcoding protocol, modified from Binladen et al. [50],

that allows smaller amounts of cDNA to be used for library

preparation: a multiplex sequencing library was prepared by

labeling each individual sample with two tags by ligation of specific

10-mer barcoding oligonucleotides to allow post-sequencing

identification of sequences from the different samples. High-

throughput sequencing was performed on a Roche 454 GS FLX

(454) sequencer according to the manufacturer’s protocol.

SNP Discovery from European Hake Transcriptome
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RNA extraction, cDNA library construction and Illumina
Genome Analyzer II sequencing

Total RNA was purified from muscle tissue from five individual

samples, two for NTHS, and one from each of the three other

sampling sites (Figure 1) using the mRNeasy isolation kit (Qiagen)

following the manufacture’s guidelines. A total of 10 mg total RNA

from each sample were used for library construction following the

protocol described by Marioni et al. [51]. Poly-A containing

mRNA was purified using poly-T oligonucleotide attached

magnetic beads and fragmented using divalent cations under

elevated temperature. After copying the RNA fragments into first

strand cDNA using reverse transcriptase and random hexamer

primers, second strand cDNA synthesis was performed using DNA

Polymerase I and RNaseH. The short cDNA fragments were then

prepared for sequencing using the Genomic DNA Sequencing

Sample Prep Kit (Illumina). Briefly, the cDNA fragments were

‘‘end-repaired’’ using T4 DNA polymerase and Klenow DNA

polymerase before adding a single A base to the cDNA fragments

by using 39-to-59 exo-nuclease. Following ligation of Illumina

adaptors, fragments of approximately 200 bp in size were gel

purified and enriched by PCR amplification for 15 cycles. Library

concentrations were measured using a Qubit fluorometer

(Invitrogen) and size and purity were assessed using an Agilent

2100 Bioanalyzer (Agilent DNA 1000 Kit). Following dilution in

buffer EB (Qiagen) to 10 nM, the libraries were denaturated with

2 M NaOH to a final DNA concentration of 1.0 nM, diluted to

4 pM with pre-chilled Hybridization buffer (Illumina) before

loading in individual lanes into a 1.0 mm flowcell together with a

single lane of a 2 pM PhiX control library (Illumina). Sequencing

(76 cycles) was conducted on an Illumina Genome Analyzer

(version II) using the Genomic DNA sequencing primer in

combination with clustering and sequencing kits supplied by

Illumina. Analysis of the images taken during sequencing was

performed using the Genome Analyzer Pipeline Software (version

1.4.0, Illumina) generating the raw fastq files.

454 sequence processing and SNP detection
The sequences were de-multiplexed based on the specific

barcoding tags and binned per individual sample. In order to

obtain an optimal de novo assembly of sequences, repeats and

repetitive or low complexity sequences were identified and masked

in the reads by RepeatMasker (version open-3.2.7 with RM

database version 20090120; Smit AFA, Hubley R & Green P:

RepeatMasker at http://repeatmasker.org) using the Zebrafish

(Danio rerio) repeat library and then cleaned for short sequences

using SeqClean (http://compbio.dfci.harvard.edu/tgi/software/;

options: -N; -L50). Sequence clustering was performed using CLC

GenomicsWorkbench (parameters: match mode = ignore; similar-

ity = 0.99; length fraction = 0.5; insertion cost = 3; deletion

cost = 3; mismatch cost = 2) and after parsing the resulting large

ace file respective sequences were then assembled ‘per contig’

using the assembly program CAP3 [52] (options: -o50; -p94) in

order to generate the consensus sequences to be used as reference

for read mapping in the subsequent SNP detection step. The

GigaBayes program, a new implementation and expansion of the

PolyBayes SNP detection algorithm by Marth et al. [53], was used

for SNP discovery (parameters: ploidy = diploid; CRL = 4;

CAL = 2; O = 3; D = 0.003), applying a minimum contig depth

of four reads covering the polymorphic site with at least two reads

for each allele; no insertion or deletion variants (InDels) were

considered.

Figure 1. Geographic location of the four sampling sites. In brackets the number of specimens in the discovery panel (454 and GAII) and the
number of individuals that have been subsequently genotyped in the validation step. NTHS: North Sea (59u199N, 1u399E); ATIB: Iberian Atlantic coast
(43u209N, 8u569W); TYRS: Tyrrhenian Sea (42u329N, 10u99E); AEGS: Aegean Sea (40u199N, 24u339E).
doi:10.1371/journal.pone.0028008.g001
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GAII sequence processing and SNP detection
After renaming and trimming of the first base, GAII short reads

were assembled de novo using Abyss [54,55]. Different settings were

tested and the final assembly was run using a k-mer value of 65.

Contig trimming and exclusion of sequences shorter than 100 bp

was performed by Seqclean (http://compbio.dfci.harvard.edu/

tgi/software/; l = 100). MosaikBuild was used to build a database

of reads (options: -st illumina, -tp 1, -ts 1) and MosaikAligner was

applied (options: -mmp 0.05, -mm 12, unique, -act 35) to map the

reads (database) against the Abyss contigs. After running

MosaikSort the MosaikAssembler was used to generate the (.gig)

input files for the SNP detection by GigaBayes (options: gff,

diploid, multiple, CRL 10, CAL 4, D 0.003).

