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Abstract

Background: AIDS is one of the most devastating diseases in human history. Decades of studies have revealed host factors
required for HIV infection, indicating that HIV exploits host processes for its own purposes. HIV infection leads to AIDS as
well as various comorbidities. The associations between HIV and human pathways and diseases may reveal non-obvious
relationships between HIV and non-HIV-defining diseases.

Principal Findings: Human biological pathways were evaluated and statistically compared against the presence of HIV host
factor related genes. All of the obtained scores comparing HIV targeted genes and biological pathways were ranked.
Different rank results based on overlapping genes, recovered virus-host interactions, co-expressed genes, and common
interactions in human protein-protein interaction networks were obtained. Correlations between rankings suggested that
these measures yielded diverse rankings. Rank combination of these ranks led to a final ranking of HIV-associated pathways,
which revealed that HIV is associated with immune cell-related pathways and several cancer-related pathways. The
proposed method is also applicable to the evaluation of associations between other pathogens and human pathways and
diseases.

Conclusions: Our results suggest that HIV infection shares common molecular mechanisms with certain signaling pathways
and cancers. Interference in apoptosis pathways and the long-term suppression of immune system functions by HIV
infection might contribute to tumorigenesis. Relationships between HIV infection and human pathways of disease may aid
in the identification of common drug targets for viral infections and other diseases.
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Introduction

Acquired immunodeficiency syndrome (AIDS) is a devastating

disease that has afflicted the human species for decades. Despite

the enormous amount of effort and resources devoted to its study,

a cure for AIDS has not yet emerged. AIDS is caused by human

immunodeficiency virus (HIV). Similar to other diseases caused by

pathogens, various human pathways must be perturbed or even

hijacked to serve the purposes of the HIV virus. Indeed, hundreds

of human host factors have been identified as necessary during

viral infection and replication [1–3]. Thousands of protein-protein

interactions between HIV and human host proteins have been

reported in the literature [4].

Certain diseases are known to be associated with HIV infection.

For example, the association between HIV/AIDS and lympho-

ma/Karposi’s sarcoma has been recognized since the discovery of

HIV [5]. Tuberculosis, hepatitis B/C, and other diseases are

known comorbidities of HIV infection [6,7], and HIV infection is

even associated with neurocognitive disorders [8]. These findings

have led us to enquire into the human pathways and diseases that

are associated with AIDS and the molecular mechanisms behind

these associations.

Previous research has attempted to elucidate host-pathogen

interactions through protein-protein interactions. Interactions

between human proteins and several pathogens, including Hepatitis

C virus [9], Epstein-Barr virus [10], influenza virus [11], and several

strains of bacteria [12], were identified systematically. These studies

suggested that interactions between humans and pathogens (viruses

or bacteria) are extensive and prevalent. Several studies have also

attempted to identify human biological processes that are influenced

or perturbed by viruses [13,14]. These studies depicted human-

pathogen interactions from a global perspective by pooling

interactions with different pathogens and identifying common

mechanisms playing important roles in viral and bacterial infections.

One study specifically analyzed the interactions between HIV-1 and

human proteins [15] and found that HIV targeted proteins that

were not involved in human diseases listed in the Online Mendelian

Inheritance in Man (OMIM).

To study the functional enrichment of genes (the association of

genes with a specific function or pathway), gene set enrichment
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analysis (GSEA) and its derivatives are widely adopted [16,17]. In

GSEA, genes are ranked by their correlations with phenotypes and

an enrichment score (ES) is calculated to estimate whether genes

from a gene set are clustered in the extreme regions (the bottom or

top) of the ranked list. Some studies have applied GSEA to

network/pathway analysis as well. For example, proteins in a

protein-protein interaction network can be ranked by their degrees

or by other centrality scores [13]. Enrichment scores for pathways

or other gene sets can be calculated based on the ranks and

clusters of genes from these pathways. GSEA can also be applied

to the evaluation of HIV/pathway associations, but genes must be

ranked by their relatedness with HIV first. The selection of

ranking criteria would impact the results of enrichment analysis.

