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Abstract

We introduce a statistical method for evaluating atomic level 3D interaction patterns of protein-ligand contacts. Such
patterns can be used for fast separation of likely ligand and ligand binding site combinations out of all those that are
geometrically possible. The practical purpose of this probabilistic method is for molecular docking and scoring, as an
essential part of a scoring function. Probabilities of interaction patterns are calculated conditional on structural x-ray data
and predefined chemical classification of molecular fragment types. Spatial coordinates of atoms are modeled using a
Bayesian statistical framework with parametric 3D probability densities. The parameters are given distributions a priori,
which provides the possibility to update the densities of model parameters with new structural data and use the parameter
estimates to create a contact hierarchy. The contact preferences can be defined for any spatial area around a specified type
of fragment. We compared calculated contact point hierarchies with the number of contact atoms found near the contact
point in a reference set of x-ray data, and found that these were in general in a close agreement. Additionally, using
substrate binding site in cathechol-O-methyltransferase and 27 small potential binder molecules, it was demonstrated that
these probabilities together with auxiliary parameters separate well ligands from decoys (true positive rate 0.75, false
positive rate 0). A particularly useful feature of the proposed Bayesian framework is that it also characterizes predictive
uncertainty in terms of probabilities, which have an intuitive interpretation from the applied perspective.
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Introduction

Atomic level structures are an important source of information

for inferring functional aspects about macromolecules and ligands

binding to them. For instance, this is illustrated by the substantial

amount of existing algorithms and structural data modeling

software created for molecular docking and scoring purposes [1],

[2], [3], [5], [6]. The Protein Data Bank (PDB) [7] offers the

central public access to macromolecular structure files.

Although there is already a large amount of structural data

available, it is by no means straightforward to model it reliably.

There are several reasons for this, such as the inevitable errors

present in experimental results and the ‘‘averaging’’ nature of the

measurement process used in the construction of x-ray diffraction

data. Moreover, along the conversion from a measurement to a

structural coordinate file, several computational approximations

and the subjective choices of experimentalists will influence the

final outcome. Among the latter sources of variability, two major

issues are flexibility of the molecules and computational constraints

implemented in the refinement process. The first one is related to

thermal motion and static disorder, and the second to biochemical

a priori information that is always used in the refinement of a

structure to create a coordinate file [6], [8]. These are

accompanied by crystal packing effects, which also originate from

the flexibility of the molecules, uncertainty in orientation and

location of small molecules, including water.

It can be argued that for addressing the above-mentioned issues,

statistical modeling provides the most promising approach, given

its ability to capture uncertainties and errors in data. To meet

these goals we introduce a Bayesian statistical method for

evaluating atomic level 3D interaction patterns of protein-ligand

contacts. Our work is motivated by the previous findings in

Rantanen et al., [1], [2], [3] which showcased the usefulness of this

kind of a multidisciplinary approach. However, given computa-

tional speed related constraints, it has not been possible to pursue

these previous Bayesian methods further in contact preference

exploration. Therefore, the method discussed here focuses on

providing rapid means of computing, together with adjustability

and robustness of the statistical model. The latter aspect refers in

this context firstly to the constraint that two points in close

proximity to each other (with respect to the system size) should not

get very different contact preference hierarchies without an easily

tractable reason. Secondly, in terms of robustness, the preference

prediction model has to be balanced between adhering too closely

to the possibly biased overall number of different types of contact

atoms in the training data set and using a sole comparison of the

probability densities defined for each contact atom type of a

molecular fragment. Finally, the adjustability is concerned with

both the model structure and the chemistry-based classification of

molecular fragments. In our illustrations we consider 24 molecular

fragment and 13 contact atom types, exhibiting interactions like
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hydrogen bonding, dispersion (e.g. aromatic-aromatic) and inter-

actions between charged groups.

The main purpose of this paper is to show how a Bayesian

statistical modeling approach can be utilized to make naturally

ranked predictions about contact preferences, such that the model

itself can be flexibly updated in the presence of novel data and

other auxiliary information. Basically, this method is developed to

retrieve information to be used in a knowledge-based scoring

function. There exist several well performing scoring functions [9],

[10] that utilize the experimental knowledge through inverse

Boltzmann relation from statistical thermodynamics [11]. These

functions depend only on distance between atoms, e.g., a ligand

atom and a binding site atom. Our method differs from them in

that also directional information is incorporated in the model,

which has been shown in case of hydrogen bonding to still

significantly improve evaluation of binding energetics from

experimental data [12].

Three basic scoring function tasks have been defined [9], of

which enrichment of ligands was tested with our method. The test

was done through separating catechol-O-methyltransferase

(COMT) ligands from decoys using logistic regression on a set of

27 small molecules having similar properties. The receiver

operating characteristics (ROC) [13] for the results show that

the probabilistic contact preferences give reliable information

about the relative affinities in intermolecular contacts. These

probabilities can be applied to intramolecular contacts as well. In

practice, they are used as part of a molecular docking and scoring

routine. The method described in this paper will be integrated as a

functionality in the molecular modeling environment BODIL [4].

The structure of the article is as follows. First, data collection

and the modeling approach are described. Thereafter, results from

several case-studies are presented. Last, implications of the results

and some future prospects are discussed.

Materials and Methods

0.1 Data collection and processing
We used PDB as the main source of data in this work. Training

data for the model was collected from a set of approximately

28000 structure files published before January 1st 2009. The files

were selected using the criteria presented in Table 1. A reference

dataset for model validation was selected under the same criteria

as the training set and contained 10361 structure files published

between February 2nd of 2009 and 31st August 2011. X-ray

structures form the biggest group of data present in PDB. The bulk

of a structure file is the coordinate section, but there is also

chemical and biological information, interpreted as metadata,

which is necessary for constructing a sensible predictive model.

The type of metadata that is most directly deducible from the

experimental observations is the atom type. The atom type

classification can be considered sufficiently reliable for the higher

resolution (,2.5 Å ) structures, however, with at least one

exception, which corresponds to the nitrogen (N) and oxygen

(O) atoms in a carbamoyl group (-CO-NH2). In this group, O and

N cannot be distinguished solely on the basis of x-ray diffraction

data, because of the symmetric structure of the group and very

similar electronic densities around both O and N. This is a prime

example of a regularly encountered error in the metadata, which,

however, can be corrected by reversing the coordinates of O and

N. The ligand metadata would impose this error when for instance

hydrogen bonding with the ligand would require an acceptor (O)

contact, but a donor (-NH2) contact is given a closer coordinate

location in the structure file.

A considerably more difficult problem to handle is the influence

of the constraints used in the refinement of the protein structure

from experimental data. These constraints generate some unreli-

ability in the coordinates, because only conformations with

restricted geometries are allowed for the amino acid chain, which

together with limited resolution can lead to artificially distorted

conformations of ligand structures. In practice this means that the

refinement involves fitting an alleged structure to the experimen-

tally determined electron density map, which does not define all

structural features uniquely, especially when the resolution is low

[8].

Molecular fragments of pre-defined types (see Tables 2 and 3)

were searched from coordinate ligand structure files in PDB. The

search was based on atom types, chemical connectivity and

geometry, and the identified fragments were then labelled for use

in the extraction of coordinate data from protein structure files. To

obtain unique fragment orientations, atoms from within a

functional group were, when possible, chosen for the fragment

definitions. In order to build a predictive model, the set of 24

fragment classes in Table 2 was used while collecting a dataset of

approximately 70,000 contacts, representing the 13 contact atom

types, i.e. target classes in Table 3.

Regarding the contact classes in Table 3, for example, the class

C3 represents a pure van der Waals contact [14] and class C4, a

hydrogen donor in a possible weak hydrogen bond in addition to a

van der Waals contact [15], [16]. Aromatic carbons (C5, f11) can

participate in both of the typical C3 and C4 interactions [17].

Halogen bonds have a role in biological processes [18] and

therefore Fluorine [19], Chlorine, Bromine and Iodine are

considered as so called fragment Main-atoms, as shown in

Table 2. The target atoms in proteins, identified with three

distance criteria (ƒ3:3 Å for alleged H-bonds and charged groups,

ƒ3:7 Å for probable dispersion and ƒ3:9 Å for halogen bonds),

were classified during the search using three criteria: 1) element, 2)

amino acid residue and 3) side or main chain atom. The

interaction was defined as between a fragment type and target

type, or between nuclei, mediated by protons and/or electrons.