Contig functional annotation and Gene Ontology
analyses

In order to characterize 454 and GAII contigs several

approaches were explored, using the Basic Local Alignment

Search Tool (BLAST) against various protein and nucleotide

databases. The Blastn option was used against the NCBI

nucleotide database (cut-off e-value of ,1.0 E25), against all

annotated transcripts in the draft genomes of Danio rerio, Gasterosteus

aculeatus, Oryzias latipes, Takifugu rubripes, Tetraodon nigroviridis, and

Homo sapiens available at the Ensembl Genome Browser, and

against all unique transcripts for D. rerio, H. sapiens, O. latipes, T.

rubripes, Salmo salar, Oncorhynchus mykiss stored in the NCBI

UniGene databases. The Blastx option was used (cut-off e-value

of ,1.0 E23) to search against the entire UniProtKB/SwissProt

and UniProtKB/TrEMBL protein databases as well as against the

annotated proteins from the transcriptomes of D. rerio, G. aculeatus,

O. latipes, T. rubripes, T. nigroviridis, and H. sapiens available through

the Ensembl Genome Browser.

The Gene Ontology (GO) terms (‘‘Cellular Component’’,

‘‘Biological Process’’ and ‘‘Molecular Function’’) were recovered

using the Blastx search tool implemented in the software

Blast2GO [56] against the NCBI non-redundant protein database.

A pipeline was developed to characterize the SNP mutations at

the amino acid level. To obtain the putative reading frame all

SNP-containing contigs were compared against six peptide

sequence databases (Ensembl genome assembly for G. aculeatus,

T. nigroviridis, O. latipes, T. rubripes, D. rerio and Swissprot database)

using the Blastx algorithm (cut-off e-value of ,1.0 E23). The best

match was selected and the aligned sequence portions of the query

were saved as fasta files and then formatted as a Blast database. A

fasta file containing 120 bp SNP-flanking sequences was prepared

(two sequences for both alleles of each SNP) and a Blastx analysis

was performed against the previously formatted database (cut-off

e-value of ,1.0 E210). The aligned sequence portion of the two

alleles for each SNP was compared for the presence of a

synonymous or not-synonymous mutation.

To evaluate whether SNP-containing contigs were significantly

enriched for specific GO terms compared to all annotated hake

contigs, the Gossip package [57], which is integrated in the

Blast2Go software, was used. Statistical assessment of annotation

differences between the two sets of sequences (SNP-containing

contigs vs all hake contigs) was carried out using Fisher’s Exact

Test with False Discovery Rate (FDR) correction for multiple

testing.

Candidate SNP selection
After SNP detection, in silico evaluation of candidate SNPs was

carried out to select a panel of 1,536 candidate SNPs for high-

throughput genotyping validation. Selection criteria were based on

the score assigned by the Illumina GoldenGate Assay Design Tool

(ADT), the analysis of putative intron-exon boundaries within each

contig, and visual inspection of flanking region sequence quality.

SNP scores obtained with the ADT take into consideration

template GC content, melting temperature, uniqueness, and

tendency to form hairpin loops. All SNPs with ADT scores below

0.4 were discarded, while SNPs with an ADT score higher than

0.7 were preferentially selected.

Intron-exon boundary prediction was performed using fish

genome and transcriptome sequence resources following two

parallel approaches. In the first, SNP-containing contigs were

compared against five high-quality draft fish genomes (Ensembl

genome assemblies for G. aculeatus, T. nigroviridis, O. latipes, T.

rubripes, and D. rerio) using Blastn (cut-off e-value of ,1.0 E25).

After parsing Blast results, the best match was listed including

information on alignment length, as well as the start and end of the

aligned region. In the case of a positive match, the position of the

candidate SNP was evaluated in the framework of the aligned

region. If the 60 bp up- and downstream of the SNP position were

present in the alignment, the candidate SNP was considered

embedded in a single exon, otherwise an intron was assumed to be

present in the 121 bp target region for SNP assay design. The

same process was repeated against five different databases (see

above) and each SNP was assigned a code, either ‘‘1’’ (when in at

least one comparison the candidate SNP and its flanking regions

were located on a single exon), ‘‘0’’ (an intron was predicted to

disrupt the candidate region), or ‘‘no’’ (no significant match

against any of the five reference fish genomes). The second

approach was designed in order to further increase the likelihood

of a positive match and the reliability of intron-exon boundary

prediction. SNP-containing contigs were used as a query in a Blast

search (Blastn option, cut-off e-value of ,1.0 E25) against the

transcriptome of each of the five model species as above. In the

case of a positive hit, the matching transcript for each fish model

species was downloaded from the Ensembl database, and the

nucleotide position in the downloaded sequence corresponding to

the candidate SNP in the original hake contig was identified based

on the start-end positions of the Blast alignment between the hake

contig and the fish model transcript. Then the putative homolog

transcript was compared to its own genome sequence using Blast.

Based on the inferred SNP position on the fish model transcript,

SNPs were assigned a code as above (‘‘1’’ for SNP candidate

region located on a single exon or ‘‘0’’ if SNP region was assumed

to be disrupted by an intron). In the case of no matches between

the original hake contig and any of the five fish transcriptomes, the

SNP was scored ‘‘no’’. A flowchart for the intron-exon pipeline is

depicted in Figure S3.

A final evaluation step of putative SNPs was performed by

direct visual inspection of contigs using the assembly viewer

software Eagleview [58] and Cluster Viewer (clview; http://

compbio.dfci.harvard.edu/tgi/software/), with the aim of ranking

candidates within each contig by integrating information on the

overall contig assembly quality, depth and length, the quality of

flanking regions (number of ambiguous sites), distance and

clustering of polymorphic sites. SNPs with highest rank values

were selected within each contig.

