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Abstract

Genome-wide association study (GWAS) is a promising approach for identifying common genetic variants of the diseases on
the basis of millions of single nucleotide polymorphisms (SNPs). In order to avoid low power caused by overmuch correction
for multiple comparisons in single locus association study, some methods have been proposed by grouping SNPs together
into a SNP set based on genomic features, then testing the joint effect of the SNP set. We compare the performances of
principal component analysis (PCA), supervised principal component analysis (SPCA), kernel principal component analysis
(KPCA), and sliced inverse regression (SIR). Simulated SNP sets are generated under scenarios of 0, 1 and $2 causal SNPs
model. Our simulation results show that all of these methods can control the type I error at the nominal significance level.
SPCA is always more powerful than the other methods at different settings of linkage disequilibrium structures and minor
allele frequency of the simulated datasets. We also apply these four methods to a real GWAS of non-small cell lung cancer
(NSCLC) in Han Chinese population
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Introduction

It is widely believed that genetic variants play an important role

in the etiology of common diseases risk or quantitative traits. In the

last few years, we have witnessed the development of GWAS

which have become a popular approach for identifying related

genetic variation of complex diseases [1,2]. Nowadays, with the

rapid development in high throughput genotyping technology,

millions of SNPs can be genotyped simultaneously from more than

one thousand cases and controls in GWAS. Single-locus associ-

ation tests (SLAT) is usually run to identify causal or associated

SNPs of diseases. Such a SNP-by-SNP association study requests a

multiple testing adjustment procedure to ensure overall appropri-

ate type I error rate, such as Bonferroni correction and false

discovery rates. As an example, each SNP should be tested at the

level of 5e-8 to maintain the overall significance level at 0.05 for a

GWAS including one million SNPs [3], which may be too

stringent. Recently studies suggest that complex diseases are often

caused by weak effect SNPs (relative risk RR, = 1.5), which results

in poor statistical power after multiple correction [4,5].

One way to deal with these challenges is to consider higher units

for the analysis. Several studies have revealed that treat higher

units instead of each genotyped SNP may alleviate the problems of

intensive computation and multiple testing [6,7], lead to more

stable results and higher interpretability [8,9]. It is possible that

multiple loci association studies (MLAS) have higher power than

testing each SNP individually [10]. Several methods have been

proposed based on grouping SNPs into SNP sets as higher units.

Gauderman et al. proposed a principal component based

approach (PCA), by which several principal components (PCs)

were extracted from the SNP set and regressed with the phenotype

[11]. Gao et al. studied that KPCA-LRT was an effective and

powerful gene-or region-based method for GWAS datasets,

especially under lower relative risks and lower significance levels

[12]. Chen et al. proposed pathway-based analysis for GWAS

using supervised principal components [13]. SIR is a dimension

reduction method for regression problems. However, performanc-

es of these methods have not been systematically conducted.

In this article, we compare the performances of PCA, KPCA,

SPCA and SIR using simulated datasets. The remainder of this

article is organized as follows. In the next section, we briefly

introduce the procedure of the four SNP-set analysis methods and

how to generate simulated SNP sets. Then we present simulation

results comparing the type I error rate and test power of these four

methods. Finally, we will apply these methods to SNP sets

extracted from a real Lung Cancer GWAS data. And we will

conclude with a brief discussion.
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Methods

Ethics Statement
This collaborative study was approved by the institutional

review boards of China Medical University, Tongji Medical

College, Fudan University, Nanjing Medical University and

Guangzhou Medical College with written informed consent from

the Nanjing participants.

PCA
Assume we have a SNP set including p SNPs from n individuals.

For the ith individual, let Xi~(xi1,xi2, � � � ,xip)T denote his/her

genotypes, and the disease outcome is denoted by Y (1 = affected,

0 = unaffected).

PCA is a classic dimension reduction approach, which has been

widely applied in genetic analysis, both for reduction of redundant

information and interpretation of multiple SNPs [14]. Its basic

idea is to transform p original variables to a new set of k predictor

variables, which are linear combination of original variables. We

use VP|P to denote the variance-covariance matrix of the SNP

set. EP|P~(e1,e2, � � � ,ep) denotes the eigenvectors of VP|P, and

Lp~(l1,l2, . . . ,lp) is the corresponding eigenvalues, in which

l1wl2w . . . wlp. The principal components are defined by

PC1~eT

1
Xi~e11x1ze12x2z � � �ze1pxp

PC2~eT
2 Xi~e21x1ze22x2z � � �ze2pxp

..

