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Abstract

It is widely accepted that gene expression regulation is a stochastic event. The common approach for its computer
simulation requires detailed information on the interactions of individual molecules, which is often not available for the
analyses of biological experiments. As an alternative approach, we employed a more intuitive model to simulate the
experimental result, the Markov-chain model, in which a gene is regulated by activators and repressors, which bind the
same site in a mutually exclusive manner. Our stochastic simulation in the presence of both activators and repressors
predicted a Hill-coefficient of the dose-response curve closer to the experimentally observed value than the calculated value
based on the simple additive effects of activators alone and repressors alone. The simulation also reproduced the
heterogeneity of gene expression levels among individual cells observed by Fluorescence Activated Cell Sorting analysis.
Therefore, our approach may help to apply stochastic simulations to broader experimental data.
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Introduction

It has been widely accepted that gene expression regulation

follows a stochastic mechanism at the single gene or cell level

[1,2,3,4,5,6,7,8]. To predict the variability of a reporter gene’s

expression in numerical simulations, discrete stochastic (Markov

jump process) models, e.g., the Gillespie algorithm [9] and

Peccoud and Ycart model [10], and continuous stochastic model

driven by chemical Langevin equation (CLE) [11] have been

widely used [12]. However, Gillespie’s algorithm and CLE are

limited to modeling well-studied biological pathways [13,14,15],

because they require the detailed chemical kinetics on interactions

of individual molecules, which is often not available for the

analyses of biological experiments. Similarly, the Peccoud and

Ycart model require the measurement of the parameters for

promoter state switching, mRNA burst (size and frequency), and

mRNA degradation at the single molecule level in a single cell

[1,16,17].

Due to these limitations, many biological systems have been

modeled without using a stochastic simulation or have not been

modeled. For example, Ferrell and Machelder have used the Hill

Coefficient to model the conversion of continuous hormone stimuli

to all-or-none responses by positive feedback regulation in cell

signaling [18]. Similarly, Werner et al. have modeled the switch-

like activity of the Epstein-Barr virus (EBV) C promoter, regulated

by competitively binding two types of transcription factors (TFs)

(one from the virus and the other from the host) without using

stochastic simulation [19]. Perhaps one of the best examples of an

experiment that does not use models was carried out by Rossi et al.

[20]. They used a synthetic transcription unit with the overlapping

promoter regions bound by either doxycycline (dox)-controlled

activators alone, or repressors alone, or both [20]. The authors

have demonstrated that depending on the concentration of

inducer, dox, this dox-inducible system yields graded (rheostat)

or all-or-none (on/off switch) responses at the transcriptional level

even in the isogeneic cell population. The authors have extracted

the Hill coefficients from Fluorescence Activated Cell Sorting

(FACS) data and demonstrated that both activators and repressors

compete for the same promoter. However, the Werner’s approach

[19] was unable to directly quantify the synergistic (Hill coefficient)

and stochastic (cellular heterogeneity) characteristics of this

synthetic transcription unit [20], because these experiments lack

the kinetic rates and binding affinity constants of TFs.

Accordingly, it is desirable to develop a method that allows

stochastic simulation even if detailed information on the

interaction of individual molecules is not available. To this end,

we have used an intuitive approach, a Markov-Chain model

(MCM) [21], which was initially formulated to simulate the

stochastic behavior of a glucocorticoid hormone-inducible gene

expression system [22] (Figure 1a). To simulate the experimental

results by Rossi et al. [20], we extended the original 2-state MCM

(TF-bound and TF-unbound) to a 3-state MCM (repressor-bound

state, activator-bound state, and none-bound state). We have

found that these MCMs can faithfully reproduce the observed

cellular heterogeneity of a reporter gene observed by FACS

experiments and also accurately predict a Hill-coefficient in the

presence of both activators and repressors based on the

experimental data obtained by activator only and repressor only

trials. Our stochastic simulation can, thus, provide a new tool to

explore the origins and controls for the stochasticity of gene

regulatory networks by using simple dose-response data.
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Results

Experimental data used for the analyses
Without a positive feedback loop in the signaling cascades

[18,23,24,25,26], Rossi et al. have generated the switch-like or

all-or-none patterns of gene expression at the transcriptional

level, in which the activators and repressors compete for the same

promoter regions of the reporter gene [20]. The authors have

created three different cell lines: the presence of the activator (A)

only, the presence of the repressor (R) only, and the presence of

both activator and repressor (A+R). These cells have been used

separately to produce dose-response curves ((dox concentration

[dox]) vs. promoter activity presented as % maximum green

fluorescent protein (GFP)) by adding different concentrations of

dox in the cell culture medium (see the original Figure 2 in Rossi

et al., 2000). They obtained the observed Hill coefficient from

these dose-response curves: 1.6 for the presence of the activator

only, 1.8 for the presence of the repressor only, and 3.2 for the

presence of both the activator and repressor. The authors have

suggested that both multiplication and addition of the Hill

coefficients 1.6 and 1.8, as it has been done customarily, can

produce 2.8 or 3.4, respectively, which are close to the observed

Hill coefficient 3.2. One of our goals is to explain why the

observed Hill coefficient (3.2) is different from the calculated Hill

coefficient (2.8 or 3.4).