SNP validation by high-throughput genotyping
A total of 1,536 candidate SNPs were selected to be validated by

high-throughput genotyping. Genomic DNA was extracted from

fin clip tissues of 207 individuals sampled from the same four

locations of origin of specimens used to derive the libraries (AEGS,

TYRS, ATIB, NTHS, see Figure 1). A NanoDrop spectro-

photomer was used to ascertain that DNA quality and quantity

SNP Discovery from European Hake Transcriptome
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met the requirements for the genotyping assay. Genotyping was

performed using the Illumina GoldenGate Assay platform [59]

and the resulting data were visualized and analyzed with the

GenomeStudio Data Analysis Software package (1.0.2.20706,

Illumina Inc.). Samples with a call rate lower than 0.8 and loci

showing poor clustering were excluded. Accepted SNPs were

manually re-clustered, to correct errors in allele calling due to

inappropriate cluster identification.

Statistical analysis
Different variables were defined to analyze results of SNP

discovery and genotyping. The first two are categorical variables

that refer to the outcome of individual SNP assays. SNP_assay_-

conversion assumes value 0 (failed) if Illumina SNP assay did not

yield a reliable genotype for the examined individuals, either

because no clear clustering was observed or due to lack of signal,

value 1 (successful) if consistent clustering was obtained,

irrespective of the observed genotype(s). SNP_genotype has value 0

(monomorphic) if all scored individuals are homozygous for the

same allele, value 1 (polymorphic) if two alleles are observed.

SNP_score reports ADT score for individual SNPs. I_E_test and

I_E_species_match refer to the outcome of the intron-exon boundary

analysis pipeline, I_E_test = ‘‘no’’ means no significant match could

be obtained, value 1 signifies that at least one significant match

was reported, with the SNP candidate region putatively contained

in a single exonic region, while I_E_species_match counts the

number of fish model species showing a significant Blast match.

Depth is a quantitative variable reporting the number of sequence

reads supporting individual SNPs, Individuals and Geosites counts

respectively the number of individuals and geographical sites from

the original discovery panel that contributed with at least one

sequence read to a specific SNP. MSAF (minor sequencing allele

frequency) represents the frequency of the minor allele detected at

the SNP discovery stage. Rank is an ordinal variable referring to an

order of choice of SNPs within each contig, arbitrarily assigned

after a visual inspection (see above). Q reports the number of

mismatches in the flanking regions of SNP positions based on

comparison of sequence reads within a contig. SNP discovery

results obtained using 454 sequencing technology were compared

with those produced through GAII sequencing using either

parametric T-tests for two independent samples (for quantitative,

normally distributed variables: Contig length, Depth) or non-

parametric tests, a x2 test for categorical variables (SNP_assay_-

conversion, SNP_genotype, I_E_test) and a Mann-Whitney U test for

ordinal variables (I_E_species_match, Geosites) or quantitative

variables not following a normal distribution (SNP_score, MSAF).

All tests were carried out in SPSS ver. 12.0 with Monte Carlo

simulation (1,000,000 permutations) to estimate confidence

intervals for Mann-Whitney tests.

Binomial logistic regression, implemented in SPSS ver. 12.0,

was used to evaluate several predictor variables on two dependent

dichotomous variables: SNP_assay_conversion and SNP_genotype. For

both data sets (GAII and 454), positive conversion/clustering of

individual SNP assay was analyzed first, assigning single SNPs into

two classes (successful-failed). Second, DNA polymorphism was

evaluated by filtering out failed SNPs and dividing positive loci

respectively into two groups based on observed genotypes

(polymorphic-monomorphic, SNP_genotype). For 454 data, eight

ordinal/quantitative variables (SNP_score, I_E_species_match, Depth,

MSAF, Individuals, Geosites, Q, Rank) and one categorical variable

(I_E_test) were considered. For GAII data, six ordinal/quantitative

variables (SNP_score, I_E_species_match, Depth, MSAF, Individuals,

Geosites) and one categorical variable (I_E_test) were examined.

Predictor variables were either all included in the predicting model

(option ‘‘enter’’ in SPSS) or best predictors were selected using a

stepwise deletion approach (option ‘‘backward’’). In the latter

approach, the Wald x2 statistic was used to estimate the

contribution of each predictor.

The Receiver Operating Characteristic (ROC) curve, a widely

used method for evaluating the discriminating power of a

diagnostic test, was used to assess the significance of specific

variables. ROC analysis was implemented in MedCalc ver.

11.5.1.0.

Results and Discussion

Sequencing, de novo assembly, and annotation
Approximately 100 Mega base pairs (Mbp) were obtained using

454 sequencing technology, whereas nearly 4,000 Mbp were

produced using the GAII sequencer (Table 1). About 6% (30,025)

of raw 454 reads, in which no barcoding tag could be reliably

recognized, were excluded from further analysis, as individual

sample identity of the reads was considered essential to the

validation process. The remaining 476,747 reads, which showed

the 59 barcoding tag, were assigned to four groups according to

geographic origin (Figure 1, 102,854 for AEGS, 135,494 for

TYRS, 97,207 for NTHS, and 141,192 for ATIB). GAII

sequencing yielded 8,789,024, 10,327,499, and 10,029,014 reads

from single individuals from AEGS, TYRS, and ATIB respec-

tively, while 21,539,868 sequences were obtained from two distinct

individuals from NTHS. All 454 and GAII sequence data have

been submitted to the EBI Sequence Read Archive (SRA) under

the study accession number ERP000950 (http://www.ebi.ac.uk/

ena/data/view/ERP000950).

After pre-processing steps (adaptor clipping and read quality

filtering), 462,489 454 reads were assembled de novo into 5,702

separate contigs of at least 100 bp length (from 4,710 initial

clusters). GAII sequence assembly resulted in 9,258 contigs, of

which 60% were discarded, having a length shorter than 100 bp.

