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Abstract

Jumping on trampolines is a popular backyard recreation. In some trampoline games (e.g., ‘‘seat drop war’’), when two
people land on the trampoline with only a small time-lag, one person bounces much higher than the other, as if energy has
been transferred from one to the other. First, we illustrate this energy-transfer in a table-top demonstration, consisting of
two balls dropped onto a mini-trampoline, landing almost simultaneously, sometimes resulting in one ball bouncing much
higher than the other. Next, using a simple mathematical model of two masses bouncing passively on a massless
trampoline with no dissipation, we show that with specific landing conditions, it is possible to transfer all the kinetic energy
of one mass to the other through the trampoline – in a single bounce. For human-like parameters, starting with equal
energy, the energy transfer is maximal when one person lands approximately when the other is at the bottom of her
bounce. The energy transfer persists even for very stiff surfaces. The energy-conservative mathematical model exhibits
complex non-periodic long-term motions. To complement this passive bouncing model, we also performed a game-
theoretic analysis, appropriate when both players are acting strategically to steal the other player’s energy. We consider a
zero-sum game in which each player’s goal is to gain the other player’s kinetic energy during a single bounce, by extending
her leg during flight. For high initial energy and a symmetric situation, the best strategy for both subjects (minimax strategy
and Nash equilibrium) is to use the shortest available leg length and not extend their legs. On the other hand, an asymmetry
in initial heights allows the player with more energy to gain even more energy in the next bounce. Thus synchronous
bouncing unstable is unstable both for passive bouncing and when leg lengths are controlled as in game-theoretic
equilibria.
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Introduction

Bouncing on a trampoline has evolved from a backyard activity

for children to an Olympic Sport. While Olympic trampolining

only has one person bouncing on a trampoline, in its recreational

form, it is quite common for more than one person to bounce on

the trampoline simultaneously. In particular, children play a two-

person game on trampolines called ‘‘seat drop war.’’ In this game,

each player bounces alternatively with her feet and her ‘seat’

(being in an L-shaped body configuration), as shown in Figure 1.

See also movie S1, showing this game being played. Each player is

able to increase her mechanical energy while bouncing (jumping)

with her feet by performing mechanical work with her legs, but she

essentially bounces passively when bouncing on her seat (and

probably loses some energy due to damping). The goal of this

game is to be the last player bouncing. As the game progresses

with the two players bouncing alternatively with their feet and

their seat, the relative phasing between their bounces typically

changes: sometimes the players bounce out of phase and

sometimes they bounce in phase. The game often ends with one

person having so little upward velocity when bouncing on her seat

that she is unable to get back on her feet for the next bounce.

Often, associated with this loss, the second player appears to have

gained most of the energy lost by the first player, thereby bouncing

higher than usual. This article is motivated by this apparently

dramatic energy transfer between the players, which typically

happens during a bounce in which the two players are

simultaneously in contact with trampoline for some overlapping

time period.

Here, we show that the dramatic energy transfer is observed

even in the passive bouncing of inanimate masses. We first

describe a simple physical demonstration of the energy transfer:

dropping two balls simultaneously onto a small trampoline

sometimes results in one ball bouncing much higher than the

other. Then, we construct a simple energy-conservative mathe-

matical model, with the two people modeled as masses bouncing

passively on a trampoline. This model also exhibits the dramatic

energy transfer observed in seat drop war. We call the energy

transfer ‘dramatic’ because essentially all the energy of one

person/ball gets transferred to the other in a single brief

interaction. We show that there is typically an optimal difference

between the landing times of the two masses (hereafter called

the ‘contact time-lag’) that maximizes energy transfer. The
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mathematical model, in absence of dissipation or sideways

movement of masses, displays complex non-periodic motion, with

repeated transfer of energy between the two masses.

Finally, we make a first step at analyzing the game, not as a

simple passive dynamics problem involving two balls bouncing,

but as a strategic competitive game between two players from a

game theoretic perspective, obtaining the optimal strategies for the

two players for the zero-sum game.

Results

A physical demonstration: Two balls on a trampoline
To illustrate that energy transfer between people on a trampoline

can happen through purely passive mechanisms, we designed a

simple table-top demonstration involving a store-bought mini-

trampoline and two balls (see also Materials and Methods).