The only other available data from the experiments by Rossi

et al. is the single-cell analysis of GFP expression by FACS (see the

original Figure 3 in Rossi et al., 2000). By visually inspecting the

distributions of GFP intensities measured by the FACS analyses,

we obtained approximate peaks of intensities at 0.2 for the

presence of the repressor only, 20 for the presence of the activator

only, and 1.0 for the absence of either the activator or repressor.

Construction of a 3-state MCM
To model the experimental results, three different types of cell

lines have to be considered: a GFP-tagged transcription cassette

mediated by a dox-controlled repressor (R); a dox-controlled

activator (A); and both (A+R). Both repressors only and activators

only (the first two types [A or R]) can be directly formulated into

the 2-state MCM (Figure S1a), in which the accessibility of

promoter is based on the binding and unbinding states of a single

transcription factor (TF). Modeling gene regulation by the

presence of both the repressors and activators (the third type

[A+R]) is not straightforward, but the 2-state MCM can be

expanded to a 3-state MCM (Figure 1b) by assuming the state

where neither activator nor repressor binds to the promoter, which

produces the leaky basal level of gene expression. This ‘‘binding

contingency’’ assumption can be justified, because the activator

has to be unbound before the repressor can bind and vice versa.

Parameters estimated from the dose-response
experiments of activator only and repressor only

To apply the 3-state MCM to the experimental results by Rossi

et al. [20], we proposed a new way to estimate these parameters

from dose ([dox])–response (GFP) curves, which can be fitted with

the Hill function (GRF, see the Method section). Because the

binding affinity of the activator and repressor to a tet operator

(tetO) is highly regulated by dox, the switching probabilities of

MCM are assumed to be varied with respect to [dox] and

reasonably defined as the Hill function of [dox] (Eq. 9).

Figure 1. Transition diagrams for Markov-chain model (MCM). (a) A 2-state MCM, redrawn from the original Figure 2 in [21]. p1 and p2 are
probabilities of transitions between a state of active transcription (ON), where TFs bind to a promoter and form a stable transcription initiation
complex, and a state of no transcription (OFF). (b) 3-state MCM. To account for both activator-bound and repressor-bound states, two 2-state MCMs
are combined, where unbound state (i.e., neither activator nor repressor bound) represents a state of basal-level transcription. PA1, PA2, PR1 and PR2 are
transition probabilities between the states.
doi:10.1371/journal.pone.0032376.g001

Stochastic Modeling for Gene Expression
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The 3-state MCM (Figure 1b) consists of four switching

probabilities (PA1, PA2, PR1 and PR2). By assuming the same

physical and chemical properties of the activator or repressor itself

in the three types of cell population (A, R, and A+R), the 3-state

MCM dose-response curves of activator (PAct) and repressor (PRep)

still keep the same sigmoidal flexure as those obtained experi-

mentally for activators alone (OBSAct) and repressors alone (OBSRep)

(Figure 2). This notion leads to the derivation of an objective

Figure 2. A strategy of parameter estimation for a 3-state MCM. All the parameters for the 3-state MCM were estimated from the published
data only on the dose-response experiments of activator only and repressor only [20]. In the case of activator only, parameters in PAct (Eq. 3 or Eq. 10)
were estimated by using the observed dose-response curve (OBSAct: a Hill function of [dox]) represented by the equation (Eq. 4 or Eq. 11) in the
Materials and Methods section. The repressor only case (OBSRep, PRep) was handled in the same manner.
doi:10.1371/journal.pone.0032376.g002

Stochastic Modeling for Gene Expression
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function (Eq. 12 or 13) that is used to optimally minimize the

differences between PAct and OBSAct together with PRep and OBSRep

(Figure 2 and -method) under the assumption of ‘‘binding

contingency’’. After optimizing this objective function, these

switching probabilities can be estimated as the Hill function of

[dox] and plotted as dose (dox) – response (probability) curves (see

the following sections for details). Therefore, the four switching

probabilities were varied with respect to different levels of [dox].

Stochastic simulation yields gradual or switch-like responses
By plugging the estimated switching probabilities into the 3-state

MCM for stochastic simulation (Eq. 14), our model produced the

steady-state responses of 10,000 individual runs in the isogenic cell

population, in which no cell-to-cell interaction is assumed.