The remaining 3,756 contigs were further processed for SNP

discovery. Results on contig length are summarized in Table 1. As

expected, mean contig length was significantly higher for 454 than

GAII (T-test p,0.0001), whereas the opposite was observed for

sequence coverage (T-test p,0.0001). The observed average

length of unique transcripts after assembly of 454 and GAII

sequence reads are comparable with values reported in a recent

study that applied a simulation approach (based on experimental

data) to evaluate the performance of transcriptome sequencing

using Sanger, Roche 454, and GAII technologies on either non-

normalized or normalized cDNA libraries [47]. For 454 GFLX

sequencing on non-normalized libraries (100 Mbp output) average

contig length is expected to be 556.6 bp and 217.3 bp for GAII

Table 1. Summary statistics of sequence assembly.

454 GAII

Total number of sequences 506,772 50,685,405

Average length (min-max) 206 (6–457) bp 74 bp

Sequences suitable for
assembly

462,489 50,685,405

Number of contigs 5,702 3,756

Average contig length
(min-max)

331 (100–5,103) bp 190 (100–3,063) bp

Annotated contigs (%) 4,221 (74.03) 2,644 (70.39)

doi:10.1371/journal.pone.0028008.t001
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sequencing (4,000 Mbp output, non-normalized libraries) [47],

similar to what was observed in the present study, whereas the

number of unique contigs obtained for hake muscle transcriptome

is considerably smaller than expected (respectively 37,853 contigs

for 454 and 147,261 for GAII under the same conditions as

above). Differences in the experimental setting in the present work

(e.g. use of a single tissue library and different genome size of the

target species) are likely contributing factors to the observed

differences.

A total of 4,221 454-contigs (74.02%) showed a significant Blast

match against at least one species sequence database among those

searched. Annotation by similarity was possible for 2,644 GAII

contigs (70.39%), significantly less (x2 = 14.83, p,0.001) than 454

contigs. A potential explanation for this observation lies in the

shorter average length of GAII contigs, which likely reduces the

overall probability of obtaining positive Blast hits. In any case, the

percentage of annotated contigs is higher for both 454 and GAII

data when compared to other studies reporting transcriptome

sequencing in teleost fish (40–63% of total annotated contigs,

[45,60]). There are several variables that might influence the

observed fraction of contigs with a positive Blast match, including

phylogenetic distance from species with high quality draft genome

sequence, contig length, tissue type(s), developmental stages, and

the method used for library construction. The use of a non-

normalized cDNA library of adult skeletal muscle may have led to

a biased representation of the hake transcriptome, favouring

highly expressed genes encoding either housekeeping or structural

(muscle contractile fibres) proteins. Housekeeping and structural

proteins are known to be expressed at higher levels and to show a

higher degree of sequence conservation compared to other

proteins [61] (e.g. components of the immune system), therefore

increasing the chance of finding a positive Blast match. A total of

120 454-contigs (2.1%) and 67 GAII-contigs (1.78%) were

identified as mitochondrial sequences. It was possible to associate

one or more GO terms to 1,606 454-contigs (28.16%) and 884

GAII contigs (23.53%). Results from level 2 GO assignments

within the three categories are summarized in Figures S1 and S2.

In silico SNP detection
A total of 4,034 candidate SNPs were identified in silico in 889

454-sequenced contigs (15%), with an average of 0.73 SNPs per

100 bp surveyed in the assembled transcriptome, or 41.1 SNPs per

generated Mbp. Approximately 60% of 454-contigs contained one

or two SNPs (Figure 2). The total number of SNPs (8,606) found in

2,384 GAII contigs was more than two-fold higher, with a

comparable distribution across contigs (Figure 2). A mean of 1.7

SNPs was found every 100 analysed bp, but with a lower output

(2.3) per sequenced Mbp. As already observed, sequencing depth

at candidate SNP positions was significantly higher (T-test

p,0.0001) in GAII sequence data (Table 2), which might also

explain the near two-fold increase in frequency of SNPs per bp

reported above. On the other hand, 3,621 SNPs (89.7%) from

454-generated contigs had at least 60 bp of flanking sequence on

either side of the SNP, the minimal requirement for the Illumina

GoldenGate genotyping assay, while nearly half of GAII-

generated SNPs were discarded due to flanking regions of

insufficient size, an observation directly related to the highly

significant difference (T-test p,0.0001) in the average length of

SNP-containing contigs (Table 2). A comparison of 454- and

GAII-SNPs revealed that 440 loci were common to both data sets.

All suitable SNPs (i.e. having sufficient flanking regions) were

analysed with the Illumina ADT software, and SNPs with ADT

score .0.4 (3,437) were further evaluated. After filtering for the

intron-exon boundary prediction results, 2,173 SNPs in the 454

data, presumed to be located in single exons (851 SNPs) or without

a Blast match (1,322 SNPs), were selected to be visually inspected.

For GAII SNPs, 3,857 loci out of 4,637 with ADT score .0.4

passed the filtering step based on the intron-exon boundary

prediction (468 located in single exons and 3,389 with no

significant match) (Table 2).

Annotation by similarity of SNP-containing contigs further

confirmed that 454-contigs show a higher percentage of putatively

annotated sequences (86% vs 71%, x2 = 72.4, p,0.0001). Blast

searches also identified 218 candidate SNPs (positioned in 62

different contigs) that are presumably located on the hake

mitochondrial genome. GO term analysis showed a significant

enrichment of specific GO terms when comparing the annotations

of SNP-containing contigs against all unique transcripts obtained

for the hake muscle transcriptome (Figure 3 A, B, Tables S1 and

S2 in Supporting Information). Protein synthesis, in particular

ribosome assembly/function, and energetic metabolism (e.g.

carbohydrate metabolism, electron chain transport, ATP synthe-

sis) are significantly over-represented across both 454- and GAII-

SNPs, while cytoskeletal components (e.g. myosin filaments,

microtubules) are enriched in GAII-SNPs. As mentioned before,

the use of non-normalized cDNA libraries likely favored a higher

representation of abundantly expressed genes. In the skeletal

muscle, a high level of protein synthesis is required to fulfill the

need for abundant contractile fibres, therefore over-representation

of ribosomal/translation components as well as cytoskeletal

proteins is expected. Such over-representation likely translates

into greater sequence coverage and ultimately in a larger

proportion of SNPs being identified in specific functional groups

of genes.