.

PCp~eT
p Xi~ep1x1zep2x2z � � �zeppxp

We can use PCs instead of SNPs to test the association with the

disease outcome. Considering that SNPs in the SNP set are always

highly correlation, the first few eigenvalues will be much greater

than the others, which makes it possible to use the first few PCs to

capture most of the information in the SNP set. So the first k PCs

are needed to select for the analysis with cumulative contributionPk
i~1 li=

Pp
i~1 li greater than some threshold. In our analysis the

threshold is set as 80%. Instead of using the p SNPs, the first k PCs

are used in the multiple logistic model.

Supervised PCA
The SPCA model has been discussed in detail in Bair and

Tibashirani [15], Bair et al. [16], and Chen et al. [17]. Only those

SNPs with the strongest estimated correlation with the outcome

are used to perform principal component analysis. The following

supervised PCA model is used

Model 1 : logit
pj

1{pj

� �
~b0zb1PC1j

where pj~Pr (Patient j has disease phenotype | PC1), and PC1 is

the first principal component score estimated from the selected

subset of relevant SNPs [13].

After the SNP selection step in the SPCA model, a t-distribution

can no longer be approximated well for the test statistic, so we

derive the asymptotic distribution of this statistic [13].

Kernel PCA
Linear PCA will not always be appropriate for detect all

structure in a given genomic data set. If the datasets are

concentrated in a nonlinear subspace, PCA will not be suitable

for detecting it. Thus, one may consider kernel principal

component analysis. The kernel PCA is a nonlinear version of

PCA, which is the most widely adopted among the modified PCA

methods [18].

To perform KPCA, firstly, one can map the dataset x from the

original space F0 into a higher-dimensional feature space F1, which

is a nonlinear transform x R W(x), where W is a nonlinear function

[18]. Then, we use the inner products of new feature vectors to

form a kernel matrix K. Finally, the standard PCA is performed on

the centralized kernel matrix K, which is the estimate of the

covariance matrix of the new feature vector in F1 [12]. Such a

linear PCA on K may be treated as a nonlinear PCA on the

original data.

The nonlinear transform is based on the kernel functions, and

the most common kernel functions include linear kernel, weighted

linear kernel [19], radial basis function (RBF) kernel, identical-by-

state (IBS) kernel and weighted IBS kernel [20]. Due to the

flexibility of the RBF kernel in choosing the associated parameter,

we choose the RBF kernel in present study.

SIR
SIR is based on the inverse regression functiong(y)~E(X jy)

[21]. SIR can be implemented as follows.

Assume there is a dataset (yi,xi)(i~1, . . . ,n). Firstly, we make

use of an affine transformation to standardize the predictor x to get

~xxi~ŜS{1=2
xx (xi{�xx) (i~1, . . . ,n), where {x and ŜS

xx
are the sample

mean and covariance matrix of x respectively. Secondly, the

response variable Y is sliced into H intervals,I1, . . . ,Ih, and let the

proportion of theyiwhich falls in slice h is denoted as p̂p
h
, which is

p̂p
h
~(1=n)

Pn
i~1 dh(yi).dh(yi) takes the values 0 or 1 depending on

whetheryifalls into the hth slice or not. Thirdly, we compute the

sample mean of the ~xi
0s within each slice, denoted by

m̂mh(h~1,:::,H), so m̂mh~(1=np̂ph)
P

yi[Ih
~xxi. Then a (weighted)

principal component analysis for m̂mh is conducted by forming the

weighted covariance matrix V̂V ~
PH

h~1 p̂ph m̂mh m̂mh
0
, then find the

eigenvalues and the eigenvectors of V̂V . Finally, extract the K

largest eigenvectors (row vectors)ĝg
k(k~1,:::,K) and output

b̂b
kk~ ŜS1=2

xx ĝg
k(k~1,:::,K).

Simulations
To evaluate performances of PCA, SPCA, KPCA and SIR, we

apply simulated datasets to measure the empirical type I error and

test power. We vary the total number of the causal SNPs. So the

disease model is.

logitP(Di~1)~a0z
XC

j~1
bjzij

C is the number of causal SNPs, and in our simulations, we let

C = 0, 1, 2 to denote null model, single causal SNP model or two

causal SNPs model.