In this work, we explored links between HIV infection and other

human pathways of disease through several approaches: investi-

gating the overlap of human genes involved in AIDS and other

pathways, examining recovered human-HIV interactions in other

pathways, studying co-expression profiles, and identifying com-

mon interaction partners in a human PPI network. All these

approaches were undertaken with human genes associated with

HIV and genes involved in pathways of disease. Two hundred

twenty (220) human pathways involved in disease from the Kyoto

Encyclopedia of Genes and Genomes (KEGG) were evaluated and

statistically compared with HIV host factors. Many tests found

significant associations between gene expression and HIV, and all

test scores were transformed into ranks. Rank combination of

these results led to a final ranking of HIV-associated pathways that

provided insight into AIDS comorbidities, their underlying

molecular mechanisms, and novel potential treatment strategies.

Data fusion or the combination of multiple sources of information

are techniques that have been applied to prioritize genes [18] or

drug candidates [19]. However, the application of these concepts

to pathways is less common. To the best of our knowledge, this is

the first study to combine the rankings of pathways through

different approaches.

Results

Consensus in HIV Host Factors
The HIV host factors identified among different studies are

diverse. Figure 1 illustrates a Venn diagram of host factors

identified from three systematic screening studies [1–3] and from

HIV-human protein interactions reported in the literature [4].

Data from several sources can be merged with either set union or

intersection operations. For the current study, the intersection

approach was taken. As genes from our four sources were not

balanced in terms of representation, the union of these data would

make the results severely biased toward the largest set (HIV

Interaction Database, 1,431 proteins). However, only one gene,

RELA (a component of NF-kB), was consistently identified by all

four sources. Therefore, genes identified by at least three sources

were included for analysis, and twelve (12) host factors met this

criterion (Table 1). These host factors were defined as a ‘core set’

for subsequent analysis in this work, and were referred to as ‘host

factors.’ The degrees (numbers of interactions) of these genes in

HIV-human and human-human protein-protein interactions and

their respective ranks are also illustrated. Most of these host factors

were not ranked highly. The human protein that interacted with

the most HIV proteins was the gene product of MAPK1 (mitogen-

activated protein kinase 1), whereas the human protein that

interacted with the most human proteins was UBC (ubiquitin C).

However, both proteins were not identified by the three systematic

screenings as HIV host factors.

Previous analysis of protein-protein interactions between human

proteins and various viruses has shown that many pathogenic

viruses interact with ‘hubs’ (high degree nodes) in the human

interaction network [13–15]. However, ranking host factors by

their degrees did not reflect this property. Among the 12 host

factors studied, only two (RELA and AKT1, ranked 36.5 and 35,

respectively) were ranked within the top 100 of 11,030 human

proteins with current interaction data available. As for HIV-

human interactions, only CD4 was targeted by multiple HIV

Figure 1. Venn diagram of HIV host factors. The numbers of common host factors reported in one, two, three or four sources are shown on
respective cells. Only 12 host factors (white circle) were reported by more than three studies, and only one was reported in all four sources.
doi:10.1371/journal.pone.0034240.g001
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proteins, and CD4 was ranked 6.5 among 1,431 human proteins

with HIV-human interaction data available.

GO Annotation Enrichments of HIV Host Factors
To understand the involvement of HIV host factors in biological

processes, Gene Ontology (GO) annotations (biological processes)

were compiled for host factors and compared to those of the entire

human genome. For HIV host factors, ‘multi-organism process

(GO:0051704)’, ‘immune system process (GO:0002376)’, ‘viral

reproduction (GO:0016032)’, ‘response to stimulus (GO:0050896)’,

and ‘biological regulation (GO:0065007)’ were significantly en-

riched (all with p-values,161025, Figure 2). The definition of a

‘multi-organism process’ in Gene Ontology was: ‘Any process in

which an organism has an effect on another organism of the same or

different species (http://amigo.geneontology.org/cgi-bin/amigo/

term_details?term = GO:0051704).’ Therefore, genes targeted by

HIV are likely to be those involved in human-pathogen interactions.

The enrichment of ‘immune system process’, ‘viral reproduction’

and ‘biological regulation’ is consistent with the behaviors of HIV

and the consequences of HIV infection. The enrichment of

‘response to stimulus’ reflects the behaviors of cells in response to

the binding or detection of the virus. These results are consistent

with what is currently known about the virus, which includes its

modulation of the immune system and its interference with cellular

processes.