Consistent with the FACS data [20], the simulation results not

only exhibited graded patterns (Figure S1b) for activator or

repressor alone by a 2-stateMCM, but also manifested all-or-none

patterns of gene expression (Figure 3b) in the presence of both

activator and repressor at the optimal conditions ([dox] =

2.5,7.5 mg/ml) by the 3-state MCM. The generation of this

switch-like gene expression pattern implies that the ‘‘binding

contingency’’ between activators and repressors (i.e., the notion

that both activators and repressors cannot bind to the regulatory

regions at the same time) is compatible with the conclusion that the

Figure 3. Stochastic simulation using a 3-state MCM yields all-or-none responses. In a cell population, steady-state distributions of gene
induction were stochastically simulated by the 3-state MCM using the estimated parameters described in Figure 2. Red, black, and green lines present
the peaks of transcription levels in the ‘‘repressor-bound,’’ ‘‘unbound,’’ and ‘‘activator-bound’’ states, respectively. A gray vertical bar indicates the
increasing concentrations of [dox], which correspond to the experimental conditions reported in [20].
doi:10.1371/journal.pone.0032376.g003

Stochastic Modeling for Gene Expression
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competition of TFs (A+R) for the same DNA regulatory element is

required and sufficient for all-or-none responses [20].

Model prediction matches more closely to the
experimental observation

To generate an ensemble Hill coefficient from total population

responses in the 3-state MCM in the steady state, we found that

the 7 [dox] conditions simulated in Figure 3 were not sufficient.

We therefore carried out more extensive stochastic simulations

and increased the number of [dox] conditions to 34 for the

activator only and repressor only conditions, and averaged them to

plot the dose-response relationship between [dox] and normalized

promoter activities (Figure 4a). As expected, the dose-response

relationship followed a sigmoidal curve. Although the parameter

optimizations for the dose-response experiments were carried out

to have the Hill coefficients for activator alone or repressor alone

be close to 1.6 or 1.8 (numbers in green and red in Figure 4c), the

results indicate that the 3-state MCM can retain the dose-response

characteristics of either activator alone (1.6) or repressor (1.8)

alone.

We next carried out extensive stochastic simulations in the

presence of both activator and repressor for 34 [dox] conditions

and plotted the dose-response relationship. Data points closely

followed the dose-response curve (Figure 4a, a curve in black).

Although all stochastic simulations for activator only, repressor

only, and both activator and repressor (Figure 3 and Figure 4a)

were generated under the same values of switching probabilities

(PA1, PA2, PR1 and PR2, green and red lines in Figure 4b), the dose-

response curves derived from the activator/repressor conditions

(black line in Figure 4a) was steeper than those of the activator

only or repressor only (green and red lines Figure 4a). This implies

that the binding contingency between activators and repressors

may lead to more sensitive and cooperative gene induction than

that mediated by either activator alone or repressor alone. By

deducing the Hill function from the dose-response curves

(Figure 4a), a Hill coefficient for the presence of both activator

and repressor was calculated to be 3.2 (numbers in black and

arrows in Figure 4c). This number was indeed very close to the

experimentally observed Hill coefficient for the presence of both

activator and repressor.

To address how these switching probabilities relate to the

synergistic or cooperative responses of gene induction, we focused

on the critical ranges (gray region in Figure 4a) and found that the

switching probabilities (red lines in Figure 4b) of repressor alone

(R) are lower than those (green lines in Figure 4b) of activator

alone (A). Moreover, not only the 3-state MCM (Figure 3b) for

both TFs (A+R) but also the 2-state MCM for repressor alone

(Figure 3a) manifested switch-like patterns of stochastic gene

expression. This implies that the repressor itself, rather than

activator itself, may possess the pivotal role of having all-or-none

patterns of stochastic gene expression for the third type of cell

population (A+R) in the experiments by Rossi et al.

Discussion

By using the MCM and estimating its parameters from dose-

response experiments of either repressor alone or activator alone,

our modeling is able to predict the stochasticity and cooperativity

of gene induction experiments in the presence of both activators

and repressors [20]. The MCM approach is in sharp contrast to

the conventional approach, i.e. the Gillespie algorithm [9] and the

Peccoud and Ycart model [10], in the following ways.

First, the detailed molecular reactions in the genetic constructs

of experiments by Rossi et al. may encompass over twelve kinetic

rate constants required for computer modeling, such as TF

dimerization, dox conjugating to repressor/activator protein and

TF binding/unbinding to a promoter with multiple binding sites.