The virtual simulated datasets are generated based on the

Hapsim [22], which simulates vectors from a multivariate normal

distribution using a correlation matrix estimated from the MAF

and joint probabilities of the original set of markers. And the

Hapsim assigns a 0 or 1 for each variable along the vector using a

cutoff defined by the MAF estimated from the original sample. We

have improved the Hapsim program to fulfill a role to assign

SNP Set Analysis
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linkage disequilibrium (LD) structures and minor allele frequency

(MAF). As it is reported that Hapsim may generate haplotypes

with lower LD than the original haplotypes [23], HAPGEN2 is

used for the simulations on the basis of real genes [19,23].

Simulations based on virtual datasets
Datasets are simulated based on virtual structures whose LD

and MAF of SNPs are set artificially under the null hypothesis (H0)

and alternative hypothesis (H1). We set two kinds of SNP sets, one

of which has 10 SNPs and the other has 100 SNPs. Nine datasets

of each SNP set are generated. Parameters of simulations are

described by Table 1. Scenarios are set in three different MAFs

(MAF = 0.05, 0.1 or 0.2 for all SNPs) and three LD structures

(R2 = 0.2 for any two SNPs, R2 = 0.5 for any two SNPs, R2 = 0.8

for any two SNPs).

Scenarios A1–A3 are set to test performances of four methods

on controlling the type I error. 1,000 cases and 1,000 controls are

generated under the null disease model (C = 0), in which the

outcome is independent of the loci. And 2,000 simulated datasets

are produced to calculate the type I error rate. Scenarios A4–A6

are generated to compare the powers when there is only one

causal SNP. Any SNP in the SNP set has the opportunity to be the

causal SNP. The genetic relative risk (GRR) of these three

scenarios is set 1.3. We also set two causal SNPs in scenarios A7–

A9 to compare powers. GRRs of two causal SNPs are both 1.2.

Parameter setting of scenarios A4–A9 is similar to scenarios A1–

A3. For scenarios A4–A9, 1,000 datasets are simulated, respec-

tively, and each dataset contains 1,000 cases and 1,000 controls.

The test power is computed as the proportion of p-values less than

0.05.

Simulations based on the CLPTM1L gene
We select the cleft lip and palate transmembrane protein 1-like

(CLPTM1L) gene region to generate the simulated data. This gene

is located at Chr 5: 1371007...1398002. The phased haplotype

downloaded from the International HapMap Project (Phase 2,

release 24) includes 29 SNPs within the range of 20 kb upstream

and downstream. Rs31489 and rs401681 in this gene have been

reported to be associated with non-small cell lung cancer (NSCLC)

[24–26]. Simulation is based on the CEU (CEPH [Utah residents

with ancestry from northern and western Europe]) population.

We generate 11 scenarios (scenarios B1–B11) of simulations, as

shown by Table 2. We simulate scenario B1 to evaluate the

performances on controlling type I error. 1000 cases and 1000

controls are generated under the null disease model (C = 0). Under

H0, 2000 replicates are conducted at three significance levels (0.05,

0.01 and 0.001). Scenario B2 is the single causal SNP model to

compare test powers. Each of the 29 SNPs is defined as the causal

SNP in turn. The GRR is set as 1.2. Under H1, we repeat 1000

simulations at the significance level of 0.05. In order to make the

simulations more realistic, we just use 8 of the 29 SNPs directly

genotyped by the Illumina 610 k Quad chip.

We also examine the ability of these methods on utilizing

information from multiple loci assuming that there are 2 or more

causal SNPs with GRR = 1.1 [19]. In scenario B3–B4, both of the

two causal SNPs are genotyped. Only one of the two causal SNPs

is genotyped in scenarios B5–B7and no causal SNPs are genotyped

in scenario B8 and B9. Besides the number of genotyped causal

SNPs, other differences among scenarios B3–B9 include the

different median R2 between the causal SNPs and the genotyped

SNPs and MAF of these SNPs. Details of these scenarios are

shown in the first 6 columns of Table 3. In scenario B10 and B11,

we assume that there are 3 and 4 causal SNPs, respectively. For

each of the scenarios, 1000 datasets are simulated.

Simulations based on the XRCC1 gene
The X-ray repair cross-complementing protein 1 (XRCC1),

which has 24 SNPs in 19q13.2, is a key DNA repaired gene.

Polymorphism of XRCC1 may increase cancer risk and signifi-

cantly alter patient responses to chemotherapy [27,28]. The

reference haplotype is downloaded from the HapMap (Phase 2,

release 24) based on the CEU population. We conduct four

scenarios of simulations based on the region (scenarios C1–C4).