454 and GAII SNP validation
A set of 1,536 SNPs (Table 3) was selected mainly on the basis of

ADT score and intron/exon analysis for validation on the Illumina

Golden Gate platform, using a custom-designed SNP chip.

Mitochondrial SNPs (35) were also validated, but were excluded

from further analysis as they are not entirely comparable (i.e.

mitochondrial DNA is a multiple copy, haploid, and intron-less

genome). In total, 817 454-SNPs distributed on 516 contigs, 557

GAII-SNPs distributed on 463 contigs, 127 common (454 and

GAII) nuclear SNPs, and 35 mitochondrial loci were included in

the panel of 1,536 candidate loci to be validated by high-

throughput genotyping. The common set of 127 nuclear SNPs was

genotyped only once, but all these loci have been independently

identified twice and descriptive variables could be estimated in

both data sets (454 and GAII). For this reason, they have been

considered as independent observations and analysed separately.

Excluding mitochondrial loci, 1,501 unique nuclear SNPs were

scored, with nearly identical percentages of successful assay

conversion for the two sets of data (409/944, 43.32% (454) and

296/684, 43.27% (GAII), x2 = 0, p = 1). This leads to the question

of how do SNP conversion rates compare to those observed in

other studies that reported on high-throughput SNP discovery and

validation in non-model species. This remains largely unexplored,

and the few available data are not homogeneous. Most studies

report in silico SNP detection in next-generation sequencing data

from non-model species with limited, if any, experimental

validation of discovered polymorphisms (e.g. [29,33,35,42]). In a

recent study on SNP discovery and validation in salmonid species

[41], pooled and single tissue cDNA libraries were sequenced with

SOLiD technology and short sequence reads aligned to contigs

obtained from reference EST databases. This approach yielded a

similar number of average SNPs per contig (1.6–4.4) to that

observed here (3.6–4.5, Table 2). PCR-based validation was
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carried out on 96 SNPs, with an assay conversion success rate of

53% (51/96). The conversion rate of validation assays (Illumina

Golden Gate) was found to be much higher in two larger studies

carried out in non model bird species, the common turkey [62]

and the mallard duck [63], for which rates of 88.5% (340/384)

and 94.7% (364/384) were observed, respectively. Both studies,

however, used Illumina GA technology to sequence reduced

representation (genomic) libraries (RRL) of the target species

genome. Drastic sequence quality filtering was enforced especially

in the turkey study, discarding up to 75% of sequence reads.

Finally, assembled turkey contigs were verified through mapping

against the high quality draft genome of the closely related chicken

species. This step appears crucial as shown by the comparison of

conversion rates between genome-mapped turkey SNPs (92.1%,

316/343) and unmapped ones (58%, 24/41) [62]. Likewise,

mallard duck genomic contigs were directly aligned against the

domestic duck genome, which provided an even closer reference in

the SNP discovery process [63]. Additional comparative evidence

can be obtained from two studies reporting SNP discovery and

high-throughput validation in the channel catfish [44] and the

Atlantic cod [45]. In both studies, validation was carried out using

Illumina GoldenGate technology on either 384 catfish SNPs or

3,072 cod SNPs. Assay conversion rates were similar (266/384

(69.2%) in catfish, 2,291/3,072 (74.5%) in cod) and intermediate

between those observed here and values obtained for turkey and

mallard. However, SNP discovery was based on EST libraries

produced with traditional Sanger sequencing (with higher read

quality), therefore the results are not entirely comparable.

Of the successfully converting assays, a slightly (non-significant-

ly) higher percentage (67.5% vs 63.3%, x2 = 1.18, p = 0.272) of

truly polymorphic sites was detected in GAII-SNPs (Table 3).

These values are similar to those described in the channel catfish

(156/266, 58.6%) [44] and the Atlantic cod (1,684/2,291, 73.5%)

[45], although yet again these two studies are not entirely

comparable. For instance, size and composition of the discovery

panel for cod and catfish could not be determined. When

comparing rates of hake polymorphic SNPs with other NGS-

based SNP discovery studies, the percentage obtained from the

transcriptome of sockeye salmon (11/51, 21.5%) [41] is lower, but

those reported for RRL sequencing in the turkey (324/340,

95.2%) and the mallard (363/364, 99.7%) are significantly higher.

Size and composition of the discovery panel appear similar (10

individuals from 5 populations in the sockeye salmon, 6 unrelated

individuals in the turkey, 9 individuals from 3 populations in the

mallard, 5–8 individuals from 4 locations in the hake), while the

choice between transcriptome and genome sequencing as well as

Figure 2. Distribution of SNPs across 454 and GAII contigs. On the x-axis, number of SNPs per contig; on the y-axis, the percentage of contigs
showing a specific number of SNPs.
doi:10.1371/journal.pone.0028008.g002

Table 2. Summary statistics of SNP discovery and selection.

