
Assessing the Biological Significance of Gene Expression
Signatures and Co-Expression Modules by Studying Their
Network Properties
Pablo Minguez1¤, Joaquin Dopazo1,2,3*

1 Department of Bioinformatics and Genomics, Centro de Investigación Prı́ncipe Felipe (CIPF), Valencia, Spain, 2 CIBER de Enfermedades Raras (CIBERER), Valencia, Spain,

3 Functional Genomics Node, (INB) at CIPF, Valencia, Spain

Abstract

Microarray experiments have been extensively used to define signatures, which are sets of genes that can be considered
markers of experimental conditions (typically diseases). Paradoxically, in spite of the apparent functional role that might be
attributed to such gene sets, signatures do not seem to be reproducible across experiments. Given the close relationship
between function and protein interaction, network properties can be used to study to what extent signatures are composed
of genes whose resulting proteins show a considerable level of interaction (and consequently a putative common functional
role). We have analysed 618 signatures and 507 modules of co-expression in cancer looking for significant values of four
main protein-protein interaction (PPI) network parameters: connection degree, cluster coefficient, betweenness and
number of components. A total of 3904 gene ontology (GO) modules, 146 KEGG pathways, and 263 Biocarta pathways have
been used as functional modules of reference. Co-expression modules found in microarray experiments display a high level
of connectivity, similar to the one shown by conventional modules based on functional definitions (GO, KEGG and Biocarta).
A general observation for all the classes studied is that the networks formed by the modules improve their topological
parameters when an external protein is allowed to be introduced within the paths (up to the 70% of GO modules show
network parameters beyond the random expectation). This fact suggests that functional definitions are incomplete and
some genes might still be missing. Conversely, signatures are clearly not capturing the altered functions in the
corresponding studies. This is probably because the way in which the genes have been selected in the signatures is too
conservative. These results suggest that gene selection methods which take into account relationships among genes should
be superior to methods that assume independence among genes outside their functional contexts.
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Introduction

Recently, there exist a growing interest in the definition and

use of molecular signatures [1]. These are sets of genes that can

be considered markers of diseases, experimental conditions, etc.

The changes in the cell functionality provoked by the differential

expression of such gene modules must be, to some extent,

responsible for the phenotypic differences observed in the

experiments. However, the concept of signature has been often

criticized. These are currently defined as genes with a significant

differential expression between the trait of interest and a control

condition. The low sensitivity of the tests for differential

expression [2] used to define such signatures produces the well

known effect of the instability in its definition [3] and concerns

on the reproducibility or results across laboratories or platforms

[4].

On the other hand, experimental results from microarrays have

brought about the definition of de facto co-expression modules

[5,6]. Typically, biclustering techniques are used to define groups

of genes that co-express under a certain range of experimental

conditions or in a number of samples. Such modules have been

demonstrated to be enriched by functionally-related genes and,

generally speaking, are thought to be playing some functional role

(despite still uncharacterized in some occasions) [7].

It is widely accepted that most of the biological functionality of

the cell arises from complex interactions between their molecular

components that define operational interacting entities or modules

[8]. Understanding the structure and the dynamics of the complex

intercellular network of interactions that contribute to the

structure and function of a living cell is one of the main challenges

in functional genomics [9] and constitutes the objective of systems

biology [10]. However, our knowledge of such modules is still very

limited and comes from initiatives such as Gene Ontology (GO)

[11] or repositories like the Kioto Encyclopedia of Genes and

genomes (KEGG) [12] or Biocarta pathways [13]. Such initiatives

provide conceptual definitions for functionally-related gene
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modules, usually supervised by curators and based on different

types of evidences.

Intuitively, the notion of module makes reference to a number

of cell components (commonly genes or proteins) that collectively

accomplish a relatively autonomous and delimited function [8]. It

is then expected that genes in a functional module display a certain

degree of coordinate expression [14] and that the corresponding

gene products are located in physical proximity within the cell,

most probably in physical contact in many cases. Actually, it has

been reported several times that genes with similar expression

profiles are likely to encode interacting proteins [15,16]. Thus,

making use of these concepts protein function has been predicted

from gene co-expression [17,18] and protein-protein interactions

[19,20,21] data.