A fragment was defined by an atom triple: Main-atom, Atom1

and Atom2, and at least the Main-atom was given the following

characteristics: element, covalent bond count, aromaticity and

possibly functional group, see Tables 2 and 3. These character-

istics were used in collecting data from PDB, resulting in

coordinates with metadata. The aromaticity of an atom was

decided using PDB Ligand Dictionary through PDBeChem [20].

In addition to classification, target atoms have to be put in one

coordinate system, i.e. fragments are superimposed. This was done

using an elementary translation-rotation: first the database

coordinates of the Main-atoms were translated to origin, which

creates a new dataset (Fdatabase below in eq. 1), and then a rotation

operation was defined to connect the fragments reference frame to

a common coordinate system. This requires solving the following

matrix equation:

Table 1. Criteria for selecting structures from PDB.

Has ligands: Yes

Contains: Protein,DNA,RNA Yes, No, No

Experimental method: X-ray diffraction

Min. resolution 2.5 Å

doi:10.1371/journal.pone.0049216.t001
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Ftarget~R:Fdatabase, ð1Þ

where R refers to a 3|3 rotation;F~½�rr1,�rr2,�rr3�, �rri~½xi,yi,zi�T and

�rr3~�rr1|�rr2, i.e., �rr3 is the cross product of �rr1 with �rr2.

Thus, we have the equation,

R~Ftarget
:F{1

database, ð2Þ

which was solved for each fragment. The resulting R was then

used in the translation-rotations of the respective target atom

position vectors to the common coordinate system. When the data

is collected as mentioned above, as well as classified and

coordinate systemized in this manner, the process results in a

collection of three dimensional distributions of points that present

measured relative positions of specified atoms with respect to

specified fragment types. These distributions were then modeled

with 3D probability densities described below.

0.2 Statistical modeling
To obtain predictive distributions for contact preferences we

utilize a Bayesian framework where the observed 3D coordinates

in the training data are modeled with interconnected parametric

1D densities, such that the parameters are provided a priori

uncertainty characterizations in terms of probability distributions.

The prior distributions enable regulation of parameter estimates in

order to prevent them from depending solely on the observed data,

which is desirable especially under the circumstances where the

data generation process is known to harbor intrinsic biases. Also,

regularization of model parameter estimates with the prior

information is most crucial when certain class pairs have only

very sparse training data, in which case unsmoothed estimates can

be strongly biased.

The core distribution we utilize for characterizing coordinate

variability is the von Mises-Fisher distribution (vMF) which is

widely applied for modeling directional data. Separate probability

densities for all three coordinates were necessary in order to

capture the properties of the target atom clouds in a uniform

setting (details provided below). Spatially the most complex

(multimodal) observed differences in target atom distributions

are found around the main direction of the fragment, and to a

somewhat lesser extent with respect to distributions of polar angle,

i.e. angular deviation from the main direction, see Figures 1 and 2.

The distance distributions are given a priori as many modes as the

corresponding polar angle distributions have, though in most cases

they practically form a unimodal density, but not always. This is

explained more thoroughly later in this section. The variables and

parameters of the densities used in our work are specified in

Tables 4 and 5.

Let c denote a generic set of parameters specifying a density in a

3D space. Then, the probability density in spherical polar

coordinates ffC(r,w,hDc) for fragment class f and target class C

is assumed to be of the piece-wise defined form

Table 2. Fragment classes used in this study.

Class Description

f2 Hydroxyl oxygen bonded to a non-planar aliphatic structure

f3 Hydroxyl oxygen bonded to an aromatic structure

f5 Carbonyl oxygen (excluding those belonging to f9 and f10)

f6 Oxygen of a carboxyl group

f7 Carbamoyl oxygen

f8 Oxygen bonded to a phosphate group

f9 Amide group oxygen bonded to a non-aromatic structure

f10 Amide group oxygen bonded to an aromatic structure

f11 Secondary carbon in an aromatic structure

f12 Secondary carbon in a non-aromatic structure

f13 Primary carbon (with one hydrogen)

f17 Fluorine bonded to an aromatic structure

f18 Fluorine bonded to a non-aromatic structure

f20 Chlorine bonded to an aromatic structure

f21 Chlorine bonded to a non-aromatic structure

f22 Nitrogen in an aromatic structure (without a substituent)

f23 Nitrogen in a non-aromatic planar ring structure (without a
substituent)

f26 Amino (primary) nitrogen singly bonded to a non-aromatic structure

f27 Amino (primary) nitrogen bonded to an aromatic structure

f29 Amino (primary) nitrogen singly bonded to a planar structure

f34 Bromine bonded to an aromatic structure

f35 Bromine bonded to an aliphatic structure

f36 Iodine bonded to an aromatic structure

f37 Iodine bonded to an aliphatic structure

Main forms of intermolecular interaction for these fragment types are hydrogen
bonding, dispersion, charged group based electrostatic and halogen bonding.
The fragment classification was partly adopted from the previous work of
Rantanen et al. (see Introduction) while some classes were excluded. To
maintain consistency of the notation for easy comparison with earlier work, the
classes are not renumbered.
doi:10.1371/journal.pone.0049216.t002

Table 3. Classification of contact atoms, or targets.

Class Description

C3 Carbon of a methyl group

C4 Alpha carbon

C5 Carbon in an aromatic structure

C6 Sulfur of a thioether group

C7 Sulfur of a thiol group

C8 Nitrogen of an amide group

C9 Nitrogen of indole, imidazole and guanido groups

C10 Nitrogen of an amino group

C11 Oxygen of a carboxamide group

C12 Oxygen of a carboxyl group

C13 Oxygen of a hydroxyl group

C14 Main chain carbonyl oxygen

C15 Main chain amide nitrogen

The target classification was adopted from the previous work of Rantanen et al.
(see Introduction) while some classes were excluded. As in Table 2, the classes
are not renumbered for the consistency of notation.
doi:10.1371/journal.pone.0049216.t003
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Figure 1. Contact atom or target cloud. It is formed by main chain carbonyl oxygens (C14) around fragment type (f29) (amino nitrogen singly
bonded to a planar structure). In the reference frame where targets are modeled, polar angle value h~0 corresponds to what is in this paper called

the main direction of the fragment — the direction of the vector from Atom1 to Main-atom, and h~
p

2
corresponds to the plane that includes Main-

atom in the origo and to which the main direction is perpendicular. Azimuthal angle w measures angular deviation from the plane of the fragment, so

that the center of the smaller cluster below the fragment is (in the model frame) approximately in direction ½h~p, w~
3p

2
~{

p

2
�. A fragment is

defined by determining the characteristics of an atom triplet: Main-atom, Atom1 and Atom2. Main-atom is covalently bonded to Atom1, and Atom1
is covalently bonded to Atom2. Chemical properties of the Main-atom primarily determine the class of a fragment.
doi:10.1371/journal.pone.0049216.g001

Figure 2. Probability density modeling the target cloud of Figure 1. It is depicted in the same reference frame with the density. They can be
interpreted as overlayed such that elevations in the density correspond to dense areas in the cloud of data points. The main direction of the
fragment, as described in the caption of Figure 1, is defined by h~0 in the reference frame of the model, but corresponds in this figure to

½h~
p

2
,w~0�, where h is the polar angle and w is the azimuthal angle.

doi:10.1371/journal.pone.0049216.g002
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ffC(�rrDfmi,rg,fs2
i,rg,flig,fkig,fmjg,fsjg)!