Parameters of the simulations are described by Table 4. Scenario

C1 is generated to evaluate the type I error while C2 to C4

evaluate the test powers. 2000 simulated replicates are with no

association between the disease outcome and the SNPs in scenario

C1. In scenario C2, each of the 24 SNPs is set to be the causal

SNP with a GRR of 1.2 in turn. Again, although the simulated

datasets are generated using the overall 24 SNPs, only 5 genotyped

SNPs are used in the analyses. Scenarios C3 and C4 have two

causal SNPs with GRR = 1.1. For scenarios C2–C4, 1000

Table 1. Parameter settings of virtual datasets.

Scenario MAF LD RR

A1 0.05 0.2/0.5/0.8 1.0

A2 0.1 0.2/0.5/0.8 1.0

A3 0.2 0.2/0.5/0.8 1.0

A4 0.05 0.2/0.5/0.8 1.3

A5 0.1 0.2/0.5/0.8 1.3

A6 0.2 0.2/0.5/0.8 1.3

A7 0.05 0.2/0.5/0.8 1.2;1.2

A8 0.1 0.2/0.5/0.8 1.2;1.2

A9 0.2 0.2/0.5/0.8 1.2;1.2

doi:10.1371/journal.pone.0062495.t001

Table 2. Parameter settings based on the CLPTM1L gene.

Feature of the Number of Locations of Designed

simulated
SNP set Scenario

causal
SNPs

the causal
SNPs RR

B1 0 - 1.0

B2 1 1 of 29 in turn 1.2

B3 2 5 and 14 1.1

B4 2 13 and 14 1.1

B5 2 14 and 15 1.1

CLPTM1L B6 2 15 and 28 1.1

(29 SNPs) B7 2 6 and 13 1.1

5p13.33 B8 2 15 and 16 1.1

B9 2 6 and 26 1.1

B10 3 5, 14and 15 1.1

3 5, 15 and 16 1.1

3 5, 15 and 28 1.1

B11 4 5, 14, 15 and 28 1.1

4 5, 14, 15 and 16 1.1

4 14, 15, 16 and 28 1.1

doi:10.1371/journal.pone.0062495.t002
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simulated datasets are generated to calculate test powers, and each

dataset contains 1,000 cases and 1,000 controls.

Application of PCA, SPCA, KPCA and SIR to a real GWAS
dataset

These methods are applied to a real GWAS dataset studying the

genetic susceptibility of NSCLC. Details of the study have been

described previously [26]. A large-scale GWAS of lung cancer in

Han Chinese populations was performed by genotyping SNPs

using Affymetrix Genome-wide Human SNP Array 6.0 chips. In

this study, only 1,473 cases, 1,962 controls and 570,373 SNPs are

analyzed. To illustrate the performance of these methods, we

mainly focus on 2 regions from the dataset. The first one includes

8 SNPs in CLPTM1L gene which is associated with nicotine

addiction, smoking behavior and NSCLC [29–31]. The length of

the second region is about 208.4 kb, which includes 15 SNPs in

6p21.32–21.33. Genes in this region include the TNXB, FKBPL

and PPT2.Gene expression of TNXB was reported to be

association with lung squamous cell cancer [32] and PPT2 was

association with pulmonary function [33]. FKBPL has been

proposed as a novel prognostic and predictive biomarker [34].

Analyses of the simulated datasets and actual datasets are

performed using R package (version 2.13). The ‘‘superpc’’, ‘‘kernlab’’,

and ‘‘dr’’ packages are used to conduct SPCA, KPCA and SIR

analyses, respectively.

Results

Results based on virtual datasets
Empirical type I error rate. The empirical type I error

rates of PCA, SPCA, KPCA and SIR based on 10 SNPs are

presented by Table 5, Table S1–S2 in File S1. All of these

methods can control the type I error at the significance level of

0.05, 0.01or 0.001. For 100 SNPs in a dataset, PCA, SPCA and

KPCA control the type I error at the significance levels in most

situations by Table 6, Table S3–S4 in File S1, while SIR

controls the type I error strictly.

Empirical test power with single causal SNP. Results

from the simulations on scenarios A4–A6 are presented by

Figure 1, which shows that SPCA has the best power. As MAF is

fixed as 0.05, 0.1 or 0.2 and LD is set as 0.2, powers of

PCA,KPCA and SIR are approximate, which are respectively

near 20%, 35% and 60%. At the same time, the power of SPCA is

Table 3. Test power at the significance level of 0.05 for four methods in Scenarios B3–B9.