If these rate constants are available and experimentally tested, the

model equations can be formulated for the Gillespie’s algorithm

using mass action rules and stochastic simulations. In contrast,

only four switching probabilities, which represent four Hill

functions of [dox] with eight parameters, are required for

constructing a 3-state MCM without the kinetics of molecular

interactions. Even Peccoud and Ycart’s model is able to simplify

such gene induction processes by introducing the rates of gene

switching and mRNA biosynthesis, although the parameter

estimations highly rely on single-molecule experiments. Second,

only cell population-averaged dose-response curves at the steady

Figure 4. Model prediction matches more closely to the
experimental observation. (a) Simulated dose-response relationship
between [dox] and promoter activity (normalized gene induction
levels). (b) Hill functions showing estimated switching probabilities (PA1,
PA2, PR1, and PR2) against [dox]. Values of PA1+PR1 against [dox] are also
shown. To show the relationship between (a) and (b), these graphs are
aligned by the [dox]. (c) Comparisons between model predictions and
experimental observations.
doi:10.1371/journal.pone.0032376.g004
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state measured by FACS are affordable. The parameter values of

the conventional methods were unable to be directly extracted

from simple dose-response experiments. Consequently, our

stochastic simulation of the 3-state MCM can be used to precisely

predict the Hill coefficient of gene induction measured by regular

biological experiments.

Recently, Kim and O’Shea mathematically established a

thermodynamics model to fit the dose-response gene expression

of the PHO5 promoter from a single yeast cell by optimally

searching a set of parameter values, which can be used to explain

the different dynamics of gene induction among PHO5 promoter

variants. The genetic constructs and relevant designs in this

experiment are very similar to those in the experiments by Rossi et

al. Thus, we applied this model to the 3-state gene induction of

experiments by Rossi et al. (File S1). As shown in Table 1, the Hill

coefficient predicted by the thermodynamic model is farther from

the experimentally observed value than that predicted by the 3-

state MCM simulation. This indicates that the model by Kim and

O’Shea cannot be directly applied to experimental results by Rossi

et al.

In general, besides the randomness of basal levels and mRNA

degradations in Eq. 5, the size of a time step (Dt) is a critical factor

that affects the stochasticity or randomness of the simulation. In

the Gillespie algorithm, the time step sizes are varied in relation to

the total amount of rate changes and molecular numbers in the

whole dynamic system. In the stochastic simulation by MCM, the

step size is fixed so that the majority of cellular variability may

arise from the switching back and forth between ‘‘ON’’ and

‘‘OFF’’ states. However, to enhance the numerical integration, the

stochastic differential equation, i.e. Ito integration, together with

variable time steps could also be incorporated into MCM

stochastic simulations.

One important aspect of the MCM is its ability to produce both

the graded or all-or-none patterns of gene expression by changing

p1, which corresponds to the concentration of a TF and p2, which

corresponds to the stability of the TF-binding to the enhancer/

promoter (i.e., transcription initiation complex) [21]. It is worth

commenting here on the MCM and all-or-none patterns of gene

expression, because such an all-or-none pattern of stochastic gene

expression has been found to be a major molecular basis for cell

fate determination [7,29]. A recent work by To and Maheshri has

demonstrated that high turn-over rates and multiple DNA binding

elements of TFs can induce all-or-none responses in the synthetic

positive feedback system in the steady state without having

bistability itself [16]. We found that the MCM can also handle this

case by assuming that p1 and p2 are correlated to the duration of

TF presence and the number of TF binding sites, respectively. By

searching the p1 and p2 space by simulations, one can find the p1

and p2 probabilities that produce the all-or-none gene expression

patterns [3,21]. Another important point of the MCM is its ability

to examine the time-course of the gene expression status in

individual cells, as we show examples of dynamical fluctuations

over time in two individual cells, which manifest either graded or

all-or-none patterns of gene expression at the steady state (Figure

S2). By examining many cells in the population in this manner, the

MCM approach can provide a comprehensive way to depict

different types of cellular heterogeneity for gene induction.

A stochastic simulation of a 3-state MCM for activator-repressor

controlled gene induction is easily performed by experimental

biologists due to three points: (a) mapping the gene induction

processes to a Markov chain model only requires logical thinking;

(b) the parameter values are estimated from simple dose-response

experiments; (c) the Hill coefficient can be predicted by stochastic

simulation rather than by deriving a dimensionless analytical

solution from a set of complicated ODEs.

Finally, we believe that the approach we have demonstrated

here can be easily applied to the stochastic simulation of many

other biological systems, including signaling and metabolic

pathways, because the implementation of the approach is intuitive

and does not require training in advanced physics and chemistry.