Associations between HIV Host Factors and KEGG
Pathways

There are 220 human pathways available in KEGG. Among

these, 86 are metabolic pathways and the others belong to signaling

pathways or pathways of disease. None of the metabolic pathways

ranks in the top 10 by all four rankings (Supplementary Table S1).

Almost all of the metabolic pathways are ranked in the bottom half

of the list, with the overall pathway (hsa01100: Metabolic Pathway)

ranked last. This suggests that HIV host factors are not greatly

involved in metabolic processes, which is consistent with our GO

enrichment/depletion analysis (Supplementary Table S2). The

association between each pathway and a set of HIV host factors was

evaluated using several approaches. Pathways were then ranked by

statistical tests in comparison with random pathways. The nature of

each approach led to different rankings for these pathways. Six

pathways were ranked in the top 10 in at least three rankings. These

consensus pathways include ‘Pancreatic cancer (hsa05212)’, ‘Small

cell lung cancer (hsa05222)’, ‘Acute myeloid leukemia (hsa05221)’,

‘Adipocytokine signaling pathway (hsa04920)’, ‘B cell receptor

signaling pathway (hsa04662)’, and ‘T cell receptor signaling

pathway (hsa04660)’ (Supplementary Table S1).

To further explore the consensus pathways identified by the

four approaches to analysis, a data fusion method was applied.

The correlations among different rankings were calculated and are

listed in Table 2. Two approaches were highly correlated, namely

‘Common Genes’ and ‘Recovered Interactions.’ The other

correlations were less obvious, suggesting that these approaches

yielded diverse results. In principle, rank combination of

diversified results leads to better rankings [20,21]. Based on these

rank correlations, the ranks resulting from the four analytical

approaches were combined as illustrated in Figure 3. The two

most highly correlated rankings were combined first, as otherwise

they would weigh too heavily when combined with the other

rankings. The resulting three rankings were then combined again,

resulting in the final ranking.

The top 10 KEGG diseases/pathways in the final ranking are

listed in Table 3, along with their ranks and statistical significances

as calculated by the four approaches. The six top-ranked

consensus pathways were still ranked highly in the final ranking.

However, four pathways were promoted by the combined ranking,

namely ‘Chronic myeloid leukemia (hsa05220)’, ‘Toll-like receptor

signaling pathway (hsa04620)’, ‘Chemokine signaling pathway

(hsa04062)’, and ‘Apoptosis (hsa04210)’.

HIV particles must be granted entry into cells for successful

infection and replication. It is thus understandable that ‘Chemo-

kine signaling pathway’ was one of the top 10 pathways associated

with HIV host factors. The glycoproteins gp160, gp120, and gp41

of HIV bind with CD4 and CXCR4/CCR5 on host cells before

gaining entry into T cells. This binding triggers various signals

throughout the cell, affecting the survival and migration of cells.

Three other pathways were involved in sensing and responding

to viral infections, including ‘Toll-like receptor (TLR) signaling

pathway’, ‘T-cell receptor (TCR) signaling pathway’, and ‘B-cell

receptor (BCR) signaling pathway’. Activation of these pathways

leads to immune responses including antigen processing and

presentation, immunoglobulin production, and interferon-mediat-

ed antiviral effects. In some cases, activation of these pathways

may also lead to autoimmunity.

Table 2. Rank correlation coefficients among rankings of pathways identified by our four approaches.

Common Genes Recovered Interactions Co-Expressed Genes Common Interaction Partners

Common Genes

Recovered Interactions 0.9933

Co-Expressed Genes 0.5624 0.5576

Common Interaction Partners 0.5432 0.5398 0.5822

doi:10.1371/journal.pone.0034240.t002

Figure 2. GO distribution. Significantly enriched GO terms between
the human genome (empty bars) and HIV host factors (solid bars) are
reported here. The p-values for these GO terms were all ,161025.
doi:10.1371/journal.pone.0034240.g002
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Other gene expression-based studies also identified pathways

associated with HIV infection [22,23]. Our findings were

consistent in identifying pathways identified in these studies,

including ‘Apoptosis Pathway’, ‘Cytokine Responses’, and ‘Toll-

like Receptor Pathway’ [22].