454 GAII

In silico candidate SNPs 4,034 8,606

Contigs with candidate SNPs 889 2,384

Average contig length (min-max) 617.9 (101–5103) bp 212.3 (100–3063) bp

Average depth in SNP position (min-max) 89 (4–3,678) 674 (8–33,079)

SNPs suitable for Illumina assay design 3,621 4,684

Average ADT score 0.76 0.82

SNPs with ADT score .0.4 (%) 3,437 (94.92%) 4,637 (99%)

SNPs with I/E* ‘‘no match’’ (%) 1,322 (38.46%) 3,389 (73.09%)

SNPs with I/E* ‘‘single exon’’ (%) 851 (24.76%) 468 (10.09%)

*Intron/exon boundary pipeline result.
doi:10.1371/journal.pone.0028008.t002
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the availability and quality of reference sequences vary across

studies. As already observed for the assay conversion rate, the

relevance of the latter factor is emphasized by the significant

difference (x2 = 5.62, p = 0.017) in the percentage of polymorphic

‘‘unmapped’’ SNPs (20/24, 83.3%) and ‘‘mapped’’ ones (304/316,

96.3%) in the turkey data set [62]. Flanking sequences (120 bp) of

SNPs validated as polymorphic in this study are available in Table

S3.

While similar conversion rates and percentages of polymorphic

loci were obtained for both NGS technologies applied to hake

SNP discovery, 454-SNPs showed a significantly higher number of

Blast matches against at least one fish model coding sequence

(I_E_test rate 38.4% (454) – 17.9% (GAII), x2 = 68.05 p,0.0001).

Also continuous/ordinal variables were significantly different

between the two data sets (data not shown), with average

I_E_species_match and MSAF being higher in 454 SNPs, whereas

mean SNP_score, Geosites, and Depth were larger in GAII data.

Higher mean number of species matching with 454-SNPs is linked

to the significantly larger I_E test rate, which in turn likely

correlates with the higher percentage of annotated 454-contigs,

while greater Depth in GAII-SNPs reflects the overall much deeper

sequence coverage obtained with GAII technology. Likewise,

differential coverage likely explains the more complete represen-

tation of sequence variation across all four collection sites in GAII-

SNPs. It is not clear why higher average SNP_score for GAII-SNPs

was observed. It might be an effect of different contig length and/

or sequence quality as the parameters that the ADT uses for

estimating SNP scores are likely influenced by these factors. The

higher MSAF estimated for 454-SNPs appears to be the effect of

over-estimation of allele frequencies based on sequence data, again

putatively related to the lower coverage of SNP sites obtained with

454 technology. When sequence-based and Illumina Golden Gate

genotypic results are compared for the same loci in a paired-

samples Wilcoxon signed rank test, Minor Allele Frequency (MAF)

is significantly lower than MSAF (Wilcoxon paired rank test

V = 22,047.5, p,0.0001) (Figure 4A), whereas it is not different for

GAII-SNPs (Wilcoxon paired rank test V = 9,503, p = 0.50)

(Figure 4B). Neither method provides accurate values of observed

heterozygosity (Ho), although GAII-based data tend to over-

estimate Ho (Wilcoxon paired rank test V = 12,830, p,0.001,

Figure 5B), whereas 454-based Ho provides a substantial under-

estimate of this parameter (Wilcoxon paired rank test V = 7,372,

p,0.00001, Figure 5A).

To evaluate the predictive value and thus the potential

usefulness of different parameters, all variables were examined

together using binomial logistic regression analysis. The success

rate for Illumina genotyping assay conversion/clustering show that

inclusion of all predictor variables significantly improves model-

fitting for 454 (x2 = 34.944, degrees of freedom (df) 9, p,0.001)

and marginally for GAII data (x2 = 14.641, df 7, p,0.05). The

ability to predict the outcome of individual SNP assays is relatively

low, with an overall correct classification rate of 60.1% for 454

data and 56.7% for GAII data. Backward stepwise deletion of

predictor variables identifies five best predictors (SNP_score,

I_E_test, MSAF, Individuals, Q) for 454 data and three predictors

(SNP_score, Individuals, Geosites) for GAII data as summarized in

Tables 4 and 5. The number of individuals effectively sequenced

for each SNP is positively correlated with the rate of successfully

converting assays in both data sets. This is especially significant for

GAII data (Table 5), where the maximum number of animals in

the discovery panel (5) is lower than in the 454 one (8), suggesting

that sequencing coverage per se is less relevant than the level of

coverage across different individuals. The outcome of the intron-

exon boundary pipeline is significant as a predictor only for 454

Table 3. Summary statistics for SNP validation.

454 GAII

Total number of SNPs tested 966 (829) 707 (570)

Nuclear SNPs tested 944 (817) 684 (557)

SNPs with successful genotype calling* 409 (334) 296 (221)

Polymorphic 259 (195) 200 (136)

SNP with known reading frame 130 (97) 73 (45)

Synonymous 110 (83) 60 (37)

Non-synonymous 20 (14) 13 (8)

Monomorphic 150 (139) 96 (85)

Failed SNPs* 535 (483) 388 (336)

In brackets the number of SNPs after excluding the set of common loci.
*Data referring to nuclear SNPs.
doi:10.1371/journal.pone.0028008.t003

Figure 4. Minor allele frequency distribution. Box plot of minor
sequence allele frequency (MSAF) in the discovery panel and Minor
allele frequency (MAF) in the validation panel for 454 data (A) and GAII
data (B).
doi:10.1371/journal.pone.0028008.g004

Figure 3. Enrichment of SNP-containing contigs in GO terms. Differential distribution of GO terms in SNP-containing contigs (test set)
compared to all contigs (reference set) in 454 data (A) and GAII data (B).
doi:10.1371/journal.pone.0028008.g003
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data, with a higher number of successful assays for SNPs that are

verified to be located in a single exon compared to ‘‘unknown’’

SNPs. This is in agreement with what reported by Wang and et al.