Materials and Methods

2-state MCM
Design principles of the MCM for gene

induction. Chromatin structures (i.e. histone modifications

and nucleosomal remodeling) [27,30,31] and TF-binding to

enhancer/promoter regions [21,32,33,34] have been known to

significantly modulate transcription initiation in eukaryotic genes.

By assuming rate-limiting steps among these molecular processes

[21,34], we regarded the state of the enhancer/promoter of gene

induction as either the ‘‘ON’’ or ‘‘OFF’’ state, in which the TFs

bind or unbind (Figure 1a). Once the promoter is bound by TFs

(activators), the gene becomes transcriptionally active and

produces a fixed quantity of mRNAs by iteratively loading and

releasing RNA polymerase per unit time, otherwise the gene is

silenced or inactive with no production of mRNA transcripts.

Every unit time, the system follows a transition diagram [21]

(Figure 1a), in which the stochastic transitions between ‘‘OFF’’ and

‘‘ON’’ states of the gene enhancer/promoter are controlled by two

parameters: p1 is the probability of switching from the ‘‘OFF’’ to

‘‘ON’’ state to form stable transcription initiation machinery,

resulting in the synthesis of mRNA molecules, whereas p2 is the

probability of dissociating the transcription complexes to shut

down gene expression. The system remains in the same state at the

probabilities of (12p1) and (12p2), respectively. After obtaining

parameter values (p1 and p2) and model simulations, gene

induction can be represented as telegraphs (Figure S2b), in

Table 1. Comparisons of the predicted parameters of Hill function for gene induction mediated by two competing factors (A+R).

Conventional(a) Conventional(b) 3-state MCM(c) Calculated(d) Observed(e)

Hill coefficient 2.567 (0.00256)* 2.692 (0.00196)* 3.199 (0.01485)* 3.4 or 2.88 3.2

Effective [dox] 0.699 (0.00031)* 0.483 (0.00015)* 0.599 (0.00093)*

(a)Ps
Act: The transcriptionally active promoter is defined by only activator-bound state.

(b)Ps
Act+Ps

Unb: The transcriptionally active promoter is defined by both unbound and activator-bound states that are the summation of constitutively and fully expressed
gene.
(c)Our method reported in this paper.
(d)Addition (1.6+1.8) or multiplication (1.661.8) as reported in Rossi et al. (2000).
(e)An experimentally observed value reported in Rossi et al. (2000).
*Standard error.
doi:10.1371/journal.pone.0032376.t001

Stochastic Modeling for Gene Expression

PLoS ONE | www.plosone.org 6 March 2012 | Volume 7 | Issue 3 | e32376



which the states of enhancer/promoter activity are discretely

changing over time, resulting in the accumulation of mRNAs,

which are also degraded at a fixed rate.

Probabilities p1 and p2 can be considered independent, as p1 is

correlated to the concentration of TFs, and p2 is the probability of

dissociation of the TF complexes on the enhancer/promoter

regions, which should be independent of the concentration of TFs

[21,32,35]. However, in this paper we have also considered the

case with p2 = 12p1, in which p2 is dependent on the p1.

Properties of the MCM at steady state. Based on the

Markov chain and the schematics of gene induction (Figure 1a),

the likelihood of a both ‘‘ON’’ and ‘‘OFF’’ state (PON and POFF) of

enhancer/promoter activity can be formulated by the forward and

reverse switching probabilities (p1 and p2) with respect to time

evolutions. The current state likelihood (t = n) of gene induction is

determined by both the previous state (t = n21) and the switching

probabilities (p1 and p2). PON (POFF) is the summation of the

probabilities to maintain its original state and to transition from

the ‘‘OFF’’ (‘‘ON’’) state. Consequently, the likelihood of the

‘‘ON’’ and ‘‘OFF’’ state (PON and POFF) is always changing with

time.

P
(n)
ON~P

(n{1)
ON |(1{p2)zP

(n{1)
OFF |p1

P
(n)
OFF ~P

(n{1)
ON |p2zP

(n{1)
OFF |(1{p1)

(
ð1Þ

When this dynamical system reaches to the steady state, PON
(n) and

POFF
(n) will converge to dimensionless PON and POFF. Then at the

steady state Eq. 1 becomes:

PON~PON|(1{p2)zPOFF|p1

POFFzPON~1
, ð2Þ

where the summation of ‘‘ON’’ and ‘‘OFF’’ state likelihood is

equal to 1. By solving Eq. 2, the analytical solutions of state

likelihood are obtained at the steady state as the function of

switching probabilities (p1 and p2), which are the parameters that

will be estimated from the experimental data (see the next section):