The cancers identified in this work were not HIV/AIDS-

defining cancers and were not known to have been caused by

infectious agents. However, various population-based studies have

shown that the risks of contracting many of these cancers are

elevated in people with HIV/AIDS. An epidemiological study in

France showed that the incidence of acute myeloid leukemia

(AML) in HIV/AIDS patients was two-fold higher than that of the

general population [24]. One study in Germany suggested that

long-term immune suppression increased AML risk [25]. The

clinical evidence for associations between chronic myeloid

leukemia (CML) and HIV/AIDS is less clear, though some

studies have suggested that HIV infections and highly active anti-

retroviral therapy (HAART) may increase the risk of CML [26].

Two studies in the United States and one in Denmark showed that

the incidence of lung cancer increases in HIV-infected individuals

[27] and that HIV infection is associated with an increased risk of

lung cancer [28,29]. Two studies in France [30] and Italy [31] also

found that pancreatic cancer deaths were significantly higher in

populations with HIV/AIDS.

The association between HIV and the ‘adipocytokine signaling

pathway’ was less clear. However, HIV protease inhibitors and

other anti-retroviral therapies have been shown to alter human

adipocyte differentiation and metabolism [32,33]. The underlying

mechanism for this lipodystrophy might be due to mitochondrial

toxicity and insulin resistance [34]. This association was noted in

an RNAi systemic screening study [3].

Discussion

Using a set of stringent and conserved host factors, it has been

found that HIV does not always target ‘hubs’ or high-degree nodes

in the human interactome. High-throughput screening of host-

pathogen interactions may lead to interactions with already

promiscuous proteins. Additionally, ‘hubs’ in a network are not

necessarily involved in specific processes. Combining data from

multiple sources reduced the number of false positives. Associa-

tions between a reliable ‘core set’ of HIV host factors and

Figure 3. Rank combination scheme. Four measures were used in
this study to rank KEGG pathways. Based on rank correlation, two
(common genes and recovered HIV interactions) were merged by rank
combination. The resulting three ranks were then combined again
using the same data fusion technique.
doi:10.1371/journal.pone.0034240.g003
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pathways or diseases may be more significant and specific, and

reveal insights into the underlying molecular mechanisms of

pathogenesis and comorbidities.

In conventional pathway enrichment methods (GSEA) all genes

(host factors and genes in the human genome) must be ranked

using a pre-specified criterion. Usually gene expression profiles of

a certain phenotype (such as HIV infection) would be used.

However, using this method, multiple factors or conditions cannot

be considered together. Other than gene expression, the weight of

evidence (number of independent studies reporting the gene being

linked to the disease or condition) and degrees or centralities in

protein-protein interaction networks could also be employed as

ranking criteria. However, most of these criteria are unable to

assign scores to all human genes, and would impact the

calculations of enrichment scores and the ranking of pathways.

Unlike the GSEA method, our method only requires a set of host

factors. Associations between HIV and pathways are dependent

on the set of HIV host factors. This is advantageous in terms of the

computational complexity as the remaining genes in the human

genome can be omitted from further study.

In this work, various cancer pathways were shown to be

significantly associated with HIV. This observation is consistent

with several studies investigating cancer risks in HIV/AIDS

populations [27,30,31]. Why does HIV associate with diverse

types of cancers? HIV is known to integrate its genetic materials

into the host genome, which could be a cause of HIV-defining

carcinomas. The random sites of integration of HIV might corrupt

the expression of tumor-suppresser genes and alter the behaviors

of cells. For other non-HIV-defining cancers, it is recognized that

apoptosis (the killing of damaged cells) [35] and senescence (the

inactivation of damaged cells) [36] play critical roles in

tumorigenesis.

One concern over the associations revealed in this work is

whether highly ranked pathways were simply those with more

genes, as larger pathways may include more host factors by

chance. The KEGG database contains various types of pathways,

including ‘Metabolism’, ‘Genetic Information Processing’, ‘Envi-

ronmental Information Processing’, ‘Cellular Processes’, ‘Organ-

ismal Systems’, and ‘Human Diseases’ [37]. Whether certain types

of pathways would cluster at the top of the ranking may cause

concern for the validity of the ranking results. To address these

issues, the numbers of genes in pathways were plotted against the

ranks of those pathways (Figure 4). The resulting figure illustrates

that ranks are not correlated with the numbers of genes in

pathways. Other than ‘Metabolism’, which tends to rank low, most

pathways do not exhibit obvious trends of clustering.