Median R2 with the

Scenario The causal SNPs Genotyped MAF Position genotyped SNPs PCA SPCA KPCA SIR

B3 rs4975616 Yes 0.417 5 0.142 0.606 0.914 0.707 0.463

rs401681 Yes 0.433 14 0.205

B4 rs10073340 Yes 0.133 13 0.202 0.259 0.502 0.314 0.182

rs401681 Yes 0.433 14 0.205

B5 rs401681 Yes 0.433 14 0.205 0.590 0.882 0.708 0.483

rs466502 No 0.425 15 0.207

B6 rs466502 No 0.425 15 0.207 0.588 0.894 0.635 0.420

rs27061 Yes 0.442 28 0.207

B7 rs6554759 No 0.144 6 0.178 0.276 0.208 0.236 0.201

rs10073340 Yes 0.133 13 0.202

B8 rs466502 No 0.425 15 0.207 0.598 0.881 0.693 0.478

rs465498 No 0.433 16 0.210

B9 rs6554759 No 0.144 6 0.178 0.145 0.129 0.136 0.161

rs27064 No 0.142 26 0.224

doi:10.1371/journal.pone.0062495.t003

Table 4. Parameter settings based on the XRCC1 gene.

Feature of the Number of Locations of Designed

simulated
SNP set Scenario

causal
SNPs

the causal
SNPs RR

C1 0 - 1.0

XRCC1(24 SNPs) C2 1 1 of 24 in turn 1.2

19q13.2 C3 2 4 and 24 1.1

C4 2 9 and 19 1.1

doi:10.1371/journal.pone.0062495.t004

Table 5. Empirical type I error rates at the significance level of
0.05 based on 10 SNPs.

MAF LD PCA SPCA KPCA SIR

0.05 0.2 0.054 0.049 0.053 0.050

0.5 0.062 0.047 0.058 0.052

0.8 0.056 0.059 0.057 0.046

0.1 0.2 0.041 0.047 0.041 0.039

0.5 0.046 0.050 0.043 0.043

0.8 0.052 0.046 0.047 0.044

0.2 0.2 0.048 0.051 0.045 0.048

0.5 0.045 0.049 0.050 0.044

0.8 0.056 0.046 0.048 0.051

doi:10.1371/journal.pone.0062495.t005
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22.6%, 45.1% and 69.2%. When LD is 0.5, KPCA is about 7%

more powerful than PCA. When LD is strong, the power of KPCA

is close to that of SPCA. The power of SIR is lower than the other

methods in most scenarios.

Empirical test power with two causal SNPs. Results from

the simulation on scenarios A7–A9 are presented by Figure 2. As

those scenarios with two causal SNPs, the change trends of powers

are nearly the same as the single causal SNP model. While the

power of every scenario based on two causal SNPs is obviously

higher than the single causal SNP model. And when MAF is set as

0.2, no matter what the LD structure is, the powers of four

methods are close to or greater than 80%.

The change trends of test power of 100 SNPs are similar with

those of 10 SNPs, and the detailed results are listed in Figure S1
and S2 in File S1. Powers of PCA and KPCA are much lower

than SPCA in most situations.

Results based on the CLPTM1L gene
Empirical type I error rate. PCA, SPCA, KPCA and SIR

can control the empirical type I error at the significance level of

0.05, 0.01 or 0.001. Results are presented by Table 7.

Empirical test power with single causal SNP. Results of

scenario B2 are presented by Figure 3. On the basis of Figure 3,

we can examine how test powers of each method vary with MAF

and LD of the causal SNP. In general, all methods have power

when the causal SNP is in high LD with the other SNPs. In most

occasions, SPCA still has the greatest power, which is followed by

KPCA. When the MAF of the causal SNP is low, powers of four

methods are all weak, which are only about 10%. It is worth

noticing that though PCA does not have good performance in

general, it has greater power than the other under this situation.

For example, the causal SNP is at one of the 6th–7th and 13th loci.