PON~
p1

p1zp2

POFF~
p2

p1zp2

8><
>: ð3Þ

Parameter estimations. Gene-regulatory function (GRF) is

proposed to quantify promoter activity or gene expression by

formulating the non-linear function of TF concentration

[27,28,36]. In general, GRF is experimentally measured as a

sigmoidal dose-response curve, which can be mathematically

expressed as the Hill function (Eq. 4), whose parameters are TF

binding affinity (KM), effective concentration to half-activated

induction, and synergistic effect (H, Hill coefficient). Because our

stochastic model simulates gene induction as the results of a

telegraph (e.g. Figure S2b) based on switching probabilities (p1 and

p2), the parameters (switching probabilities) must be directly

connected to the GRF based on the experimental results. To this

end, we converted the GRF or Hill function into the probabilistic

models as follows. The promoter activity is proportional to the

fractional binding of the TF on the target gene. In other words, the

percentage or occupancy of the promoter bound by transcriptional

activator can be defined as the switching probability from the

‘‘OFF’’ to ‘‘ON’’ state of enhancer/promoter accessibility. Note

that all above assumptions regarding promoter activity are based

on multiple copies of the target gene in the cell population,

whereas the switching probabilities (p1 and p2) are the stochastic

model for the induction of a single gene (one DNA template) in an

individual cell [21,22].

p1~
½TF �H

KH
Mz½TF �H

, ð4Þ

where [TF] is the concentration of TF and input of GRF. p1 is the

output of GRF, defined as the switching probability (0,1) by

promoting the ‘‘OFF’’ to ‘‘ON’’ state of enhancer/promoter.

Numerical solver for stochastic simulation. The

molecule number of each mRNA species (X) in a single cell is

dynamically changed over time by both synthesis (birth) and

degradation (death). The kinetic rate equation for the turnover of

RNA molecules is generally expressed and integrated as follows:

d½X �
dt

~a:f (½TF �){c:½X �, ð5Þ

where a is the rate of gene transcription to synthesize mRNA

molecules and c is the first-order degradation rate of mRNAs. Dt is

the unit of time interval for numerical integration. We took the

following approach to convert the deterministic system into a

stochastic process,

½X �t~nz1{½X �t~n

Dt
~a:ft~n{c:d:½X �t~n

½X �t~nz1~½X �t~nzDt:(a:ft~n{c:d:½X �t~n)

ð6Þ

Based on our previous study [21], this equation is slightly modified

by putting the two random effects (Eqs. 5 and 6) into ‘‘birth’’ and

‘‘death’’ terms separately. The first effect is the state of enhancer/

promoter accessibility (ft = n), which is highly dependent on the

previous state (ft = n21) and switching probability (p1 or p2):

ft~n~
1,rƒp1\ft~n{1~0 or rwp2\ft~n{1~1

0,rwp1\ft~n{1~0 or rƒp2\ft~n{1~1

�
, ð7Þ

where r is randomly selected from continuous numbers of uniform

distribution within the range (0,1). ‘‘1’’ indicates that a gene is

activated to synthesize mRNAs with respect to the rate of

transcription (a), whereas ‘‘0’’ represents that a gene is repressed

and produces no RNAs during the time interval (from t = n21 to

t = n). The p1 and p2 values, which are the functions of [TF], the

concentration of TF (Eq. 4), may change over time series, if [TF]

varies with time. The second effect (d) is the factor of natural noise

to interfere with the rate of mRNA degradation and is from

normal distribution N(1, 0.52).

Stochastic simulation for single gene induction. To apply

a 2-state MCM to single gene induction, we adopted the solver

(Eq. 6).

½X �t~nz1~½X �t~nzDt:(BLza:fn{c:d xð Þ:½X �t~n), ð8Þ

where BL, equal to c10d(y), is the basal expression level including

background noise (arbitrary unit) presented in the FACS result

and the m of d(y) (the second effect in Eq. 6) equals to N(0, 0.52).

This additional term (BL) was incorporated into the simulation to

model the basal level of repressor-mediated (‘‘R’’ condition) gene

induction measured at [dox] = 0 by FACS. The time step size (Dt)

is assumed to be 1. We used 2.0 and 0.2 as the rate of transcription
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(alpha, a) and mRNA degradation (gamma, c), respectively.

Although these are arbitrary values, at least they are similar to the

kinetic parameters of GFP mRNA biosynthesis in yeast [34].

Furthermore, the precise parameter values are, in general, not

critical for this simulation, because these parameters mainly affect

the steady-state level of gene expression, which is normalized to

the range between 0 (0%) to 1 (100%), when the Hill coefficient

and effective [dox] concentration are estimated from dose-

response curves (Figure 4a and 4c). This normalization is

necessary to compare our simulation results to the experimental

results by Rossi et al. [20], as they have presented their results after

such normalization in their paper.