In an attempt to evaluate the functional significance of the

different modules defined in gene expression experiments

(signatures and co-expression modules) we have explored their

internal connectivity. Thus, de facto definitions of co-expression

modules in cancer as well as signatures of different nature (up- and

down-regulated genes from cancer and non-cancer studies), taken

from the L2L resource [22] were mapped onto the scaffold of the

interactome. Different network parameters were evaluated and

tested for the corresponding sub-networks to assess the degree of

internal structure in such modules. In order to calibrate whether

the degree of connectivity found corresponded to what it was

expectable from modules with a real functional role or not, known

functional modules (defined as GO, KEGG and Biocarta

categories) were used as reference.

The results obtained clearly indicate that signatures obtained

from expression profiling experiments contain little network

structure. Contrarily, co-expression modules seem to display a

higher level of internal network structure similar to the level found

in conventional functional modules.

Results

PPI network enrichment in reference module definitions:
Gene Ontology, KEGG and Biocarta

A list of 8462 sets of transcripts sharing a particular Gene

Ontology term was generated by considering. Here, we consider

any gene as member of the GO module at which it is annotated as

well as all of the parent modules too [23]. Of a total of 8462 GO

modules, those with less than three components (4284 GO terms)

or more than 200 (274 GO terms) were discarded from the

analysis given the difficulties for building empirical random

distributions outside of this range. The final analysis was

performed over 3904 GO modules. For every GO module two

Minimal Connected Networks (MCNs) were computed and tested

by PPI network enrichment method [24]: one of them including

only proteins annotated with the GO and a second one in which

the introduction of one external node in the network is allowed

(see methods). Thus, the distributions of values of degree,

betweenness and clustering coefficient for all the nodes and the

number of components of the network were calculated and

compared to their random expectations.

Table 1 shows the percentage of GO terms showing

unexpectedly high or low values for these parameters. The

distribution of values for the connection degree parameter is

significantly above of the random expectations for more than one

third of the GO terms. The number of components is significantly

lower than expected by chance in one fourth of the GO terms. If

the analysis is conducted allowing one extra node, these figures rise

significantly (see Table 1), suggesting that some terms could be

incomplete in their original definitions.

When the results are segregated into the GO main categories,

biological process, molecular function and cellular component, the

last one seem to present more internal network structure (see

Table 2). Specifically, in the case of connection degree, half of the

cellular component modules present values higher than the

random expectation. On the opposite side, the molecular function

category presents a low internal network structure.

The specificity of the GO term is represented by the level: the

deeper the level the more specific the definition. Network

properties do not seem to be especially affected by the GO level,

and remain constant over a wide range (approximately from 3 to

14, that covers the range of application of the method) (see

Figure 1). Clustering coefficient seems to slightly escape to this

trend by reducing its value as the GO depth increases. This is

probably an effect of the reduction in the number of proteins as

the GO depth increases that affects more to this network property.

It is worth mentioning that GO terms contain different types of

conceptualizations of cell functionality. Consequently, some of

them do not make direct reference to entities that could be

assimilated to a functional module for which one can expect a

certain level of co-expression and/or interaction. There is also a

certain level of redundancy given by the GO levels that can be

Table 1. Percentage of significant network parameters
(p,0.05) in the different conceptual module definitions.

GO KEGG BioCarta

module +node module +node module +node

Betweenness 10.10 36.53 17.90 48.97 11.80 38.80

Connections
degree

36.30 71.52 44.80 59.31 51.30 66.50

Cluster
coefficient

16.00 22.21 26.20 31.03 1.90 14.80

Number of
components

25.40 51.92 30.30 52.41 25.90 40.30

Percentages of lists in every module definition with a significant p-value
compared to random distributions for each network parameter obtained for the
members of the module (module column) and allowing for an extra node
(+node column). The comparisons performed are betweenness, connections
degree and clustering coefficient greater than random expectations and
number of components lower than random expectations.
doi:10.1371/journal.pone.0017474.t001

Table 2. Percentage of significant network parameters
(p,0.05) in the different GO module definitions.

GO main categories

Biological
process

Molecular
function

Cellular
component

Betweenness 10.1 6.2 19.8

Connections degree 37.5 28.1 50.1

Cluster coefficient 17.7 11.7 17.6

Number of
components

25.8 20.2 36.0

Percentages of lists in every module definition with a significant p-value
compared to random distributions for each network parameter. The
comparisons performed are betweenness, connections degree and clustering
coefficient greater than random expectations and number of components
lower than random expectations.
doi:10.1371/journal.pone.0017474.t002

Network Structure of Signatures and Modules
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observed in the position in the DAG hierarchy that the significant

terms have (many are located along branches). Taking these facts

into account it can be corroborated that GO terms mainly

represent highly interacting gene modules.