XNvM

i~1

I(r[ci)I(h[bi)zifvM (hDli,ki):fN (rDmi,r,s2
i,r):

:
XNN,i

j~1

I(w[aij)wijfN (wDmij ,sij)�

ð3Þ

where �rr~½r sin(h) cos(w),r sin(h) sin(w),r cos(h)�T , the bi divide

(0,p) and ci divide (0,r
(cutoff )
fC ) to non-overlapping intervals. The

limit r
(cutoff )
fC is the maximum distance used in collecting the target

atom locations for a fragment class and target class pair (fC). The

intervals bi and ci are associated with weight zi,
PNvM

i~1 zi~1. The

aij then, are non-overlapping intervals of (0,2p) associated with

the weights wij ,
PNN,i

j~1 wij~1 (see below) and the different density

components and parameters are defined using conventional

nomenclature as:

f
(i)

N (rjmi,r,s2
i,r)~Ni,r

:exp({
1

2s2
i,r

(r{mi,r)2)

(i : th Normal component, Ni,r normalizing term),

f
(i)

vM (hjli,ki)~Ni
:exp(k cos(h{li))

(i : th von Mises component, Ni normalizing term) and

f
(ij)

N (qjmij ,sij)~
1ffiffiffiffiffiffi

2p
p

sij

exp({
1

2s2
ij

(q{mij)
2)

(j : th Normal component, relating to i : th von Mises

component):

ð4Þ

Equations 4 show the forms of the densities in the particular

coordinate system, or reference frame, that is used for modeling

and in which the main direction of the fragment coincides with the

positive z-axis. A likelihood function is obtained as a product from

the values of the components of the density (eq. 3) for ni (or nij )

points representing each of the included regions in the sample

space,

L(fmi,rg,fsi,rg,flig,fkig,fmijg,fsijg)~

XNvM

i~1

Li(mi,r,si,r,li,ki):
XNN,i

j~1

Lij(mij ,sij)

2
4

3
5,

ð5Þ

where

Li!z
ni
i
:e

ki

Pni
k~1

cos(hk{li ):e

{ 1

2s2
i,r

Pni
k~1

(rk{mi,r)2

, ð6Þ

Table 4. The spherical polar coordinates.

Symbol Variable

r distance

w azimuthal angle

h polar angle

doi:10.1371/journal.pone.0049216.t004

Table 5. Parameters for the model densities.

Symbol Description Treated as

mi,r Mean of Normal density for the Random variable

distance (i as below)

s2
i,r

Variance of Normal density for the
Var(r)2

i ~
1

k{1
(
Xk

l~1
r2

i,l{
1

k
(
Xk

l~1
ri,l )

2),

distance (i as below) for k observed distances.

li Expected direction, i:th von Mises Random variable

mixture component for h:

ki Concentration parameter, i:th vonMises Random variable

component for h:

mij Mean, j:th Normal mixture component Random variable

for w, related to i:th von Mises mixture

component.

s2
ij

Variance, j:th Normal mixture component
Var(w)2

ij~
1

k{1
(
Xk

l~1
w2

ij,l{
1

k
(
Xk

l~1
wij,l )

2),

related to i:th von Mises mixture component. for k observed angles.

doi:10.1371/journal.pone.0049216.t005

Prediction of Protein-Ligand Contacts

PLOS ONE | www.plosone.org 5 November 2012 | Volume 7 | Issue 11 | e49216



Lij!w
nij
ij
:e

{ 1

2s2
ij

Pnij
k~1

(wk{mij )2

: ð7Þ

The structure of the density (eq. 3) was chosen based on

investigations of the forms of the target atom clouds. For example,

use of normal densities for the distance data was supported by

large p-values in Kolmogorov-Smirnov normality test and the

numbers of components needed in the angle dependent part of the

density (i.e. NvM and NN,i) were automatically chosen based on

frequency distribution of binned data. This was done for both

angles (h and w) by connecting the heights of the adjacent bars of

the histogram, creating a sequence of values, in which every

change of sign corresponds to a local minimum or a maximum.

The number of maxima was restricted to the interval [1,5], was

used to represent the number of modes in the density. The number

of maxima was restricted by either reducing or increasing the

number of bins in case the result would be outside the given

interval.

In the separation of variables, azimuthal angle and distance are

conditioned on a polar angle interval, see the equations in (4).

The angular part reflects arc-like structures around the main

direction of the fragment (for examples of this see last paragraph

of section Examples 3 and 4). The angular deviation from the

main direction is the leading variable in the sense that a

multimodal azimuthal angle distribution (i.e. around the main

direction) and a unimodal distance distribution are defined

separately inside each polar angle segment. The idea behind this

is that the peak of a polar angle density is an indicator of the

strength of the interaction between a fragment and a target. The

smaller the angle, the stronger the interaction, and if there is any

effective multimodality in the distance density, the modes should

coincide with the modes of the polar angle density. The

azimuthal angle distribution thus completes the directional

structure within each polar angle mode.

The uncertainties of the distance and the azimuthal angle

variances are difficult to model due to the data generation process,

the limitations of which were discussed above, and therefore, we

use the standard maximum likelihood estimates calculated

marginally from observed coordinates. On the other hand, the

means mi,r, li and mij are central parameters representing a

measure of the strength of the interaction between the fragment

and the target.

0.2.1 Parameter prior densities. A prior distribution in

Bayesian statistics can either be used to model uncertainty about

a parameter or to include a priori knowledge, or beliefs, in the

model [21]. Both of these uses are necessary for our modeling

purposes.

Prior densities can be chosen in various ways such that they

are either conjugate distributions for a particular likelihood

function, or some other probability densities possessing

required statistical properties, such as an asymmetry. Priors

utilized here for individual parameters in the model densities

are summarized in Table 6. In Table 6, I0(:) is the zeroth order

modified Bessel function of the first kind. For the von Mises and

Normal distributions, conjugate priors are used (for the

mathematical derivations related to these distributions see

[22], [23], [24]).

Our prior density for the parameters is a slightly modified

version of the distributions considered in [25] and [26]. The

density has the form:

p(fmi,rg,fkig,flig,fkli
g,fmijgDm0,s0,k0,ni,l0,ci,kl,0,mw,0,sw,0)!

P
NvM

i~1
e
{ 1

2s2
0

(mi,r{m0)2

:I
{ni
0 (ki{k0):e

kli
cos(li{l0):I

{ci
0 (kli

{kl,0):

: P
NN,i

j~1
e

{ 1

2s2
w,0

(mij{mw,0)2
2
4

3
5

ð8Þ

In equation (8) hyperparameters ni and ci represent measures of

modeler’s belief in the expected values of the concentrations. The

larger the value of the hyperparameter, the more the prior is

concentrated around k0 or kl,0. A default choice for any of these

hyperparameters is the number of observations available for

calculating the estimates for k0 and kl,0.

0.2.2 The posterior distribution. In Bayesian statistics,

learning from observations takes place through the posterior

distribution which is accessible from the joint probability density

defined for the data and the parameters. For our piece-wise

defined likelihood, the joint density is formally defined as

Table 6. Prior densities for model parameters.

Symbol Parameter Type Functional Form of Prior

mi,r Mean of r (i:th Normal component)
e
{ 1

2s2
0

(mi,r{m0)2

;

m0 and s2
0 are constants.

ki Concentration of h(i:th von Mises component) I{ni

0 (ki{k0);

k0 and ni are constants.

li Mean of h (i:th von Mises component) ekli
cos(li{l0 ) ;

l0 is a constant.

mij Mean of w (j:th Normal component related to i:th von Mises component)
e
{ 1

2s2
w,0

(mij {mw,0 )2

; mw,0 and

s2
w,0 are constants.

doi:10.1371/journal.pone.0049216.t006
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p(fmi,rg,flig,fkig,fmijgDfmi,pg,fli,pg,fki,pg,fmij,pg)~

L(fmi,rg,flig,fkig,fmijg):

:p(fmi,rg,flig,fkig,fmijgDm0,l0,k0,mw,0)

ð9Þ

The posterior density (eq. 9) has the same functional form as the

prior density (eq. 8), but with updated parameters. As shown in the

equation (9), the prior parameters m0, l0, k0 and mw,0 are updated

to mi,p, li,p, ki,p and mij,p, respectively, in the usual manner in

Bayesian inference. In contrary, the remaining parameters are

determined either directly from the data or given a suitable value

based on chemical knowledge.

In order to define contact preferences, every fragment class and

target class pair has to be specified with some characteristics.

Maximum a posteriori (MAP) estimates are in this respect suitable

when the associated densities are (piecewise) unimodal. The MAP

estimates of the parameters are defined and updated with new

data according to the formulae in Table 7. The prior parameter s0

was given a constant value 0:01(Å2) and R0 was defined separately

for each fragment type.

0.2.3 Updated parameters and the probability mass in a

reference volume. In our method, to evaluate the plausibility

of a contact atom type in a given spatial area, the probability mass

within in this volume is evaluated. The mass is calculated using the

model densities (4) with updated parameters, see Table 7. The

spatial area, or volume, is defined by a distance interval and a solid

angle (i.e. intervals polar and azimuthal angles), and can be

arbitrarily located. The volume that contains all target locations is

defined through the intervals ½0,r(cutoff )
fC �, ½0,p� and ½0,2p� for the

distance, polar angle and azimuthal angle, respectively. The cutoff

r(cutoff )
fC is the maximum distance used when collecting data for a

fragment class and target class pair (fC). The size of the volume

can be chosen to be large, when for example contact preferences

on either side of the fragments plane are investigated. Alterna-

Table 7. MAP estimates of model parameters.