Many of the host factors studied were significantly involved in

the apoptosis pathway, notably AKT1 and RELA (part of NF-kB).

Apoptosis is a mechanism used by infected cells to control the

spread of pathogens. Interactions between the HIV Tat protein

and AKT1 and RELA inhibit apoptosis, and lead to the survival

and proliferation of cells [38,39]. Activation of NF-kB in turn

activates a number of survival genes. This strategy might help HIV

to spread to other cells. The activation of survival genes might also

inadvertently promote the growth and proliferation of cancer cells.

Several cancer pathways highlighted in this work shared similar

molecular machinery.

The pancreatic cancer pathway was ranked first in the final

ranking. There has been little data reported on the association

between HIV and pancreatic cancer [30,31], which might be due

to the low prevalence of pancreatic cancer in the general

population and its resulting difficulty of study. HIV host factors

involved in the pancreatic cancer pathway (hsa05212) are

highlighted (Figure 5). Many of these genes play important roles

in a central pathway (the EGF/EGFR/JAK1/AKT/NF-kB axis)

that might lead to the survival and proliferation of cancer cells, as

noted above. Additionally, highly active anti-retroviral treatments

(HAART) may also negatively affect the pancreas [40]. The cause

of the increased incidence of pancreatic cancers in HIV/AIDS

populations [30,31] is not clear; it is speculated that the

introduction of HAART significantly prolonged the life-span of

HIV/AIDS patients, which might contribute to increases in

tumor-associated deaths [31].

To further elucidate the interactions between host factors and

pancreatic cancers, 80 mutated genes implicated in pancreatic

cancers were retrieved from a systematic screening survey [41]. A

network of interactions among HIV proteins, host factors, and

mutated genes in pancreatic cancers was constructed (Figure 6).

The resulting network illustrated the fact that HIV host factors do

not interact with mutated pancreatic genes directly; instead, a set

Figure 4. KEGG Pathway categories and ranks. The ranks of KEGG pathways are plotted against the numbers of genes in the pathways.
Pathways are labeled according to their assigned categories on the KEGG website (http://www.genome.jp/kegg/pathway.html).
doi:10.1371/journal.pone.0034240.g004
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of ‘proxies’ or ‘hubs’ are connected with both sets of genes.

Interactions from the HIV-human interaction database revealed

that HIV proteins share more interactions with host factors and

these ‘hubs’, and fewer interactions with genes mutated in

pancreatic cancer. At first glance, these results might suggest that

the association between HIV infection and pancreatic cancer

arises from the ‘common interaction partner’ method used in this

work. However, in the four approaches used to study these data,

the pancreatic cancer pathway ranked 1st, 6th, 8th, and 1st,

respectively, and these associations were all statistically significant

(Table 3). Thus, the association was not solely determined by

indirect human protein-protein interactions. The existence of

‘proxy’ genes in the interaction network suggests that HIV

infections and pancreatic mutations might lead to common

outcomes, notably the activation of anti-apoptotic and pro-survival

signaling pathways.

Chronic immune suppression was shown to increase the incidences

of various cancers [25,42]. HIV infection depletes CD4+ T-cells and

macrophages, imposing a great impact on immune system functions.

Recent studies revealed that CD4+ T-cells and macrophages are

Figure 5. HIV host factors in the pancreatic cancer pathway. The pancreatic cancer pathway was reconstructed from Pancreatic Cancer
Pathway (has:05212) in KEGG. Host factors are in red, including AKT1 (PKB/Akt), JAK1 (Jak1), and RELA (NF-kB). HIV protein Tat (in blue) interacted
with AKT1 and NF-kB, activated the two proteins, and led to the expression of anti-apoptotic genes. The parallel solid lines represent the cell
membrane. The dashed line represents the nuclear membrane.
doi:10.1371/journal.pone.0034240.g005

Figure 6. PPI network of HIV proteins, host factors, and genes that are mutated in pancreatic cancer. Connections between host factors
(blue nodes) and mutated genes in pancreatic cancer (red nodes) were primarily relayed by other common interactors (‘hubs’, yellow nodes). HIV
proteins (green nodes) interacted mostly with host factors and hubs.
doi:10.1371/journal.pone.0034240.g006
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required in the clearance of senescent cells, which is critical to the

prevention and regression of cancers [43]. Without functioning

immune systems and these immune cells, senescent cells promote

tumor growth and metastasis, though the underlying mechanism for

this promotion remains to be elucidated [44].