The same analysis of network parameters was conducted for

human KEGG pathways. Out of a total of 188 KEGG pathways, 41

of them were composed by less than 3 transcripts and 1 by more

than 200 transcripts. Thus a total of 146 MCNs were computed. In

the case of Biocarta pathways, from a total of 313 pathways there

were 50 of them with less than 3 transcripts so, after removing them,

263 MCNs were generated. Table 1 shows the results obtained.

KEGG and Biocarta modules display even higher values of

connection degree (in the last case up to half of the modules show

a value for the parameter significantly higher than the random

expectation). The most remarkable difference was found in the

cluster coefficient parameter, which was extremely low in the case of

Biocarta modules (only 1.9% of the modules show a value higher

than the random expectation, which rises to a 14.8% if one extra

node is allowed). This might be a consequence of the nature of the

modules represented in Biocarta, which mostly contain signalling

networks for which a high connection degree but not a high

clustering coefficient is expectable. Again, if an extra node is

allowed, the values of the network parameters raise significantly (see

Table 1). This observation suggests again that some terms could be

incomplete in their original definitions. Alternatively, some proteins

that do not belong to the modules could be connecting different

parts of the module, helping them to be physically close.

PPI network enrichment in co-expression modules and
signatures defined by microarray experiments

A total of 618 signatures (differentially expressed genes) from

human microarray experimental results and 507 modules of co-

expression in cancer were downloaded from L2L [22]. A PPI

network enrichment analysis was conducted for each of the

modules. It has previously been described that proteins not

selected as part of signatures in microarray experiments were

related to disease due to its inclusion into a network of PPIs

[25,26]. Thus, the analyses here were conducted allowing one

extra node in the MCN calculations.

The most remarkable observation is that the proportion of

co-expression modules with significant network parameters is

higher than the equivalent values in the signatures and more

similar to the corresponding values observed for GO, KEGG or

Biocarta (see Table 3). These results suggest that co-expression

modules could be representing functional modules of similar

nature than the ones defined by GO, KEGG or, Biocarta.

On the other hand signatures most probably constitute

incomplete descriptions of the functions activated or deactivated

in the different scenarios studied. Signatures have been obtained

by applying individual, independent tests to any of the genes

represented in the microarray followed by a correction for multiple

testing. It is known that this results in a considerable lack of

statistical power in the testing schema [27]. Obviously, the way in

which the relevant genes in the signature are defined is implicitly

conditioning the functional interpretation of the whole experi-

ment. Paradoxically, many of the biological properties used to

define gene modules (function, regulation, etc.) implies the

existence of a high level of cooperative activity among them (in

practical terms co-expression [5,18,28] and protein interactions),

while most of the tests used to select relevant genes assume

independence in the behaviours of the genes imposing thus an

artificial threshold with a unfavourable effect in the results [27].

This also explains why co-expression modules have more internal

network properties.

Figure 1. Relationship of different network properties with the GO level.
doi:10.1371/journal.pone.0017474.g001

Network Structure of Signatures and Modules
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Comparison of network properties among the different
module definitions

When the network properties (measured as the number of

significant different network parameters) are compared across all

the module definitions, GO and KEGG display a greater amount

of network structure (see Table 3). In fact, KEGG shows higher

betweenness and clustering coefficient while GO seems to be more

connected although less structured. Both GO and KEGG display

the highest proportions of modules (more than 50%) that have

significantly less components than it would be expected just by

chance, which is again presumable if an underlying network

structure exists. Surprisingly Biocarta pathways present fewer cases

with significant network parameters than GO or KEGG, being

more comparable to what it was observed for co-expression

modules. Signatures have been sub-classified according to two

criteria: cancer versus non-cancer and up-regulated versus down-

regulated. In general, signatures have a low number of cases with

significant network parameters when compared to the other

module definitions. It is worth noticing that cancer signatures and

down-regulated signatures have higher values of clustering

coefficient that non-cancer signatures and up-regulated signatures,

suggesting the existence of a more interconnected network in the

genes differentially expressed in these experimental conditions,

which is in agreement with previous observations [29].