Posterior variable MAP estimate Definitions and estimates

Mean of distance m̂mi,p~ �yy~
1

mi

Xmi

l~1
yl ,

�yy � s2
0zm0 � s2

i,r

s2
0zs2

i,r

s2
i,r~

1

mi{1
(
Xmi

l~1
r2

l {
1

mi

(
Xmi

l~1
rl )

2)

Mean of polar angle l̂li,p~li,p
li,p~arctan(

Ro,i � sin(l0)z
Pk

l~1 sin(hl )

Ro,i � cos(l0)z
Pk

l~1 cos(hl )
),:

Ro,i~kl,i=ki and l0~const

Concentration of polar angle k̂ki,p~ki,p ki,p numerically by equalizing model and data variances.

Mean of azimuthal angle m̂mij,p~ �yy~
1

nij

Xnij

l~1
yl ,

�yy � s2
w,0zmw,0 � s2

ij

s2
w,0zs2

ij

s2
ij~

1

nij{1
(
Xnij

l~1
w2

l {
1

nij

(
Xnij

l~1
wl )

2)

doi:10.1371/journal.pone.0049216.t007

Table 8. Prior probabilities for fragment classes used in this study.

f\C C3 C4 C5 C6 C7 C8 C9

f2 0.0015 0.0077 0.1259 0.0012 0.0015 0.0970 0.1355

f3 0.0014 0.0069 0.1217 0.0016 0.0014 0.0990 0.1312

f5 0.0027 0.1316 0.0876 0.0020 0.0020 0.1233 0.1246

f8 0.0018 0.0884 0.0896 0.0020 0.0006 0.1297 0.1317

f11 0.0103 0.0542 0.1248 0.0119 0.0120 0.0777 0.0301

f18 0.0013 0.1002 0.1000 0.0014 0.0014 0.1391 0.1237

f20 0.0109 0.0691 0.0698 0.0740 0.0713 0.0864 0.0863

f22 0.0068 0.0365 0.1052 0.0079 0.0080 0.0594 0.0229

f23 0.0058 0.0313 0.1016 0.0062 0.0066 0.0103 0.0187

f26 0.0020 0.0176 0.0966 0.0025 0.0022 0.0037 0.1563

f27 0.0023 0.0130 0.1083 0.0027 0.0025 0.0040 0.0656

f34 0.0112 0.0698 0.0712 0.0266 0.0739 0.0884 0.0871

f36 0.0110 0.0661 0.0729 0.0696 0.0835 0.0814 0.0779

Classes C3 to C9.
doi:10.1371/journal.pone.0049216.t008
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tively, the size of the volume can also be small, depending on the

situation under investigation.

The spatial information content of the model is coded in the

particular functional form of the probability density, but if one

would solely rely on probability densities, it could easily happen

that a scarce contact atom type could get a hierarchically higher

preference position than a relatively often encountered type. This

could happen in a spatial area where all the few contacts of the

former type are observed. These kinds of problems are avoided

and results for different contact types made more directly

comparable by supervising the model such that chemically more

likely contacts are paralleled, as well as the less likely. The model

supervision was here achieved by multiplying the probability

masses with target type specific weights that are calculated from

three parameters electronegativity, softness and mean distance.

Softness of an element e, one from the group G = {C, N, O, S, F,

CL, BR, I}, was defined as twice the mean value of hardness

among the elements in G, minus hardness of the element e.

Numerical values for absolute hardness were taken from Parr et al.

[27]. The electronegativity and softness were used to represent the

tendency of an element to obtain partial charge in a compound.

The third parameter, mean distance, is a measure of the strength

of the interaction between a fragment and a target, and the

numerical value given to it was the arithmetic mean of the

Table 9. Prior probabilities for fragment classes used in this study.

f\C C10 C11 C12 C13 C14 C15

f2 0.1003 0.1036 0.1125 0.1100 0.1068 0.0960

f3 0.1073 0.1026 0.1092 0.1152 0.1090 0.0934

f5 0.1279 0.0036 0.1306 0.1384 0.0017 0.1238

f8 0.1351 0.0037 0.1347 0.1519 0.0019 0.1288

f11 0.0787 0.0894 0.1718 0.1716 0.0911 0.0763

f18 0.1380 0.0022 0.1366 0.1350 0.0012 0.1198

f20 0.0882 0.0891 0.0896 0.0894 0.0901 0.0858

f22 0.0641 0.1193 0.1938 0.1922 0.1200 0.0638

f23 0.0050 0.2090 0.2059 0.1926 0.2020 0.0049

f26 0.0018 0.1822 0.1815 0.1749 0.1768 0.0020

f27 0.0018 0.2025 0.2013 0.1939 0.2002 0.0018

f34 0.0890 0.0955 0.1011 0.1025 0.0991 0.0846

f36 0.0841 0.0890 0.0871 0.1069 0.0903 0.0803

Classes C10 to C15.
doi:10.1371/journal.pone.0049216.t009

Figure 3. The volumes used for calculations in Examples 1,3 and 4. Here r
(i)
ref (i~1,3,4) would be located in the center of the volume, both

radially and with respect to the solid angle. The center of the volume of Example 2 (not shown explicitly) is located on the axis defined by the vector
connecting Atom1 to Main-atom, i.e. on the positive x-axis in this figure.
doi:10.1371/journal.pone.0049216.g003
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distances in the training data. These parameters are used to

calculate the weights as proportional to Coulomb force between

the partial charges at the mean distance, i.e. pfC~
ef
:eC

DrfC D2
, ð10Þ

Table 10. Model based probabilities calculated from the reference point 1 centered volume.

f\C f2 f5 f8 f11 f18 f22 f23 f27

C3 0.0000 0.0001 0.0000 0.0000 0.0006 0.0000 0.0000 0.0000

C4 0.0000 0.0003 0.0000 0.0000 0.0070 0.0000 0.0000 0.0000

C5 0.0024 0.0038 0.0019 0.0000 0.0178 0.0000 0.0000 0.0000

C6 0.0003 0.0001 0.0000 0.0317 0.0000 0.0006 0.0001 0.0002

C7 0.0001 0.0001 0.0001 0.0104 0.0000 0.0000 0.0004 0.0000

C8 0.0976 0.1382 0.1734 0.0675 0.2759 0.0115 0.0049 0.0016

C9 0.2139 0.1342 0.1531 0.0014 0.0867 0.0015 0.0004 0.0023

C10 0.0870 0.1760 0.1706 0.0684 0.3998 0.0005 0.0000 0.0000

C11 0.1179 0.0022 0.0027 0.0370 0.0001 0.5804 0.1848 0.2506

C12 0.1191 0.1105 0.1078 0.0967 0.0297 0.0865 0.4721 0.3196

C13 0.1823 0.2259 0.1851 0.5027 0.0937 0.1331 0.0837 0.1186

C14 0.1141 0.0010 0.0014 0.0165 0.0008 0.1601 0.2533 0.3070

C15 0.0653 0.2075 0.2039 0.1677 0.0876 0.0257 0.0002 0.0002

doi:10.1371/journal.pone.0049216.t010

Figure 4. Reference point �rr(1)
ref . Comparison of contact atom frequencies with model based probabilities for fragment classes f2, f5, f26 and f27.