Empirical test power with more than one causal

SNP. Table 3 shows the powers of scenarios B3 to B9. Once

again, SPCA has the greatest power in most situations, while SIR

is the worst one. We can see that the powers of the four methods

are almost independent of the LD between the causal and

genotyped SNPs. However, the test powers are decreased by the

low MAF of the causal SNPs. Although powers of all methods are

weak, it is also interesting to find that PCA is slightly superior to

the other methods in scenarios B7and B9 when MAFs of the

causal SNPs are low. Scenarios B10 and B11 in which there are 3

and 4 causal SNPs in the CLPTM1L gene yield similar conclusion

that tests combining multiple SNPs tend to have higher power

(Table S5 in File S1).

Results based on the XRCC1 gene
Empirical type I error rate. PCA, SPCA, KPCA and SIR

can control the empirical type I error at the significance level of

0.05, 0.01 or 0.001. Results are presented by Table 7.

Empirical test powers. Results of scenario C2 are shown by

Figure 4, by which we also can evaluate how test powers of each

method vary with MAF and LD of the causal SNPs. The change

Table 6. Empirical type I error rates at the significance level of
0.05 based on 100 SNPs.

MAF LD PCA SPCA KPCA SIR

0.05 0.2 0.050 0.049 0.055 0.040

0.5 0.046 0.046 0.054 0.026

0.8 0.017 0.042 0.045 0.002

0.1 0.2 0.063 0.048 0.061 0.051

0.5 0.058 0.055 0.058 0.035

0.8 0.031 0.048 0.049 0.011

0.2 0.2 0.069 0.050 0.071 0.043

0.5 0.059 0.047 0.061 0.038

0.8 0.049 0.046 0.050 0.037

doi:10.1371/journal.pone.0062495.t006

Figure 1. Test powers at single causal SNP model based on 10
SNPs. The plot shows the powers (y-axis) of each method over the
different LD and MAF structures (x-axis). The first line of x-axis
represents LD, and the bottom line is MAF.
doi:10.1371/journal.pone.0062495.g001

Figure 2. Test powers at two causal SNPs model based on 10
SNPs. The plot shows the powers (y-axis) of each method over the
different LD and MAF structures (x-axis). The first line of x-axis
represents LD, and the bottom line is MAF.
doi:10.1371/journal.pone.0062495.g002

Table 7. Empirical type I error based on the real genes.

Gene Scenario a PCA SPCA KPCA SIR

CLPTM1L B1 0.05 0.040 0.050 0.045 0.048

0.01 0.008 0.009 0.008 0.008

0.001 0.001 0.001 0.000 0.001

XRCC1 C1 0.05 0.056 0.046 0.050 0.059

0.01 0.012 0.008 0.012 0.012

0.001 0.001 0.001 0.000 0.001

doi:10.1371/journal.pone.0062495.t007
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trends of test power are similar with those of the CLPTM1L gene.

All of the four methods have statistical power when the causal SNP

is in strong LD with the other SNPs. Some SNPs do not have high

MAF and LD structures, so four methods have low powers, such as

the 2th, 6th, and 7th loci. Again, SPCA has the best power in most

situations. We also find that SPCA has much better performances

than the other methods especially when the causal SNPs have high

MAF. Simulations from scenarios C3–C4 generate similar results

(Table S6 in File S1) and they also show that tests combining

multiple SNPs tend to have higher power.

Run time
As shown in Table S7 in File S1, PCA and SIR both take

around 2 minute for each simulation, faster than SPCA for each

simulation. KPCA will likely require hours while the other

methods will likely require minutes. So KPCA needs more

computational-resources consuming.

Applications on Lung Cancer GWAS
The results of the analysis are shown in Table 8. For the SNP

set from the CLPTM1L gene, rs465498 yields the least p-value of

2.19E-4 (1.75E-3 after the Bonferroni correction for the effective

number of tests). The p-value of SPCA is 9.00E-4, the least of four

methods. We extract the 4 and 3 PCs for PCA and KPCA to

calculate p-values, respectively. P-values of KPCA, PCA and SIR

are 5.55E-3,1.25E-2 and 3.08E-2, respectively. For SNP set 2, the

result also shows that SPCA performs the best, and its p-value is

4.00E-4. Rs3130284 yields the least p-value of 5.01E-4 (7.51E-3

after the Bonferroni correction for the effective number of tests).

Meanwhile, for the SNP sets, we regress the disease outcome on

the first PC of PCA and KPCA. We find that PCA has better

Figure 3. Powers of the causal SNP in Scenario B2 based on the CLPTM1L gene. The top plot shows the power (y-axis) of each method over
the locations (x-axis) of the causal SNPs. The bar-plot shows the MAFs of all SNPs. The LD structure of the 29 SNPs is shown by the heat plot in the
bottom of the figure, in which the red scale indicates the value of R2 (1 = red, 0 = white).
doi:10.1371/journal.pone.0062495.g003
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performance, and even superior to KPCA when only the 1st PC is

analyzed.