When the distributions of the network parameters are studied

the results are similar: co-expression modules seem to be in

between functional modules of reference (GO, KEGG and

Biocarta) and signatures (see Figure 2). Actually, when the

distributions of parameter values are compared, the values of

betweenness, clustering coefficient and connectivity are signifi-

cantly higher for the reference modules than for co-expression

modules or signatures whereas the number of components is

significantly lower, which clearly demonstrates the higher network

structure of the former with respect to the later (Table 4). The

same pattern of significant comparisons is observed when co-

expression modules are compared to signatures, which documents

a more compact network structure for co-expression modules

(Table 4).

Figure 3 shows an example of the PPI networks underlying

different modules. The modules represented have been chosen to

have about 50 nodes (genes/proteins). Although there are only

examples, their network properties are paradigmatic of each type

of module. Both, the GO module (regulation of mitotic cell cycle)

and the KEGG module (TGF-beta signalling pathway), are highly

connected and their connections are wired in a way that the level

of betweenness is high. The density of the connections, as

represented by the clustering coefficient, is also high in both cases,

although superior in the case of the KEGG module. The

coexpression modules 115, corresponding to prostate and

renal cancers (see http://ai.stanford.edu/,erans/cancer/mod-

ules/module_115.html) enriched in genes related to translation

activity and protein biosynthesis, and 87, found in hemato-

logic cancers (see http://ai.stanford.edu/,erans/cancer/mod-

ules/module_87.html) and enriched in genes of translation activity

too, are highly connected and present a high betweenness but in

both cases the clustering coefficient is not significantly different

from the random expectation. The results obtained for the

signatures are unequal. While the signature obtained for genes

differentially regulated by gamma interferon [30] has network

properties similar to what was observed for the coexpression

modules, in the other extreme, the signature obtained for human

adipocites [31] does not present any significant network property.

Table 5 shows the significance of the network parameters of the

PPI networks shown in Figure 3. Files S1 and S2 contain the

values of the network parameters for all the signatures and

coexpression modules analyzed.

Discussion

What are co-expression modules and signatures
composed of?

Co-expression modules and signatures are supposed to explain

to some extent the functional differences between the phenotypes

or experimental conditions compared. Functional enrichment

analysis is often used to confirm the functional roles of such

modules. Here we have carried out an extensive analysis of these

modules derived from many experiments to know to what extent

this relationship module-function is true and what is the

predominant nature of the functionality. To achieve so we have

studied the enrichment in both GO terms (by a conventional

functional enrichment method [23]) and PPI (as described in the

methods section) in the 665 signatures and 507 co-expression

modules used above.

The results are summarized in Figure 4. The first two obvious

conclusions are i) co-expression modules are by far more enriched

in both functional terms (GO) and network structure than

signatures are (82% versus 49%), and ii) both, co-expression

modules and signatures are more enriched by functional terms

than in network structure. This suggests that co-expression

modules are capturing part of the functionality of the cell while

signatures fail to do so at the same extent.

Although most of the cases significantly enriched in network

parameters were also enriched in GO terms there is still a small

amount of them (5% of signatures and 4% of co-expression

modules) that are exclusively enriched by network structure. It is

also remarkable that in a large number of the cases a functional

Table 3. Percentage of significant (p,0.05) network parameters in the different module definitions.

Functional categories
co-expression
modules Signatures

GO KEGG BioCarta Cancer Non-cancer Up-regulated Down-regulated

Betweenness 36.53 48.97 32.59 34.9 20.44 19.85 21.02 20.00

Connections degree 71.52 59.31 55.91 52.10 29.33 31.23 30.57 30.00

Cluster coefficient 22.21 31.03 12.46 13.40 7.56 2.91 2.87 2.87

Number of components 51.92 52.41 33.87 38.00 18.22 18.40 15.61 15.61

Percentages of lists in every module definition with a significant p-value compared to random distributions for each network parameter. The values were obtained for
the members of the module allowing the inclusion of one extra node. The comparisons performed are betweenness, connections degree and clustering coefficient
greater than random expectations and number of components lower than random expectations.
doi:10.1371/journal.pone.0017474.t003

Network Structure of Signatures and Modules
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enrichment has been found with no detectable significant network

structure.