Notably, several anti-retroviral agents were shown to have anti-

tumor activities, and were used to treat various types of cancers

[45]. Many HIV protease inhibitors also exhibited various degrees

of kinase inhibition activity. For example, saquinavir, ritonavir,

nelfinavir, and amprenavir were all able to inhibit phosphor-Akt

(AKT1 was one of the host factors studied) and interfered with

various signaling pathways. Among these protease inhibitors,

nelfinavir has the most potent anti-cancer activity and was tested

in clinical trials against pancreatic cancer [46]. Computational

modeling and screening of human kinases revealed that nelfinavir

inhibited multiple kinases, and its potent anti-tumor activity might

come from this combined effect [47]. However, the tumor

suppressor protein p21 (CDKN1A) was shown to confer HIV-1

resistance [48]. This and other studies suggest that anti-tumor

drugs, specifically cyclin-dependent kinase (CDK) inhibitors,

might serve as novel HIV/AIDS treatments [49,50].

This work used a combined approach to identify associations

between one specific pathogen (HIV) and human pathways.

Various strategies are possible approaches to refining our method,

such as comparisons of score combination and rank combination

[51], and the use of a rank-score plot to identify the diversity of

rankings and further improve combination results [52]. The

identification of several cancer pathways associated with HIV was

consistent with epidemiological reports of comorbidities and

increased cancer risks in the HIV/AIDS population. The

involvements of host factors in various cancer-related pathways

also suggested the existence of common drugs or treatment

options, as exemplified by HIV protease inhibitors and other anti-

retroviral agents [45], and CDK inhibitors [49,50]. Further

investigations into the targets of anti-tumor drugs and their

relationships with HIV host factors might reveal insights into novel

treatment strategies for both HIV infection and cancers.

Materials and Methods

HIV Host Factors
HIV host factors were collected from the Human, HIV-1

Interaction Database [4] and several systemic screening studies.

Overall, 1998 genes were identified and most (1431) were contributed

by the HIV Interaction Database. Among these host factors, twelve

(12) were reported by more than three studies and have been used as

the set to be evaluated against the KEGG pathways.

Human, HIV-1 Interaction Data and GO Annotation
Human, HIV-1 protein interactions were retrieved from the

NCBI HIV-1, Human Protein Interaction Database [4]. Gene

Ontology annotations of these human proteins were retrieved

from the NCBI GeneRIF database (ftp://ftp.ncbi.nlm.nih.gov/

gene/DATA/gene2go.gz). GO annotations have been assigned to

GO terms one level below ‘‘Biological Process (GO:0008150)’’

using the ‘‘is_a’’ relationship in the Gene Ontology Database

(revision: 1.2343, date: 24:10:2011). There were 24 terms in this

level. For each term, the statistical significances of the proportional

difference between the human genome and the set of HIV host

factors were evaluated using a 2-sample proportion test.

Human Protein-Protein Interactions
Human protein-protein interaction data were retrieved from the

NCBI Interactions database (ftp://ftp.ncbi.nlm.nih.gov/gene/

GeneRIF/, retrieved on Sep, 28, 2011). Eighty (80) genes mutated

in pancreatic cancer were reported [41] and used to construct a

protein-protein interaction network among HIV, host factors, and

pancreatic cancer. None of these mutated genes overlapped with

the 12 host factors. Protein-protein interaction networks were

constructed and visualized using Cytoscape [53].

KEGG Pathway Mapping
KEGG pathways and the genes that participate in these

pathways were retrieved from the KEGG ftp site (ftp://ftp.

genome.jp/pub/kegg/pathway/) [54]. Several files in the KEGG

ftp site provide mapping between genes and pathways. Entrez

Gene IDs of human targets were used to link HIV proteins to their

respective KEGG pathways.

Evaluation of HIV/KEGG Pathway associations
In this work, four approaches were applied to evaluate

associations between HIV host factors and KEGG pathways.