Hierarchy is given by the calculated probabilities, which are represented as circles. The circles are joined with a line to illustrate tendencies among
target classes. The bars represent the fractions of target atoms belonging to a particular class. Both sum to one over target classes. Also shown are
standard errors for both the frequencies and the model based probabilities (joined with lines and centered around the mean values). The contact
atom counts in reference data for f2, f5, f26 and f27 were 165, 126, 16 and 49, respectively.
doi:10.1371/journal.pone.0049216.g004
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where ef and eC are the obtained partial charges for a fragment

Main-atom and a target atom, respectively, and DrfC D is the mean

distance between the Main-atom and the target atom. The

motivation for this prior is that the intermolecular interactions are

mainly electrostatic, despite of the fact that they occur in many

different forms, e.g., between a permanent dipole and an induced

Figure 5. Hierarchies from model trained with data that excludes the additive-type ligands. Reference point �rr(1)
ref : comparison of contact

atom frequencies with model based probabilities for fragment classes f2, f5, f26 and f27. Hierarchy is given by the calculated probabilities, which
are represented as circles. The circles are joined with a line to illustrate tendencies among target classes. The bars represent the fractions of target
atoms belonging to a particular class. Both sum to one over target classes. Also shown are standard errors for both the frequencies and the model
based probabilities (joined with lines and centered around the mean values). The contact atom counts in reference data for f2, f5, f26 and f27 were
65, 126, 16 and 49, respectively.
doi:10.1371/journal.pone.0049216.g005

Table 11. Model based probabilities calculated from the reference poin 1 centerd volume.

f\C f2 f5 f8 f11 f18 f22 f23 f27

C3 0.0000 0.0001 0.0001 0.0118 0.0012 0.0000 0.0008 0.0000

C4 0.0000 0.0000 0.0004 0.0619 0.1062 0.0000 0.0001 0.0214

C5 0.0016 0.0034 0.0023 0.0000 0.0616 0.0000 0.0003 0.0174

C6 0.0004 0.0001 0.0001 0.0136 0.0005 0.0000 0.0000 0.0004

C7 0.0001 0.0004 0.0000 0.0137 0.0005 0.0002 0.0006 0.0000

C8 0.0939 0.1610 0.1511 0.0888 0.0534 0.0016 0.0000 0.0006

C9 0.2071 0.1891 0.2407 0.0344 0.2019 0.0075 0.0001 0.0105

C10 0.0725 0.1497 0.1611 0.0900 0.0530 0.0017 0.0000 0.0003

C11 0.1352 0.0037 0.0021 0.1022 0.0009 0.0376 0.9775 0.0325

C12 0.1459 0.0951 0.1023 0.1963 0.3106 0.5200 0.0009 0.0023

C13 0.1243 0.1722 0.1491 0.1961 0.0991 0.2575 0.0008 0.0311

C14 0.1188 0.0010 0.0017 0.1041 0.0020 0.1722 0.0193 0.8830

C15 0.1003 0.2243 0.1890 0.0872 0.1091 0.0017 0.0000 0.0003

The probability masses have been obtained with a model that was trained using a dataset from which the additives were excluded.
doi:10.1371/journal.pone.0049216.t011
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dipole, or between two induced dipoles, known as a London

dispersion.

In the above formulation, it is assumed that a generic a priori

information can be accurately utilized when modeling an

interaction between f and C. It would also be possible to use

calculated energies of some simplified fragment-target model as

the a priori information, but the described approach is chosen

because of its simplicity and independence of molecular details,

which follows from utilizing element specific, measurable param-

eters, i.e. ionization energy and electron affinity [27]. Calculated

prior probabilities relevant for this study are given in Tables 8 and

9.

0.3 Hierarchy calculations
In order to calculate the spatially dependent hierarchies around

an arbitrary reference point

Table 12. Model based probabilities calculated from the reference point 2 centered volume.

C\f f13 f17 f18 f20 f21 f34 f35 f36

C3 0.0061 0.0024 0.0026 0.0083 0.0170 0.0083 0.0416 0.0153

C4 0.0938 0.2534 0.2609 0.0462 0.0157 0.0055 0.0094 0.0724

C5 0.1470 0.0295 0.0595 0.0935 0.1158 0.1301 0.5172 0.4147

C6 0.0017 0.0002 0.0039 0.0058 0.0061 0.0018 0.0102 0.0082

C7 0.0017 0.0057 0.0041 0.0281 0.0049 0.0120 0.0093 0.0098

C8 0.0069 0.0157 0.1322 0.0569 0.3050 0.0058 0.0140 0.0096

C9 0.0152 0.1801 0.1610 0.1620 0.0102 0.0845 0.0101 0.0091

C10 0.0011 0.0140 0.0996 0.0664 0.0070 0.0092 0.0148 0.0099

C11 0.2086 0.0003 0.0100 0.0890 0.0000 0.0063 0.0120 0.0105

C12 0.2357 0.0557 0.0998 0.2086 0.0907 0.2868 0.0143 0.0102

C13 0.0683 0.2377 0.0142 0.0430 0.1396 0.0457 0.0123 0.0825

C14 0.2126 0.0013 0.0023 0.1138 0.1905 0.3247 0.3239 0.2918

C15 0.0011 0.2037 0.1499 0.0783 0.0975 0.0793 0.0109 0.0533

doi:10.1371/journal.pone.0049216.t012

Figure 6. Target class specific total counts of contacts. Fragment classes f2, f5, f26 and f27, the same as in Example 1 related hierarchy figure.
doi:10.1371/journal.pone.0049216.g006
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�rrref ,z~rref
:cos(wref ):sin(href ),sin(wref ):sin(href ),cos(href )�, ð11Þ

we defined intervals in spherical polar coordinates:

D~½r1,r2,h1,h2,w1,w2�, ð12Þ

which define a volume that includes �rrref ,z, e.g. rref ~
1

2
(r1zr2),

href ~
1

2
(h1zh2) and wref ~

1

2
(w1zw2). The reference point �rrref ,z

is defined in the reference frame that is used for modeling the data,

and in which the fragment is in the (-z)(-x)-plane. The Main-atom

(see section Data collection and processing) is at the origin, Atom1

on the negative z-axis and Atom2 in a point ({Dx2D,{Dy2D,0), i.e.

in the plane defined by the negative z- and x-axes. On the other

hand, in the reference frame used for the graphical representations

in this article, �rrref ,z (eq. 11) is transformed to

�rrref ~rref
:cos(href ),cos(wref ):sin(href ),sin(wref ):sin(href )�, ð13Þ

which is in a reference frame where the fragment is in (-x)(-y)-

plane, see Figures 3 and 1.

The probability masses in the volume defined by D (eq. 12) are

evaluated using the model densities with the updated parameter

values. Technically the calculations are done either with series

expansions, see e.g. the equations 7.1.1., 7.1.7., 7.1.22 and 9.6.34

in [28] or directly as Riemann sums.

The fC-specific probability mass is the factor that gives a

contact atom type C its rank, in the fragment class f related, and

around a reference point �rrref defined hierarchy. Namely, the

bigger the mass, the more probable the contact atom type. The

volume can cover a larger portion of the neighborhood of the

fragment, for example, the hemisphere on either side of the plane

of the fragment.

A hierarchy can also be defined for example among the

fragment types (f ), with respect to a representative of a target class

C around �rrref . The motivation for choosing the probability density

and the estimation procedures of the model parameters as

described in Methods, is that they provide a rapid and flexible

way to capture the relevant features of the target atom

distributions, without relying on fine details of the target atom

clouds, which are potentially misleading due to the intrinsic

uncertainties in the data generation process.

Results

The functionality of the introduced Bayesian method of finding

hierarchies is here illustrated by a number of case-studies. The

calculated hierarchies are compared with contact atom type

counts found in the reference data, in the volume surrounding the

reference point �rrref , representing a target atom location. The

hierarchies and the reference frequencies are not expected to be

Figure 7. Reference point �rr(2)
ref . Comparison of contact atom frequencies with model based probabilities for fragment classes f17, f20, f34 and

f36. Hierarchy is given by the calculated probabilities, which are represented as circles. The circles are joined with a line to illustrate tendencies
among target classes. The bars represent the fractions of target atoms belonging to a particular class. Both sum to one over target classes. Also
shown are standard errors for both the frequencies and the model based probabilities (joined with lines and centered around the mean values). The
contact atom counts in reference data for f17, f20, f34 and f36 are 4, 7, 0 and 1, respectively.
doi:10.1371/journal.pone.0049216.g007
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perfectly congruent, due to the fact that the reference data set is

not exhaustively large. Therefore, they are expected to simply

show some of the specific features around the reference point �rrref .

In order to illustrate the reliability of the results, standard errors

for all results were determined with a bootstrap type procedure

[29], which is described together with the corresponding results.

Example 1: A typical location of a hydrogen bonding
partner

First, we consider a reference point equal to

�rr(1)
ref ~ 2:8 :cos(

p

3
),cos(

19p

10
):sin(

p

3
),sin(

19p

10
):sin(

p

3
)�,

which is located just below the plane of the fragment, with a polar

angle deviation of
p

3
to the left from the main direction, see

Figure 3. The intervals D (eq. 12) used were

r1,r2,h1,h2,w1,w2�~½2:725 ,2:875 ,
p

4
,
5p

12
,
9p

5
,2p�,

and the results calculated around �rr(1)
ref for fragment classes f2, f5,

f8, f11, f18, f22, f23 and f27 (see Table 2) are given in Table 10

below. They are also represented graphically for f2, f5, f26 and

f27 in Figure 4. The error bars represent separately standard

errors for the model based probabilities and the frequencies in

reference data. They were defined by calculating both quantities in

a set of 1,000 �rr(1)
ref centered volumes, that were slightly different in

shape and size. To investigate how the inclusion of additives as

ligands in the training and reference data sets would affect the

model-based rankings, we divided the data into two sets using a list

of approximately 770 additives that are found in PDB [30].