Conclusions
Conventional functional modules (GO, KEGG or Biocarta) can

be considered representatives of cell activity components. It is not

surprising, thus, that a relatively large amount of network structure

can be detected in them through the corresponding network

parameters. Despite the fact that functional modules are not

perfectly defined and that the description of the human

interactome is far from being definitive [32] the results obtained

provide a quantitative relationship between network structure and

Figure 2. Boxplots representing the distribution of the different network parameters in the different gene module definitions.
doi:10.1371/journal.pone.0017474.g002

Table 4. P-values corresponding to the comparisons of distributions of network parameters across several module definitions by
means of a two-tailed Kolmogorov-Smirnov test.

GO versus Co-expression modules GO versus signatures Co-expresion modules versus Signatures

Betweenness 2.2610216 2.2610216 0.0004724

Connections degree 3.331610216 2.2610216 2.2610216

Cluster coefficient 1.763610205 2.2610216 2.183610207

Number of components 4.619610214 2.2610216 2.2610216

In all the cases the distribution for the first member was demonstrated to be significantly greater that the one for the second member, except in the case of the
parameter ‘‘Number of components’’ in which the first member of the comparison was significantly lower than the second one.
doi:10.1371/journal.pone.0017474.t004

Network Structure of Signatures and Modules
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Figure 3. Examples of networks with significant parameters obtained for different module definitions. The networks have been
obtained for different types of modules (GO, KEGG, signatures and co-expression modules). All the networks have been chosen with a similar number of
nodes (around 50 genes/proteins). In the networks represented, additional nodes connecting nodes in the lists were allowed. Table 5 shows the significance
of the network parameters obtained for the modules. Nodes originally in the list are represented in dark blue and extended nodes in pale blue.
doi:10.1371/journal.pone.0017474.g003

Network Structure of Signatures and Modules
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functionality. When co-expression modules are analysed, the

results show a moderate degree of network structure (although

lower than the degree of structure displayed by the conventional

functional modules). Finding a certain level of structure, despite

moderate, is in agreement with the well known relationship

between co-expression and function [14]. The co-expressing gene

products of the modules are expected to be located in physical

proximity within the cells, most probably in physical contact in

many cases [15,16]. Actually protein function has been inferred

from gene co-expression [17,18] and protein-protein interactions

[19,20,21] data.

When signatures are analysed following the same scheme, the

number of those with significant values for network parameters is

unexpectedly low. The reasons for this observation are unclear but

the low sensitivity of the tests for differential expression [2] that

produces the well known effect of the instability in the signatures

[3] and the questionable reproducibility or results [4] must

probably be among the causes.

It has recently been reported that only about 30% of the

modules defined by GO terms and 57% of the modules defined by

KEGG pathways display an internal correlation higher than the

expected by chance [14]. These proportions fit well with the

relative proportions of GO and KEGG with a connection degree

higher than the random expectation (Table 1). This fact, in

combination with the study of enrichment in functional modules

(GO, KEGG and Biocarta) suggests that co-expression modules

are capturing the functionality of the cell.

However, signatures seem to provide only an incomplete

representation of the functionality of the cell. This is most

probably a consequence of the testing strategy used for defining

them, which is too conservative [33]. This yields incomplete

descriptions of the genes activated and deactivated, resulting on ill

defined characterizations of the functions that account for the

experiments. It is expectable that, where conventional methods for

finding signatures from gene expression data are failing in

capturing part of the functional information of the modules,

methods based on gene sets [34,35] and specifically those that

consider the structure of the network [36,37] will produce sounder

results.

Materials and Methods

Signatures and co-expression modules
The L2L Microarray Database, accessible through a web

portal [38], contains a collection of results derived from published

microarray data. These results are essentially gene signatures and

co-expression modules defined by the database curators or

directly by the authors of the papers. Every microarray experi-

ment in the collected publications generates lists of genes that are

found to be characteristic of some condition or timepoint (see

[22]). Typically, signatures are defined by the application of

simple tests such as t-tests or other similar tests (see details in

[22]). A total of 618 signatures defined as genes differentially

expressed among a wide range of experimental conditions

compared, from human microarray experimental results were

downloaded from L2L database [22]. The signatures used here

represent the following experimental conditions: 213 cancer, 405

non-cancer, 301 up-regulated, 243 down-regulated. A total of

507 modules of co-expression in cancer, defined as sets of genes

co-expressing for a particular set of microarrays, were down-

loaded from L2L [22]. Co-expression modules have been also

downloaded from L2L database [38], although the original ones

can be found in the Module Networks site [39]. Co-expression

modules were originally defined by bi-clustering methods (see

details in [40]).