[44] in the channel catfish, where the presence of an intron was

among the causes of assay failure. Comparative genomic analysis

to preliminarily exclude SNP candidate regions that are putatively

interrupted by one or more introns might therefore be advisable,

although it appears not significant for GAII-SNPS, likely in

consequence of the lower number of positive Blast matches

(Table 2). Less clear is the interpretation for the positive

correlation of conversion rate with MSAF in 454-SNPs and the

negative correlation with number of geographic areas in GAII-

SNPs, while the negative correlation of the variable Q, which

reports the number of mismatches in the flanking regions of SNP

positions based on comparison of sequence reads within a contig,

can be easily explained as a result of poor sequence quality on

assay performance. This parameter was estimated only on 454-

SNPs because the much greater sequencing depth of GAII data

did not allow visual estimation of Q. Since this variable appears to

convey valuable information, it might be useful to develop an

automated pipeline to measure it in the future. Finally, for both

data sets, and in particular for 454-SNPs, the ADT score proved to

be a significant predictor (Tables 4 and 5).

A specific statistical analysis (Receiver Operating Characteristic

(ROC) analysis) was carried out to evaluate the significance of

ADT score as predictive variable. The estimated area under the

ROC curve is 0.53960.015, which is significantly different (z

statistic = 2.6, p,0.01) than expected by chance (0.5), confirming

ADT score as a significant predictor of assay conversion. The

optimal ADT value, which has the best specificity/sensitivity ratio,

is 0.735. It should be noted that, while significant, the overall

performance of ADT as diagnostic factor is rather limited.

Binomial logistic regression analysis was also implemented to

evaluate the outcome of successful SNP assays, i.e. to predict

polymorphic and monomorphic loci. Including all predictor

variables, model fitting improved significantly for 454 data (x2

55.983, df 9, p,0.0001) as well as for GAII data (x2 29.059, df 8,

p,0.001), with overall rates of correct classification of 70.9% (454)

and 70.6% (GAII). Stepwise deletion of independent variables

reduced the list of contributing predictors to I_E_species_match,

Rank, Individuals, Geosites, and Q in the case of 454 data, while

I_E_test, I_E_species_match, Individuals, and Geosites best predicted

SNP_genotype for GAII data (Tables 6 and 7). The three predictive

variables that are common to the two data sets show opposite

correlations with SNP polymorphism, which suggests caution in

using them as predictors, while the negative correlation of I_E_test

outcome with polymorphism in GAII-SNPs is not easily

interpreted and is of little use as positive I_E_test is relevant for

predicting assay conversion, at least in 454-SNPs. More interesting

is the negative correlation between the number of mismatches in

the flanking regions (Q) with the degree of polymorphism, similar

to what was observed for assay conversion rate. This evidence is in

agreement with the positive predictive value of Rank, a subjective

measure of overall candidate SNP suitability, which also takes into

account contig sequence quality. While Rank cannot be translated

into an objective, operator-free score, Q appears a promising

predictor, which might be possible to automatically estimate for a

very large number of SNPs and could provide useful information

on assay conversion as well as SNP polymorphism. In fact, ROC

analysis shows that the area under the ROC curve (0.68860.0279,

Figure 6, see below) is highly significant for Q when predicting

whether a specific locus is monomorphic (z statistic = 6.737,

p,0.0001). Optimal trade-off between specificity (56.7%) and

sensitivity (72.7%) is obtained with Q.1.

Finally, all experimentally validated SNPs were analysed using a

bespoke pipeline, which was developed to compare SNP-

containing contigs with known protein sequences and to predict

protein-coding regions and the corresponding putative reading

frame. It was possible to obtain this information reliably for

approximately half of the validated SNPs (Table 3) for both data

sets, a much higher percentage than that obtained for Atlantic cod

(9%) [45]. This is likely attributable to the less 59 end-biased

transcript coverage of NGS technologies compared to Sanger

Figure 5. Observed heterozygosity distribution. Box plot of
observed heterozygosity (Ho) calculated for the discovery panel and the
validation panel of 454 data (A) and GAII data (B).
doi:10.1371/journal.pone.0028008.g005

Table 4. Predictor variables for 454 SNP data (failed/
successful), backward stepwise elimination.

Ba Waldb df Pc

SNP_score 1.735 14.607 1 0.000

I_E_test(1) 20.361 6.545 1 0.011

MSAF 1.415 5.418 1 0.020

Individuals 0.075 2.919 1 0.088

Q 20.007 5.205 1 0.023

Constant 22.339 13.067 1 0.000

aRegression coefficient for individual variable,
bWald x2 statistic,
cassociated probability. (e.g. average SNP_score for successful SNPs is 0.794,
whereas mean SNP_score is 0.759 for ‘‘failed’’ assays).

doi:10.1371/journal.pone.0028008.t004

SNP Discovery from European Hake Transcriptome

PLoS ONE | www.plosone.org 10 November 2011 | Volume 6 | Issue 11 | e28008



ESTs. Of all SNPs located in a coding region, around 20% were

putative amino acid replacement substitutions, without significant

difference between 454- and GAII-SNPs (Table 3). In this respect,

Atlantic cod SNPs were significantly biased toward non-synony-

mous substitutions (synonymous/non-synonymous 90/51) com-

pared to all hake SNPs (147/28, after excluding common loci) (x2

15.06, df 1, p,0.0001). Closer examination of non-synonymous

SNPs shows that, if amino acids are divided into five classes (non-

polar, polar, negatively-charged, positively-charged, and aromat-

ic), the majority of amino acid substitutions are conservative

replacements (i.e. occurring within the same class), but there are 12

non-conservative mutations, which might cause significant func-

tional changes in the encoded protein.