Contact data for these additives was removed from the original set

to create a new additive-free set. Then, based on the model trained

with the new dataset, contact hierarchies were calculated and

probability masses were compared with reference data that also

lacked the additives.

We replicated the calculations in Example 1 using the additive-

free data and the results are shown in Figure 5 and Table 11. In

addition, a comparison of the original and new contact atom

counts is presented graphically in Figure 6. Comparisons of the

rankings reveal that they are nearly identical in the two situations.

Nevertheless, some discrepancy does occur and this example

illustrates the need of a careful consideration about what structures

can be included as representative information to the training data.

If predictions based on multiple different training sets are

extensively monitored and discovered to be sufficiently similar, it

is possible to consider the use of a universal training data collection

where the different sets are merged.

Figure 8. Reference points �rr(3)
ref and �rr(4)

ref . Comparison of contact atom frequencies with model based probabilities for fragment classes f2, f5, f11
and f22. Hierarchy is given by the calculated probabilities, which are represented as circles. The circles are joined with a line to illustrate tendencies
among target classes. The bars represent the fractions of target atoms belonging to a particular class. Both sum to one over target classes. Also
shown are standard errors for both the frequencies and the model based probabilities (joined with lines and centered around the mean values). The
contact atom counts in reference data for f2, f5, f11 and f22 are 158, 163, 5 and 7, respectively.
doi:10.1371/journal.pone.0049216.g008
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Example 2: A possible halogen bond geometry
The second reference point is

�rr(2)
ref ~3:40 :cos(0),cos(warbitrary):sin(0),

sin(warbitrary):sin(0)�~3:40 :1,0,0�,

i.e. on the positive x-axis when defined in the reference frame of

Figure 3. The intervals D (see eq. 12) used were

r1,r2,h1,h2,w1,w2�~½3:25 ,3:55 ,0,
p

5
,0,2p�:

Table 12 presents probabilities for classes f13, f17, f18, f20, f21,

f34, f35 and f36 and the results are represented graphically for

f17, f20, f34 and f36 in Figure 7. The error bars represent

separately standard errors for the model based probabilities and

the frequencies in reference data. As in the previous example, they

were defined by calculating both in a set of 1,000 �rr(2)
ref centered

volumes, that were slightly different in shape and size.

Examples 3 and 4: Two distances in a direction
perpendicular to the plane of the fragment

The third and fourth reference points, in the reference frame of

Figure 3, are

r
(3)
ref ~2:8 :cos(

p

2
),cos(

3p

2
):sin(

p

2
),sin(

3p

2
):sin(

p

2
)�~2:8 :0,0,{1�

r
(4)
ref ~3:3 :cos(

p

2
),cos(

3p

2
):sin(

p

2
),sin(

3p

2
):sin(

p

2
)�~3:3 :0,0,{1�:

The intervals D (see eq. 12) used were

r1,r2,h1,h2,w1,w2�~½2:7 ,2:9 ,
5p

12
,
7p

12
,
17p

12
,
19p

12
�,

r1,r2,h1,h2,w1,w2�~½3:2 ,3:4 ,
5p

12
,
7p

12
,
17p

12
,
19p

12
�,

Figure 9. Hierarchies from model trained with data that excludes the additive-type ligands. These are relating to example 1. Reference
points �rr(3)

ref and �rr(4)
ref : comparison of contact atom frequencies with model based probabilities for fragment classes f2, f5, f11 and f22. Hierarchy is

given by the calculated probabilities, which are represented as circles. The circles are joined with a line to illustrate tendencies among target classes.
The bars represent the fractions of target atoms belonging to a particular class. Both sum to one over target classes. Also shown are standard errors
for both the frequencies and the model based probabilities (joined with lines and centered around the mean values). The contact atom counts in
reference data for f2, f5, f11 and f22 are 111, 67, 1 and 6, respectively.
doi:10.1371/journal.pone.0049216.g009
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and the corresponding volumes are centered around the negative

z-axis, as shown in Figure 3. The results are represented

graphically for fragment classes f2, f5, f11 and f22 in Figure 8.

The error bars represent separately standard errors for the model

based probabilities and the frequencies in reference data,

calculated in the same manner as in the previous examples.

Hierarchies calculated when the additives were excluded, as

discussed in Example 1, are presented in Figure 9. It is seen that a

larger discrepancy in the model-based rankings compared with the

reference data occurs when the reference data are extremely

sparse, which makes the unsmoothed relative frequencies highly

volatile. To also visualize more generally how our method smooths

scatter data about different types of contacts, 3D-plots of estimated

densities are shown in Figures 10, 11, 12.

Example 5: Direct contacts of R-norepinephrine
Here we consider the hydrogen bonding and aromatic

interaction preferences of norepinephrine (also known as nor-

adrenaline; PDB ligand identifier: LT4). The molecular environ-

ment of this example is the norepinephrine binding site in chain B

of human phenylethanolamine N-methyltransferase (PNMT) from

PDB entry 3HCD. PNMT catalyses adrenaline synthesis with

coenzyme S-adenosyl-L-methionine (AdoMet). In the structure of

3HCD AdoMet is replaced by its demethylated form S-adenosyl-

L-homocysteine (AdoHcy) to study the binding mode of LT4 [31].

The x-ray resolution of the entry 3HCD is 2.39 Å , which is near

the upper limit considered in our study (v2.5 Å , see Table 1). As

discussed previously, this means that some precaution is necessary

while deducing interactions from the structure. Consequently, the

statistical nature of our method is helpful, since the probability

densities can indicate a certain relative location that is associated

with what is experimentally observed in other structures. This

enable the quantification of the relation in question as a

probability.

LT4 has three hydroxyl groups, a terminal amino group and a

six-carbon aromatic ring as its functional groups. The most

preferred target class for any of these functional groups is defined

as a class for which the product of the probability density peak

value (eq. 3) and the class conditional prior probability (see

Tables 8 and 9) has the highest numerical value.

Two of the hydroxyl oxygens are bonded to the aromatic ring

(cathecol hydroxyl groups), and based on the model, prefer a

nitrogen from histidine or arginine side chain as a contact. The

aromatic ring carbons then prefer aromatic carbons, i.e. phenyl-

alanine, histidine, tyrosine or tryptophan is a likely contact residue.

The aromatic carbons also have strong contacts from the

hydrophilic targets, for example carboxyl oxygens. The hydroxyl

Figure 10. Contacts for carboxyl oxygen (f6). Showing differences in spatial arrangement of contacts among three target classes - C4 (alpha
carbon), C10 (amino nitrogen) and C12 (carboxyl oxygen). The scatter plots contain all the target atoms found in the fragment class f6 training data
for these target classes.
doi:10.1371/journal.pone.0049216.g010
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group of the aliphatic tail prefers lysine and the terminal amino

group prefers glutamic acid/glutamate or aspartic acid/aspartate.

These a priori preferences are not related to LT4, instead only

the 3D structure of the interactions is. Some directional aspects

related to this example are illustrated in Figures 13, 14, 15, 16, 17.

Figures 14 and 15 present hydrogen bonding contacts for the R-

norepinephrine tail. There are two carboxyl oxygen (C12)

contacts for the LT4 hydroxyl group, namely GLU B219 and

ASP B267. The former is at a distance less than the maximum

length used in this study for a oxygen donor and oxygen acceptor

hydrogen bond, i.e. 3.14 Åv3.30 Å . According to the model, its

direction of approach is not typical for a hydrogen bond, but

because the same GLU B219 residue is simultaneously a contact

for the adjacent amino group, the actual preferred direction is such

that it allows the carboxyl to bond with both of these functional

groups in LT4. Therefore this is considered a direct contact.

Regarding the amino group, the direction of approach of the GLU

B219 carboxyl oxygen is typical for a hydrogen bond (almost

optimal), only somewhat shifted to a direction that facilitates the

double contact described above, see Figure 15. The latter

carboxyl, ASP B267, is in a more typical direction, but even

further apart, and it is confirmed from PDB entry 3HCD water

locations that this contact is a bridged hydrogen bond, not a direct

contact.