Databases and interactome scaffold generation
The GO database was taken from Ensembl (release 54, May

2009). The KEGG database corresponds to the kegg50 release.

Biocarta was downloaded by May 2009.

The program SNOW [24] (version 1.0) was used for the

analyses. SNOW contains a database of PPI generated from the

following public repositories: HRPD [41] (release 7 downloaded

31/03/2009), IntAct [42] (downloaded 31/03/2009), BIND [43]

(release 2007-05-10), DIP [44] (release Hsapi20090126) and

MINT [45] (release 2009/02/05). Entries in databases were

mapped to Ensembl transcripts and genes. We used this collection

of PPI data to generate two different types of interactomes (for

both transcripts and genes): a non-filtered scaffold interactome,

which include all the available PPIs, and a more confident, filtered

scaffold interactome. The six top categories of experimental

methods described in the Molecular Interaction Ontology [46]

plus the categories in vivo and in vitro from HPRD were used as

confidence measurements. Thus, only PPIs verified by at least two

of these categories were considered in the filtered scaffold

interactome.

Given a set of gene products, the sub-network defined by them

can be easily determined by mapping all the members onto a

scaffold interactome.

Calculation of network parameters
Different network parameters represent local and global

network properties. Figure 5 schematizes the local properties of

the nodes portrayed by the different parameters used. The

properties used in this study are: Connection degree, Clustering

coefficient, Betweenness centrality and components.

Connection degree. This parameter accounts for the

number of partners of direct interaction a particular node has.

For a given p, the connection degree is computed as the number of

edges (interaction events). Figure 5A shows a node with value of

connectivity of 8.0.

Clustering coefficient. This parameter not only accounts

for the connectivity of a given node but also for the connectivity of

Table 5. Significance (p-value) of the network parameters measured for the different network properties in the different modules.

GO:0007346 Hsa04350 Module 115 ifn_gamma_up Module 87 adip_human_up

Betweenness ,0.0001 ,0.0001 ,0.0001 0.0001 0.0008 0.1419

Connections ,0.0001 ,0.0001 ,0.0001 ,0.0001 ,0.0001 0.1205

Clustering coefficient 0.0058 ,0.0001 0.5088 0.9959 0.9966 0.3573

Non significant values (p.0.05) are in italics.
doi:10.1371/journal.pone.0017474.t005

Network Structure of Signatures and Modules
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the neighbourhood to which this node is connected. The

Clustering coefficient of a node (C(n)) was obtained by the formula:

C(v)~
2en

nv(nv{1)

where en is the number of edges among the nodes connected to

node n, and nn is the number of neighbours of node n. Figure 5A

has the lowest possible clustering coefficient: 0, despite having high

connectivity. On the other hand, Figure 5B has both high values of

clustering coefficient, C(n) = 0.6, and connectivity, C = 8.0.

Betweenness centrality. Is related to the concept of hub in a

network and the capacity of traversing the network through many

alternative paths connecting nodes situated in different extremes.

A densely connected network does not necessarily imply many

possibilities of traversing it. Betweenness centrality is related to the

existence of hubs connecting different parts of the network.

Betweenness centrality (CB (n)) of a node is obtained by applying

the formula:

CB(v)~
X

s=v=t[V

sst(v)

sst

being sst(n), the number of shortest paths through a node and sst,

the total number of shortest paths in the graph. The shortest paths

among nodes are calculated by Dijkstra algorithm [47], a widely

Figure 4. Analysis of over-representation of GO terms and significance in network parameters in signatures and co-expression
modules. The analysis was carried out on 665 signatures and 507 co-expression modules. Different sectors in the pie charts represent the percentages
of the cases in which only a GO term was found as significantly over-represented (Only GO), cases in which only some network parameter was significant
(Only net), cases in which both GO and net parameters were significant (Net+GO) and cases in which nothing was found as significant.
doi:10.1371/journal.pone.0017474.g004

Network Structure of Signatures and Modules
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used algorithm in network analysis. Relative betweenness

centrality (rCB (n)) was calculated as:

rCB(v)~
2 � CB(v)

n2{(3nz2)

being n the total number of nodes in the graph. Node C in Figure 5

has a high betweenness given that many shortest paths joining

nodes pass through it.