Conclusions
In the present study, two different NGS methods were applied

to high-throughput SNP discovery in the muscle transcriptome of

a non-model fish species. Overall, the comparison revealed that

despite substantial differences in sequence throughput, average

sequencing depth, and sequence read length, similar results were

obtained after SNP experimental validation in terms of assay

conversion rate and percentage of polymorphic loci. GAII

technology yields a larger number of candidate SNPs, but the

majority of them are not suitable for SNP genotyping due to short

flanking regions. On the other hand, 454-SNPs are less numerous,

but are located on longer contigs, which are more easily annotated

and screened for putative introns in the candidate region using a

comparative genomic approach. Although the platforms we have

evaluated have been recently upgraded and superseded by later

versions, still our findings should remain valid and relevant.

Indeed, during the past few years Illumina and 454 platforms have

experienced rapid progress towards the enhancement of reads

length and yield in terms of Mb per run produced, mainly

resulting in increased throughput; however, raw sequencing error

rates have not decreased along with the improvement of

instruments and chemistry [64]. For this reason, while using latest

platforms could increase transcriptome representation and cover-

age and improve de novo assembly, due to the higher sequencing

output, we believe results on SNP discovery and validation,

primarily influenced from sequencing error profiles, would be

proportionately comparable to our results. In order to evaluate

and compare costs of SNP discovery, several aspects should be

taken into account. However, considering only the raw cost of

reagents per Mb updated to 2011 [64], and referring to the output

produced and used in this study for SNP discovery, the Illumina

sequencing systems seems to be more appropriate, as similar

results in terms of validated SNPs were obtained at less than half

the 454 costs (480$ to produce approximately 4,000 Mbp at a

reference price of 0.12$/Mbp using the Illumina GAIIx against

1240$ to produce approximately 100 Mbp at a reference price of

12.4$/Mbp using the 454 FLX Titanium; based on [64]). If we

consider the respective platforms currently available, the Illumina

HiSeq 2000-v3 and the 454 FLX+, the cost-effectiveness of the

Table 5. Predictor variables for GAII SNP data (failed/
successful), backward stepwise elimination.

Ba Waldb df Pc

SNP_score 0.938 2.506 1 0.113

Individuals 1.203 8.795 1 0.003

Geosites 21.206 7.427 1 0.004

Constant 22.196 6.785 1 0.009

aRegression coefficient for individual variable,
bWald x2 statistic,
cassociated probability.
doi:10.1371/journal.pone.0028008.t005

Figure 6. ROC curve of Q score predicting monomorphic/
polymorphic SNPs in 454 data.
doi:10.1371/journal.pone.0028008.g006

Table 6. Predictor variables for 454 SNP data (monomorphic/
polymorphic), backward stepwise elimination.

Ba Waldb df Pc

I_E_speciesmatch 20.127 6.369 1 0.012

Rank 6.977 2 0.031

Rank(1) 0.676 4.232 1 0.040

Rank(2) 0.841 4.983 1 0.026

Individuals 20.224 3.489 1 0.062

Geosites 0.802 10.433 1 0.001

Q 20.044 8.907 1 0.003

Constant 22.740 5.915 1 0.015

aRegression coefficient for individual variable,
bWald x2 statistic,
cassociated probability.
doi:10.1371/journal.pone.0028008.t006

Table 7. Predictor variables for GAII SNP data (monomorphic/
polymorphic), backward stepwise elimination.

Ba Waldb df Pc

I_E_test(1) 2.247 8.272 1 0.004

I_E_speciesmatch 0.345 2.735 1 0.098

Individuals 1.805 5.162 1 0.023

Geosites 22.188 5.581 1 0.018

Constant 21.577 1.361 1 0.243

aRegression coefficient for individual variable,
bWald x2 statistic,
cassociated probability.
doi:10.1371/journal.pone.0028008.t007
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Illumina technology is maintained, as same results would be

achieved with less than a quarter of 454 costs. Additionally, HiSeq

technology might allow to increase the number of individuals

included in the SNP discovery panel without decreasing coverage

depth. As such a variable (Individuals) was found to be positively

correlated with successful conversion rate of SNP assays, this

represents a further element in favor of Illumina technology. It

should be noted, however, that the most expensive steps were the

in silico analysis of sequence reads (assembly, SNP discovery,

quality assessment) and the high-throughput genotyping assays.

While the latter showed similar conversion rates, analysis of GAII

reads might be more laborious and produce less reliable assemblies

[47]. On the other hand, it has been demonstrated that the quality

of transcriptome assembly depends on sequence coverage [47],

therefore the shift toward HiSeq might allow easier and more

reliable assemblies. More generally, the results presented here

clearly demonstrate that it is possible to identify and effectively

validate many polymorphic SNPs, in transcribed regions of a non

model species. The lack of a reference genome, however,

dramatically affects the genotyping success rate, although the

overall efficiency can be improved using strict quality criteria/

filters, especially in the case of 454-SNPs, such as testing for

intron-exon boundaries, defining optimal ADT scores, and

targeting low Q values (number of mismatches in the flanking

regions).

The SNP markers developed in the current study represent

novel tools for a broad range of future applications in population

genetic studies focusing on the European hake. A deeper

understanding of ecological and evolutionary dynamics of

European hake populations across the entire distribution range

provides the necessary means for a proper management and

conservation policy, aimed at promoting sustainable fishery and

preventing overexploitation and illegal fishing activities.
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Figure S1 Gene Ontology (GO) assignment (2nd level
GO terms) of hake 454 contigs. A ‘‘Cellular Component’’. B
Molecular Function’’. C ‘‘Biological Process’’.
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56. Götz S, Garcı́a-Gómez JM, Terol J, Williams TD, Nagaraj SH, et al. (2008)

High-throughput functional annotation and data mining with the Blast2GO
suite. Nucleic acids research 36: 3420–3435.
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