The TYR B222 contact for the hydroxyl of LT4 tail, see

Figure 14, has an aromatic ring that can serve as a hydrogen bond

acceptor. Therefore, in case the LT4 tail hydroxyl group would act

as an acceptor in the above described hydrogen bonds (i.e. with

water and GLU B219) it could in principle donate its hydrogen to

a weak hydrogen bond with the aromatic ring of TYR B222,

because the closest atom of the ring is at a distance of about 3.5 Å

and the ring is facing toward the hydroxyl group. Consequently, as

for the LT4 amino group this is not a strong contact, but perhaps

has a guiding task in the binding process.

Example 6: Separating COMT ligands from decoys in a
subset of DUD

Here we demonstrate the usefulness of the estimated contact

probability masses in discriminating between appropriate and

poor binders using logistic regression, see e.g. [32]. In the current

application context, logistic regression model connects a binary

response variable (here ligand/decoy), with explanatory variables

describing the modeled system. The outcome is a probability

indicating how likely it is for a system to belong to either of the two

response groups. Our testing was done by retrieving a set

containing 6 out of the 11 Catechol-O-methyltransferase (COMT)

ligands and 19 out of the total 468 decoys from the Directory of

useful decoys (DUD) [33]. Two extra ligands were added, namely

Figure 11. Contacts for amide oxygen (f10). Showing differences in contact arrangements for two target classes - C8 (carbamoyl nitrogen) and
C9 (imidazole, guanido or indole nitrogen), and also distance dependence for class C9. The scatter plots contain all contacts found in the training
data for these fragment and target class pairs. Note that the target atom clouds in the middle and on the right are the same.
doi:10.1371/journal.pone.0049216.g011
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dopamine and BIA 3-335 (PDB Ligand identifiers LDP and BIA,

respectively), by retrieving their structures from ZINC database,

see [34]. These 27 small molecules (ZINC codes in Tables 13, 14

and 15) were chosen so that the DUD molecules have high mutual

resemblance, especially so that the decoys have an aromatic ring

with at least two primary oxygens bonded to neighboring carbons

(in hydroxyl groups typically). This is because all except one

COMT ligand in DUD have this type of a structure, and the

exception is different only in that the ring is non-aromatic. The

two extra ligands were included for reference, because they are

known good binders, for BIA [35], and should have clearly higher

preference to binding than an average decoy.

The search for the binding mode of the small molecule in the

binding pocket (from PDB ID 1H1D) was started by orienting the

molecule such that two of the primary oxygens would coordinate

with the magnesium ion (Mg2+), participating in the COMT

function (see [35]), and here taken as part of the binding site.

Then, predefined rotamers of the small molecule were rotated

around the axis connecting the two coordinating Os, and to a

lesser amount around a second axis. Direct contact probabilities

between the small molecule and the binding site were calculated.

Probabilities for the two coordinating Os were excluded to

emphasize contacts for the rest of the molecule. Rotamers and

orientations with close intra- or intermolecular contacts were

removed using distance criteria, though the plausibility of a

rotamer could be evaluated using probability masses for intramo-

lecular contacts.

For each small molecule, the rotamer and orientation with

highest probability were found and the probabilities were then

used in a logistic regression model that mimics a docking screening

task. Two explanatory variables were used in the logistic regression

model: the total probability mass of direct contacts, divided by the

mass of the molecule (pmPerMass) and the ratio of the number of

hydrophobic and hydrophilic fragments (Phob/Phil) in the

molecule.

It is well known that in an actual binding affinity calculation for

a ligand-protein pair in solution, one needs to consider energetics

of direct contacts, water and metal mediated contacts, desolvation

and entropy. The variable pmPerMass is here considered to be a

measure of the binding energy of direct contacts, whereas the

variable Phob/Phil reflects desolvation properties and perhaps

tendency for water mediated contacts. Configurational entropy

doesn’t have in this study any obvious representative, because for

the numbers of rotatable bonds (RotBonds) no predictive role was

identified. Results of the predictions based on logistic regression

are shown graphically in Figure 18. Values for the putative

explanatory variables are given in Tables 13, 14 and 15.

Figure 12. Contacts for nitrogen, singly bonded to a planar structure (f29) — e.g. in carbamoyl group. showing distance dependence
for target class C14 (carbonyl oxygen). The scatter plot contains all C14 target atoms in the training data and the densities show which directions are
emphasized at distances 2.7, 2.98 and 3.26 Å.
doi:10.1371/journal.pone.0049216.g012
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The molecule that was most highly ranked, BIA 3-335, is a

known tight binding inhibitor [35]. It is also heaviest of the 27

molecules included in the example; approximately 360 hydrogen

masses compared to the more typical value that is between 150

and 250. The variable pmPerMass is intensive, i.e., the size of the

molecule should not directly influence it’s value, and it is assumed

that success in predicting relative binding affinities for smaller

candidate binders depends strongly on the accuracy of this

variable.

Probabilities derived from the logistic regression are on average

over 0.5 for the molecules in the alleged ligand group and below

0.5 for the alleged decoys, which represents a natural threshold

between a ligand and a decoy in a screening process. Two

exceptions in the ligand group are the low scoring molecules with

index values 1 and 4. The ligand with index value 1 has the third

Figure 14. Contacts in the active site of PNMT (a methyltransferase) for R-noradrenaline tail hydroxyl group. Three amino acid
residues (ASP B267, GLU B219 and TYR B222) were considered as contacts.
doi:10.1371/journal.pone.0049216.g014

Figure 13. The aromatic phenylalanine contact PHE B182 in PNMT (see text of section Example 4) for the LT4 aromatic ring. Also
depicted in the figure is the proximity (closest 3.4 Å ) of the TYR B222 aromatic ring to the amino group of LT4. Though the distance and orientation
of the ring fit well to the hydrogen bond donor - aromatic ring interaction scheme, the relative direction is such that TYR B222 corresponds to
probability density values smaller than 20% of the peak value. Therefore, this might not be a strong contact for the amino group, but possibly has a
guiding task in the binding process. The depicted distance between amino group and the methyl group donating sulfur atom is 5.66 Å.
doi:10.1371/journal.pone.0049216.g013
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highest pmPerMass, but quite low Phob/Phil value, while the

ligand with index 4 has a low value for both (see Table 13). Hence,

if both these molecules are considered as good binders, our

approach does not contain enough information to reveal this. On

the other hand, there are not necessarily experimental data

available on the binding affinities for the decoys, which in this

study were chosen to resemble the ligands as much as possible,

each starting with the two, to Mg2+ anchoring primary oxygens

bonded to an aromatic ring. This means that some decoys might

be reasonably good binders. Nevertheless, based on the logistic

regression model, molecules in the ligand group have on average

clearly higher probabilities (0:62) to be ligands than the molecules

in the decoy group (0:16). In summary, in the set of 27 chemically

similar small molecules, containing 8 experimentally defined

ligands, 6 highest ranked molecules were from the ligand group.

Consequently, the receiver operating characteristics (ROC) [13] in

Figure 15. Carboxyl oxygen (C12) contact for the amino group of LT4. The residue GLU B219 carboxyl oxygen is located in a typical direction
of a class C12 hydrogen bond acceptor for this functional group (fragment class f26).
doi:10.1371/journal.pone.0049216.g015

Figure 16. The contact between a cathecol hydroxyl group and the tyrosine B40 residue of the phenylethanolamine N-
methyltransferase (PNMT). The distance to both degenerate maxima is 2.52 Å.
doi:10.1371/journal.pone.0049216.g016

Prediction of Protein-Ligand Contacts

PLOS ONE | www.plosone.org 19 November 2012 | Volume 7 | Issue 11 | e49216



the screening experiment are: true positive rate TPR = 0.75, false

positive rate FPR = 0 and accuracy ACC = 0.93. A ROC curve

was produced by using discriminating thresholds having either

different TPR or FPR. The ROC curve is given in Figure 19.

One important aspect that has not been considered here, is

whether the active form of COMT is a monomer or a multimer. If

it is a multimer, it would be interesting to investigate how

informative this characteristic is about the properties of suitable

ligands. Additional potential molecular characteristics for further

study are the flexibility of the binding site and the features of the

binding modes having the highest probabilities (pmPerMass).

Discussion

Predictions about unresolved binding sites, or ligands, can be

made by building the preferred contact patterns from the

molecules included in a set of functionally classified fragments.