We recorded the final outcomes of integrations of the single

gene induction solver (Eq. 8) at the steady state (t = 200 arbitrarily

unit). This time point was chosen, because time evolutions (starting

from t = 0) of [X] for three different [dox] conditions show that the

mean value of [X] reaches the steady state (though minor

stochastic fluctuation can still be seen) after 50 time cycles (Figure

S3).

3-state MCM
The 3-state MCM is essentially the same as the 2-state MCM,

but it follows two successive transitions of states: for gene

activation, from Repressor-bound state to unbound state, and to

Activator-bound state; for gene repression, from the Activator-

bound state to unbound state, and to repressor-bound state

(Figure 1b). Therefore, the 3-state MCM uses the same ‘‘Design

principles of the MCM for gene induction’’ and ‘‘Properties of the

MCM at steady state’’ as those described above in the 2-state

MCM. The 3-state-specific methods are described below.

Parameter estimations. As depicted in the main text

(Figure 1b), 3-state MCMs are driven by two forward (PA1 and

PR2) and two backward (PA2 and PR1) switching probabilities.

According to Eq. 4 of Methods, we assume these four switching

probabilities are the Hill functions of [dox].

PA1~
½dox�HA1

K
HA1
A1 z½dox�HA1

,PA2~
½dox�HA2

K
HA2
A2 z½dox�HA2

,

PR1~
½dox�HR1

K
HR1
R1 z½dox�HR1

,PR2~
½dox�HR2

K
HR2
R2 z½dox�HR2

ð9Þ

In other words, these four switching probabilities of 3-state MCM

are changed with different levels of [dox].

To obtain the above 8 parameters in the 4 Hill functions (4

switching probabilities), we can employ the analytical solutions

(Eq. 3) of state likelihood for the probability of attaining the

‘‘Activator-bound state (PAct)’’ and the ‘‘Repressor-bound state

(PRep)’’ from the ‘‘unbound state’’:

PAct~
PA1

PA1zPA2

,PRep~
PR1

PR1zPR2

ð10Þ

In the same way, we can also obtain the observed probability of

the ‘‘Activator-bound state (OBSAct)’’ and the ‘‘Repressor-bound

state (OBSRep)’’ based on the dose-response curves from the

averaged cell population of FACS experiments [20]:

OBSAct~
½dox�1:6

0:41:6z½dox�1:6
,OBSRep~1{

½dox�1:8

0:81:8z½dox�1:8
, ð11Þ

where the values of the Hill coefficient and effective [dox] are

adopted from the table in Figure 4c. To minimize the differences

between the model and the experiment, the equations (Eqs. 12
and 13) are organized into two types of objective functions: when

gene induction is modeled by 3-state MCM.

ObjFunc1~ OBSAct{PActð Þ2z OBSRep{PRep

� �2
zC, ð12Þ

where C is the ‘‘penalty’’ by setting 10,000 if the switching

probabilities are not compatible with the assumption regarding the

‘‘binding contingency’’ between activator and repressor,

(PA1+PR1),1, or 0. when gene expression is characterized by 2-

state MCM for repressor only or activator only (i.e., no binding

contingency term is appended to the objective function),

ObjFunc2~ OBSAct{PActð Þ2z OBSRep{PRep

� �2 ð13Þ

After minimizing objective functions using MATLAB and the

genetic algorithm (GA) toolbox v1.2 [37], four pairs of Hill

function parameters are obtained (Table S1) and then plugged into

four Hill functions (Eq. 9) of switching probabilities (PA1, PA2, PR1

and PR2 in the 3-state MCM (Figure 1b)) to plot the sigmoid curves

of [dox] in the Figure 4b. The other parameters are used to obtain

the four switching probabilities (P9A1, P9A2, P9R1 and P9R2) for

stochastic simulations of 2-state MCM in the presence of repressor

only or activator only from the experiments by Rossi et al. (Figure

S1).

Stochastic simulation of 3-state MCM. Because the same

HRIgfphGH bicistronic reporter is used for the three experimental

conditions, i.e., ‘‘A’’, ‘‘R’’ and ‘‘A+R’’, [20], we used the same

dynamical equation (Eq. 8) and the corresponding parameters for

stochastic simulation of both 2-state and 3-state MCM. The major

difference between them is the function (ft = n, Eq. 7 v.s. Eq. 14) of

state transition regarding enhancer/promoter accessibility. As

shown in Figure 1b, the state transitions in the 3-state MCM

should proceed by two successive steps or ‘‘jumps’’ against the

corresponding switching probabilities. Namely, these two

successive steps can avoid a higher or over occurrence of the

‘‘unbound state’’, which is the essential point to be passed through

when the previous state is ‘‘activator-bound’’ or ‘‘repressor-

bound’’ by a one-step move. In addition, there is no direct

switching between repressive and active states in the 3-state MCM.