The rationales and details for applying these approaches are

outlined here.

Common Genes. The first approach counts the number of

genes appearing both in the set of HIV host factors and in

individual pathways. If a pathway includes many HIV host factors,

the association between the pathway and HIV would be highly

significant. However, ranking pathways by the numbers of shared

genes may be misleading. Large pathways with more genes may

include more host factors by chance. Therefore, a bootstrap

method was applied to estimate the distribution of shared gene

numbers in random pathways, and to evaluate the statistical

significance of the pathways. Pathways were ranked by their

statistical significance (z-scores) and not by the numbers of

common genes. The same procedure was applied to all four

approaches. Details of the statistical testing procedures are

described below.

Recovered Interactions. Host factors may contribute in

different ways to virus-human interactions. Recovered interactions

do not count the numbers of common genes, but do count the

numbers of virus-human interactions. For example, two pathways

with the same number of genes may both include three different

host factors; the three host factors in pathway A may include eight

human-virus interactions, and those in pathway B may only

include five interactions. In this example, the association between

HIV and pathway A would be stronger.

Co-expressed Genes. Some genes not in the host factor set

may not have available human-virus interaction data. Co-

expressions of these genes and host factors may provide another

means by which to identify associations. Inference of gene

associations through co-expressions has been widely adopted

[55,56]. Gene expression profiles from BioGPS [57] have been

used to construct co-expressed relationships. For each gene, the

expression levels across various tissue types have been used as the

‘expression profile’ of this particular gene. If more than one probe

mapped to the same gene, the expression levels for these probes

were averaged and assigned to the specific gene. Two genes were

considered to be co-expressed if the Pearson correlation coefficient

of their respective expression profiles across different tissue types

was greater than 0.85.

Common Interaction Partners. The functions of proteins

can be predicted using their connectivity information in protein-

protein interaction networks [58,59]. An association between two

gene sets is considered to be strong if the two sets are connected by

more common interaction partners between them. Common

interaction partners of two genes are gene products that interact

with both of the genes, excluding the two genes themselves (self-
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interacting homodimers). These common interaction partners

were seen as ‘proxies’ or ‘bridges’ between two gene sets, and they

represented indirect interactions between the two gene sets.

Statistical Testing and Rank Combination
For each human KEGG pathway, 1,000 random pathways with

the same numbers of genes were generated. The resulting

distributions were used to evaluate the statistical significances of

HIV-KEGG pathway associations. The means (m) and standard

deviations (s) of the random distributions were calculated. The z-

statistics of HIV host factors compared with these random

pathways were evaluated. Therefore, p-values were estimated

from the z-statistics.

Genes and gene products were ranked by their degrees of

interaction in human protein-protein interaction networks and

human-HIV protein interaction databases. When genes or gene

products had the same degree, an equal and averaged rank was

assigned. For example, if three genes with N interactions were

placed in 7th, 8th, and 9th places, then they each received an

averaged rank of 8 ( = (7+8+9)/3).

KEGG Pathways were ranked by z-statistics calculated from the

4 measures outlined above: the number of overlapped genes, the

number of HIV interactions, the number of co-expressed genes,

and the number of common interaction partners in the human

interactome. When applicable, rank combination was applied to

merge ranks into a final rank. For example, Pathway A was ranked

2nd, 14th, 5th, and 7th in 4 rankings, and Pathway B was ranked 8th,

1st, 33rd, and 2nd. After rank combination, their rank scores were 7

and 11, respectively. The rank of Pathway A therefore preceded

that of Pathway B.

Supporting Information

Table S1 Rankings of KEGG Pathways by various
approaches and rank combination. Detailed information

for the constructions of rankings by the four approaches and rank

combination are included. For each approach, the means,

standard deviations, z-statistics, p-values and ranks are provided.

Ranks are based on z-statistics. The 220 KEGG pathways were

sorted by combined ranks.

(XLS)

Table S2 Enrichments and depletions of Gene Ontology
biological processes. Proportional differences in GO biological

processes between the human genome and a set of HIV host

factors were tested; z-statistics and p-values are provided. These

GO processes were sorted by z-statistics. GO processes enriched in

HIV host factors were placed at the top.

(XLS)
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