To understand how PCA utilizes the information from multiple

SNPs, we also examine the coefficient of each SNP in the top PCs.

For the SNP sets, we regress the phenotype on the top PCs. The

1st PC from the two SNP sets, which is significant, is then showed

by Figure 5. The significant PCs tend to have heavy loading on

the ‘‘important’’ SNPs. As an example, for SNP set 1, the 1st PC

has heavy loadings on rs465498 (odds ratio OR = 0.78, p-

value = 2.19E-4) and rs466502 (OR = 0.79, p-value = 3.71E-4).

Rs465498 in the CLPTM1L gene has been reported to be

associated with non-small cell lung cancer (NSCLC) [26].

Discussion

In genome-wide association studies, SNP set association

analyses are applied in order to reduce the number of hypothesis

tests analysis and is also one of the dimension reduction methods.

On the basis of the SNP set association analysis, we can screen

potential SNPs association with the disease and do further analysis.

To reduce the false positive rate caused by multiple testing, some

researchers have proposed PCA-based methods and have found

that these methods are more powerful than single locus test and

haplotype-based test [11,35–37].

In our research, we compare the performances of PCA, SPCA,

KPCA and SIR on testing the association for the analysis of

GWAS. We conduct extensive simulated datasets based on the

virtual structures and the haplotypes downloaded from the

International HapMap Project, and also apply these methods to

Figure 4. Powers of the causal SNP in Scenario C2 based on the XRCC1 gene. The top plot shows the power (y-axis) of each method over the
locations (x-axis) of the causal SNPs. The bar-plot shows the MAFs of all SNPs. The LD structure of the 24 SNPs is shown by the heat plot in the bottom
of the figure, in which the red scale indicates the value of R2 (1 = red, 0 = white).
doi:10.1371/journal.pone.0062495.g004
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two SNP sets extracted from the GWAS data on NSCLC. The

results suggest that four methods can control the type I error and

have the ability to test the association between the outcome and

the SNP set. If the causal SNP(s) has/have strong LD or high

MAF, these methods can combine the information and provide

better test power. In addition, if there are two or more causal SNPs

in a SNP set, methods can combine their information and provide

higher test power than one causal SNP.

Many complex diseases are influenced by joint effects of genetic

variations in multiple SNPs. In this paper, we have outlined some

strategies for conducting SNP set analysis for GWAS data. In our

analysis, results show that PCA-based methods are better than

SIR. We have studied how PCA utilizes the information from

multiple SNPs in NSCLC analysis. The analysis suggests that the

significant PCs tend to have heavy loading on the important SNPs,

indicating that the results obtained from PCA-based methods may

be ‘‘biologically’’ easy to be explained. PCA is an effective method

for testing association of joint effects of genetic variations in

multiple SNPs. However, one weakness of PCA is that the latent

variables identified by the PCs may or may not be related to the

outcome [13]. Thus, without a SNP screening step, using all SNPs

to summarize information can result in reducing test power for

SNP set-based analysis, due to the inclusion of SNPs unrelated to

the disease.

SPCA is a supervised dimension reduction method, which

removes some irrelevant SNPs before extracting principal

components. Thus, in lung cancer GWAS analysis, when we use

the 1st PC to analyze in PCA and SPCA, results show that p-values

of SPCA are smaller than those of PCA. And simulated results also

show that this approach performs better than PCA in most

situations. A possible limitation of SPCA is that we use only the 1st

PC in the analysis, which takes the risk of missing the causal

SNP(s). As an example, in scenario C2, when SNPs have low

MAF, powers of SPCA decrease dramatically, and are even

inferior to other methods in some scenarios. The 1st PC may fail

to catch the information from the causal SNPs with low MAF. To

improve the power of SPCA, a possible solution is to exclude the

PCs independent of the causal SNPs.

Gao et al. [12] showed that KPCA performed well under null

hypothesis, and powers of KPCA were higher than PCA under

different situations. In our research, we also demonstrate that

KPCA has better power than PCA in most occasions. Owing to

KPCA doesn’t screen the irrelevant SNPs, powers of KPCA may

be inferior to those of SPCA. And we find that KPCA needs more

computational-resources.