If the model reaches the ‘‘repressor-bound state’’ (‘‘unbound’’

and ‘‘activator-bound’’ states), the promoter activity, f([TF]), is set

to 0 (1 and 10). For the 3-state of MCM mediated by two forward

(PA1 and PR2) and two backward (PA2 and PR1) switching

probabilities, ft = n can be expressed as:

ft~n~

10,rƒpA1\ft~n{1~1 OR rwpA2\ft~n{1~10

1,rƒpR2\ft~n{1~0 OR rƒpA2\ft~n{1~10 OR rw(pA1zpR1)\ft~n{1~1

0,rwpR2\ft~n{1~0 OR pA2vrƒ(pA1zpR1)\ft~n{1~1

8<
:

ð14Þ

Dynamical fluctuations of individual cell at graded or all-

or-none responses. To explore the underlying mechanisms for

grade (Figure S1) and all-or-none (Figure 3b) responses regulated

by activator alone (A) or repressor alone (R) and both (A+R), we

carry out the dynamical fluctuations of single gene induction in

two individual cells at the steady state and [dox] = 0.5 mg/ml by

the general and 3-state MCM separately (Figure S2). Because the

MCM is composed of digital and analog features, we aligned the

telegraphs (i.e. enhancer/promoter accessibility, Figure S2a) with

dynamical trajectories (i.e. accumulations of mRNA/protein,

Figure S2b) to study the kinetics of promoter states for stochastic

ð14Þ
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gene expression. In the graded mode of gene expression, the two

2-state telegraphs indicate that the switching back and forth

between two of three states appears to be a random walk.

However, in the all-or-none mode, the 3-state telegraph

specifically illustrates that the enhancer/promoter tends to be

stabilized at either the repressor-bound or activator-bound state.

As time goes by for the all-or-none mode of gene induction, a

reporter gene of the/a single cell which continuously expresses at a

high level (‘‘ON’’ state) will dramatically decrease to a low

expression level (‘‘OFF’’ state) for a period of time and then

suddenly rise back and so on. Through this integrative view of

digital and analog profiles (Figure S2), the dynamical fluctuations

of simulated trajectories become more traceable and readable to

aid in the understanding of molecular events for stochastic gene

expression.
Plotting steady-state distribution of gene induction in a

cell population. 10,000 individual runs of the single gene

induction solver were sequentially computed on the same

computer platform with the same parameter values, except for

the random numbers generated from the normal distribution

(‘‘norm’’ function in R) and uniform distribution (‘‘runif’’ function

in R). Steady-state outputs of 10,000 individual runs were

recorded at the last observed time point (t = 200), averaged,

calculated for the standard deviation (SD), and plotted by the high-

density line plot of S-PLUS.
Statistics software used for this study. Most of the

stochastic simulation solvers and scripts for statistical analyses

are implemented by the R-2.11 language (http://www.r-project.

org/). Figures for the stochasticity of single-cell populations and

fitness of dose-response curves are plotted and performed by S-

PLUS-8.0. Parameter estimations are done by MATLAB-2010a.

Supporting Information

Figure S1 Construction and stochastic simulation for 2-
state MCM of repressor alone and activator alone. (a)

Two 2-state MCMs. One is the gene induction for activator only

by switching forth and back between activator-bound and

unbound states; the other is for repressor only with forward and

reverse transitions between repressor-bound and unbound states.

The red rectangle is the repressor and green oval is the activator.

Note that the four switching probabilities (P9A1, P9A2, P9R1 and

P9R2) are different from the previous ones (PA1, PA2, PR1 and PR2) in

the 3-state MCM. (b) Stochastic simulation for cell population at

the steady state.

(TIF)

Figure S2 Dynamical fluctuations of simulated trajec-
tories by MCM. (a) At the steady state and [dox] = 0.5 mg/ml,

two time-series trajectories of two ‘‘single cell’’ stochastic

simulations, randomly selected from 10,000 individual computer

runs. (b) The corresponding telegraphs. Under this condition, the

stochastic simulations of cell population exhibit switch-like

patterns by the 3-state MCM (Figure 3b) or graded responses by

the 2-state MCM (Figure S1). Three different types of horizontal

red lines are drawn to denote the three states of transcription

levels.

(TIF)

Figure S3 Averaged dynamical fluctuations of 10000
simulated trajectories by 3-state MCM. Simulation was

carried out in three different [dox] conditions. The duration of this

stochastic simulation is set from 0 to 201 time cycles.

(TIF)

File S1 Details about the modeling of experimental
results reported in Rossi et al. (2000) by conventional
method.

(DOC)

Table S1 Estimated parameter values.

(DOC)
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