In out method, these contact patterns are composed of probability

masses calculated for the fragments to have a specific kind of

contact in a spatial area. When, for example, the binding affinity

of a molecule is studied and the probability masses are defined for

an entire molecule, they can be used in a docking and scoring

procedure. The absolute binding affinity would be given by the

total energetics of the binding process in a thermodynamic setting,

including direct and bridged contacts, desolvation and entropy. It

is presumed, that using a fragmentation where the fragments have

distinct and unique contact patterns, the probability densities

described here contain information beyond the chemical comple-

mentarity, namely on energetics (for results in this direction, see

[36]). This is reasonable by an analogy with quantum mechanics,

because it can be argued that the probability masses are

proportional to the amount of binding energy, which are needed

in evaluating the binding affinities. In our setting this means

relative binding affinities, i.e. rankings over a set of ligands and

decoys.

The results obtained in Example 6, show a level of reliability

that is typical for a successful scoring function, see e.g. reviews [9],

[10]. Our experiment revealed that potentially very reliable

information could be retrieved when our probabilistic method is

combined with an effective search routine. An important aspect is

that the ligand and decoy molecules were similar, i.e. the decoys

used were ‘drug-like’ [29]. This is based on that they typically had

masses between 150 to 250 hydrogen masses, contained both

hydrophobic and hydrophilic fragments throughout the structure

and were chosen so that each can be anchored to the magnesium

ion in the COMT binding site. This should make separation of

ligands from decoys challenging and be ultimately based on finer

details of the binding affinity, because no decoy was readily

rejectable. In a docking and scoring routine such a method can

also be used to find the most favourable orientation for the most

favourable rotamer, or conformer, of a small molecule in a binding

site, i.e. the pose. When adjusting the method for calculations of

Figure 17. R-Norepinephrine (PDB ligand identifier: LT4) with amino acid residues that contain target atoms having highest
probability density values in the model. In the figures on the right, the double contacts are created by a degeneracy that follows from the way
the fragments are defined. Namely, the third atom (Atom2, see Section Data collection and processing) of a fragment in a molecule can frequently be
chosen from more than one possible atom and each choice creates its own probability density, including a maximum. These densities are connected
through a rotation around the covalent bond between the Main-atom and Atom1.
doi:10.1371/journal.pone.0049216.g017
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the absolute binding affinities, the same difficulties will be faced as

for any knowledge-based scoring function, see [9].

In addition to the quality of the fragmentation, the reliability of

the data is a central issue in the prediction of contact preferences

and some issues related to this were discussed in Sections 1 and 2.

When choosing the structure for a prediction model, it is essential

to understand the data generation process; in principle from the

experimental measurement to the coordinate file. Regarding the

special characteristics of the experimental method, x-ray diffrac-

tion is sensitive to thermal motion in the crystal. This weakens

locally the electron density map, and since electron density maps

are precisely the starting point in structure refinement, such an

effect should preferably be assessed. In the further refinement,

constraints are used in order to keep the protein structure within

chemically acceptable boundaries. It thus follows that the ligand

atom positions have uncertainty which is not straightforward to

quantify. Possible approaches to quantification could be explora-

tion of the effects of the constraints on a theoretical basis or using

structures refined with different constraints. On the other hand,

PDB files contain substantial amounts of metadata that could

potentially also be used in modeling. An example of this are the b-

factors, which can be used for incorporating thermal motion in the

model. Another example is provided by the occupancies that are

needed to take into account the more long lasting local

displacements, i.e. alternative conformations in the crystallized

protein-ligand complexes [8].

Though the results in the example sections are given with

standard errors [29], performance of our model in predicting

favourable intermolecular contacts could be more quantitatively

verified in the future when more extensive reference sets of

sufficiently high quality become available. The approximately

10,000 structure files from PDB used as reference data did only

give a preliminary test for certain fragment types. This is mainly

because of the 3D nature of the problem, since in order to obtain a

good spatial resolution, the frequencies need to be defined in less

extensive volumes.

Figure 18. Probabilities calculated for separation of Catechol-
O-methyltransferase (COMT) ligands from decoys in a subset
of DUD. The green circles represent ligands and the red circles decoys,
as they are classified in DUD, when all 27 considered molecules are
included in the model. The two extra ligands (see text) have index
values 7 and 8 (PDB identifiers LDP and BIA, respectively). Blue step
curve gives the mean probability that was obtained from bootstrapping
over the two decoy subgroups to calculate standard errors for the
logistic regression (error bars representing these are centered at the
mean values).
doi:10.1371/journal.pone.0049216.g018

Table 13. Ligand properties in Example 6.

Index ZINC pmPerMass RotBonds Phob/Phil

1 21789 0.053 2 2.33

2 330141 0.071 0 6

3 3801154 0.038 3 6

4 3814483 0.011 2 2

5 3814484 0.049 1 6

6 3814485 0.051 1 6

7 33882 0.052 2 6

8 52627624 0.078 5 12

Index values represent an ordering of the molecules used in this study.
doi:10.1371/journal.pone.0049216.t013

Table 14. Properties of the first set of decoys in Example 6.

Index ZINC pmPerMass RotBonds Phob/Phil

9 22831 0.049 0 3

10 366295 0.050 3 2

11 366296 0.044 3 2

12 370041 0.033 3 2.5

13 370042 0.036 3 2.4

14 370157 0.015 2 4.5

15 370162 0.029 2 4.5

16 402870 0.055 2 3

17 438536 0.032 2 3

18 1833085 0.010 1 3.67

Index values represent an ordering of the molecules used in this study.
doi:10.1371/journal.pone.0049216.t014

Table 15. Properties of the second set of decoys in Example
6.

Index ZINC pmPerMass RotBonds Phob/Phil

19 2519115 0.050 2 4.5

20 2990158 0.010 1 3.33

21 3836392 0.000 2 3

22 3871444 0.041 3 4.5

23 3973802 0.000 2 3

24 3995296 0.040 3 2

25 4000727 0.030 3 2

26 4404113 0.036 1 2.33

27 4443675 0.039 3 4.5

Index values represent an ordering of the molecules in this study.
doi:10.1371/journal.pone.0049216.t015
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Following a reviewer’s suggestion, we added a ROC curve to

Example 6, which makes it more informative.

Conclusions

The hierarchies illustrated in our examples show both spatial

dependence and reliability. They can also be evaluated quite

rapidly from coordinates within a classification, typically in

seconds, or in tens of seconds. Thus, tentatively our approach

can be used to study structural aspects of biochemical reactions or

as a tool in predicting the most favourable binding modes and

separating ligands from decoys, as described in the examples. A

plausible future test would be to create a hierarchy among a group

of ligands and compare their binding probabilities to experimen-

tally measured binding affinities, e.g. those of KiBank database

referred to in DUD. Test on each stage of the docking and scoring

procedure has to be successfully conducted, before it is shown that

the method is applicable for the purpose. Then it can be directly

compared, e.g., with the knowledge-based potentials that are only

distance dependent.

Reliable evaluation of binding affinities for potential ligands of a

binding site, would be a desirable feature of a virtual drug design

screen, see for example [9], [37]. As discussed, the distance and

direction dependent probability masses obtained with the

approach described here, are taken to provide direct information

on relative binding affinity, which is supported by the results in

Example 6. Regarding further development of our modeling

approach, both statistics- and chemistry-based generalizations and

improvements are possible, including the obvious expansion to all

imaginable molecular fragment types.

Bayesian predictive modeling in the normative sense as defined

in [38] provides a potential approach to representing contact

preference distributions. Such a predictive model could exploit

directly the 3D structures of the probability densities (eq. 3) that

model the contact atom positions, instead of considering density

parameters as the main characterization of the spatial information.

The obvious disadvantage of such an approach is the considerably

increased computational effort needed to derive approximations to

the sought after predictive distributions.

The reliability of an inferred hierarchy depends, on one hand,

on how successfully the error from experimental methods and

structure refinement is quantified in terms of the used probability

densities. On the other hand it depends on how realistically the

chemical likelihood of a contact atom type and the bias in the data

set are taken into account. The latter are here incorporated as

prior information, see equation (10), which guides the model with

chemistry-based knowledge. A third fundamental area for

chemistry-based improvements are the classifications (Tables 2

and 3). For example, a classification can be envisioned where the

covalent bond count of Atom1 (see Data collection and processing)

would be used as one of the characteristics defining the fragment,

which would then remove the degeneracy described in section

Example 5. This kind of more structural way of defining the

fragments would expand the classifications, but should also give

fragment definitions that are closer to being unique.
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