After standardizing x, SIR conducts with a crude estimate of the

inverse regression curve E(X | y), which is the slice mean of x after

slicing the range of y into several intervals and partitioning the

whole data into several slices according to the y value. A principal

component analysis is then applied to these slice means of x.

However, our results show that the powers of SIR are almost the

lowest throughout the simulations. One possible reason is that the

phenotype is a binary variable and can be divided into only two

slices, leading to low statistical powers. Thus, SIR is not

recommended to apply in GWAS when the phenotype is of two

classes.

Test powers from PCA and KPCA are affected by the number

of principal components extracted in the analysis. As an example,

Table 8. Results of four methods on the analysis of the SNP set from the GWAS study.

Individual SNP analysis

The least p-value p-value for

SNP set in the SNP set the SNP set PCA SPCA KPCA SIR PCA(1)a KPCA(1)a

1 2.19E-4 1.75E-3 1.25E-2 9.00E-4 5.55E-3 3.08E-2 1.98E-3 1.01E-2

2 5.01E-4 7.51E-3 7.18E-2 4.00E-4 2.71E-2 2.28E-3 1.86E-3 8.07E-1

aWe extract the 1st PC to analyze.
doi:10.1371/journal.pone.0062495.t008

Figure 5. Loadings of the significant PCs on each of the SNP sets from 5p13.33 and 6p21.32–21.33. The diameters of the circles in the
plots are proportional to 2log10(p-value).
doi:10.1371/journal.pone.0062495.g005
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in the NSCLC analysis, when we extract the 1st PC to do

regression in the SNP set 1, p-value of PCA (p = 1.98E-3) is much

smaller than that using PCs explaining at least 80% of total

variation, and may have even better performance than KPCA.

Some studies suggest that when the SNP set is with simple LD

structure, only a very small number of PCs are needed to explain a

large proportion (40%) of the total variation, and results from PCA

(20%) are the same as those from 40% [19]. If only the 1st PC is

needed to capture the information of the causal SNP, including

more PCs will decrease the power. This is also demonstrated by

the fact that when we all select PCs with cumulative contribution

greater than 80% in our analysis, powers of PCA and KPCA are

very low in most situations if the SNP set contains 100 SNPs. More

degrees of freedom are exhausted due to that we have to include a

lot of redundant PCs. However, just like KPCA, using only the 1st

PC, regardless of whether the 1st PC catches the information from

causal SNPs, may also lead to decreased power. Thus, it is critical

to examine the LD structure and MAF of the SNP set before

determining the analysis method. So choosing the appropriate

number of PCs in PCA and KPCA may be very important and not

be an easy task. LD structure and MAF should be carefully

examined [19].

Another advantage of PCA-based methods is that the result of

PCA is easy to be explained. Firstly, a significant SNP set in PCA-

based methods can be followed by a fine mapping or deep

sequencing to identify the true causal SNP, which should reside in

the region in or close to the significant SNP set. Secondly, by

checking the loading of the significant PCs on each SNP, we can

find which SNPs are more associated with the disease. Thirdly, the

principal component score can also be used as a risk score for the

risk of developing the disease.

There are several limitations in our study. First, we just use PCA

and KPCA with 80% PCs to analyze SNP sets. Effect of the

number of PCs using by PCA-based methods is not thoroughly

examined. Second, more complicated situations, such as rare

variations and gene-gene interaction, are not included in this

article. Further work to solve such problems will certainly be

warranted.

Supporting Information

File S1 Figure S1, Test powers at single causal SNP model based

on 100 SNPs. The plot shows the powers (y-axis) of each method

over the different LD and MAF structures (x-axis). The first line of

x-axis represents LD, and the bottom line is MAF. Figure S2, Test

powers at two causal SNPs model based on 100 SNPs. The plot

shows the powers (y-axis) of each method over the different LD

and MAF structures (x-axis). The first line of x-axis represents LD,

and the bottom line is MAF. Table S1, Empirical type I error rates

at the significance level of 0.01based on 10 SNPs. Table S2,

Empirical type I error rates at the significance level of 0.001 based

on 10 SNPs. Table S3, Empirical type I error rates at the

significance level of 0.01based on 100 SNPs. Table S4, Empirical

type I error rates at the significance level of 0.001 based on 100

SNPs. Table S5, Test power at the significance level of 0.05 for

four methods in Scenarios B10-B11. Table S6, Test power at the

significance level of 0.05 for four methods in Scenarios C3–C4.

Table S7, Run time comparison.
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