Components. A component in a graph is a group of nodes

connected among them. Given a list of nodes connected among

them, the minimum connection network (MCN) can be deduced

by using the Dijkstra algorithm [47], which finds shortest the paths

among all the nodes. The number of components can easily be

added up once the MCN is derived.

The program SNOW [24], integrated now in the Babelomics

package [48], is used for the calculation of all the network

parameters above mentioned.

PPI network enrichment analysis: Evaluating network
parameters in the Minimal Connected Network

The network enrichment analysis consists on testing whether the

parameters that describe a network are beyond their random

expectations or not. When such parameters are significantly

different from what it can be expected just by chance the network

can then be considered to be a subset of the interactome enough

connected to be considered a real network. The methodology has

been previously published [24] and is briefly described below.

Given a list of nodes (proteins, genes or transcripts), the MCN

joining them can easily be derived by mapping the nodes onto the

scaffold interactome and finding the shortest paths among all the

connected nodes. Thus, connection degree, betweenness centrality

and clustering coefficient are parameters that can be measured for

each node in the network. Consequently, a distribution for any of

these parameters can be obtained for the MCN. Once these

distributions are available, a simple Kolmogorov-Smirnov test can

be used to check if one or several parameters of the network follow

a distribution significantly different from the ‘‘random expecta-

tion’’. The distributions for the ‘‘random expectations’’ of the

network parameters of a MCN obtained for N nodes can be

constructed by repeating (10,000 times in this case) the following

steps: N proteins are randomly sampled from those contained in

the reference interactome. They are mapped in the reference

interactome and the corresponding MCNRandList is obtained. The

network parameters (connection degree, betweenness centrality

and clustering coefficient) are used for constructing the corre-

sponding distributions.

Then, the Kolmogorov-Smirnov test can be used to compare

the parameter distributions of the MCN obtained from the

problem list to their corresponding ‘‘random expectations’’. The

values of the studied parameters for a real sub-network should be

significantly higher than the values obtained for the random (and

consequently poorly connected) networks.

The number of components of the network can also be tested.

This is a simpler case in which the distribution generated can

directly be used to build a confidence interval. In this case, the real

network should have significantly fewer components than the

random network.

The program SNOW [24], now part of the Babelomics package

[48], implements these calculations.

Using external nodes
Exactly the same calculations can be performed for an extended

MCN. This extension can be attained by using extra nodes, not

included in the list of nodes to analyze, that connect two or more

nodes in such list. The rationale for this is that often biological

systems are poorly characterized and, consequently, lists of interest

are not complete. For example, in cases of selection of proteins by

expression profiling, non pre-selected proteins have been reported

to be related to disease due to its inclusion into a network of PPIs

[25,26].The inclusion of such external nodes allows exploring the

network space around the MCN and compensate possible nodes

that remain undetected in a proteomics or microarray experiment

or that remained unnoticed by annotators. This analysis is carried

out as follows: for a list of N nodes mapped onto the interactome,

all the E nodes that connect any two nodes in the list are found.

Then, the MCN joining the N+E nodes is obtained and the

corresponding network parameters are calculated. These values

are compared by conducting a Kolmogorov-Smirnov test against

the corresponding random expectations. The random expectation

for a extended network of N nodes is found as follows: N nodes are

sampled randomly from the interactome. Then, the Er nodes that

connect any of these nodes are added to the random list. Then, the

network parameters are calculated for the N+Er nodes. The

procedure is repeated 10,000 times to obtain an empirical

distribution of the parameters.

Again, the SNOW [24] program can also be used to calculate

all the network parameters for the MCN and for the extended

MCN.

Supporting Information

File S1 Signature parameters. Excel file containing all the

signatures analysed with the values of the four network

parameters.

(XLS)

File S2 Coexpression modules parameters. Excel file

containing all the coexpression modules analysed with the values

of the four network parameters.

(XLS)
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Figure 5. Local properties of the nodes represented by the
different network parameters used. Connection degree was
computed as the number of edges (interaction events) for a given
node. A shows a node with a high connectivity. B has both high
clustering coefficient and connectivity. C has a high betweenness. It is a
hub because many shortest paths joining nodes pass through it. The
connecting edge between two component (D) is known as the
articulation point.
doi:10.1371/journal.pone.0017474.g005
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