Figure 2 shows a series of key frames, illustrating the energy

transfer between the two (tennis) balls, dropped nearly but not

exactly simultaneously. The two balls contact the trampoline at

slightly different times, with some overlapping period when they

are both in contact with the trampoline. The mass that makes

contact with the trampoline second bounces much higher. See also

movie S2, which shows this specific example in slow motion, and

also other examples illustrating how when the masses make

contact with the trampoline approximately simultaneously, they

bounce up to about the same height.

We did not perform carefully controlled drops, make detailed

measurements of the resulting bounces, or try to make this table-

top demonstration a dynamically scaled version of two humans

bouncing on a larger trampoline. We intend this only as a

demonstration of the phenomenon.

When dropped by human hands, the two balls often land at

slightly different times due to human motor variability, resulting in

different amounts of overlap between their contact phases with the

trampoline. As a consequence, as seen from the mathematical

models below, the rise heights of the masses after the bounce have

corresponding variability. When there is no contact overlap, as

happens often (if the drops are not nearly simultaneous), there is

no dramatic energy transfer.

A mathematical model: passive bouncing of two masses
When people bounce on trampolines, they perform positive

mechanical work with their legs to counteract any loss of energy

(through passive dissipation or active negative leg work). Here, for

simplicity, we restrict ourselves to energy-conservative models: no

leg work or dissipation. See Materials and Methods for simulation

details for these mathematical models.

We idealize the two players as particles with masses m1 and m2

bouncing on a trampoline, modeled as a taut massless string of

length L, as shown in Figure 3a–b. The two masses are at

horizontal distances a and c respectively from the nearest fixed

ends of the trampoline; the distance between the masses is

b~L{(azc). The trampoline is at a large initial tension T , so

that the tension in it does not change to first order when deformed

(Fig. 3b). The particles do not slip against the trampoline, and we

neglect the horizontal forces on the particles, so that the motion of

the particles is purely vertical, for all time.

The vertical position of the two masses are denoted y1 and y2,

positive upward (Figure 3b). The undeflected trampoline is at

y~0. We divide the state space into four phases based on which

masses are in contact with the trampoline: P0 (neither in contact

with trampoline, both in flight), P1 (only m1 in contact), P2 (only

m2 in contact), P12 (both in contact). See Figure 3a. The

corresponding equations of motion are:

P0 : m1€yy1~{m1g, m2€yy2~{m2g
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Figure 1. A two-person game on a trampoline: Seat drop war.
Only one player shown. Each player alternatively bounces with her feet
and her ‘seat’. The sequence of body configurations for one player is
shown schematically. The other player goes through a similar sequence
of configurations, but possibly with a phase difference.
doi:10.1371/journal.pone.0078645.g001

Figure 2. A table-top demonstration. This figure shows a sequence of frames illustrating two balls dropped almost simultaneously onto a mini-
trampoline, bouncing back up to very different heights. We see that the ball that makes contact second, rises much higher, as also seen in the
mathematical models. See slow motion video in movie S2.
doi:10.1371/journal.pone.0078645.g002
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These equations are linear, and assuming small vertical deflections

of the trampoline. The total dynamical system, consisting of these

four phases patched together, is piecewise linear, and therefore,

ultimately, nonlinear and non-smooth. Transition between phases

occurs with no discontinuous change in position and velocity. A

mass leaves the trampoline when the upward force on it by the

trampoline becomes zero while it is moving upward. This take-off

event coincides with the trampoline becoming a single straight line

to the left and to the right of the mass; that is, the deflection in the

trampoline vanishes locally. We assume two take-off or landing

events do not happen simultaneously. The trampoline comes

immediately to rest when neither mass is in contact; that is, the

trampoline has no intrinsic dynamics. These constitutive assump-

tions are consistent with energy conservation.

The total system energy consists of the kinetic and gravitational

potential energies of the two masses, namely miv
2
i =2

� �
and migyi

respectively, and the stored energy in the stretched string. The

stored energy in the string in the various phases are:
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In the following discussions, we will sometimes refer to the ‘‘energy

of a particular mass,’’ implicitly partitioning the total system

energy between the two masses. The partitioning of the total

system mechanical energy into the two masses is clearest when

both masses are in flight — then, each mass is associated with the

sum of its kinetic and gravitational potential energy. When both

masses are in contact with the trampoline, there is no objective

partitioning of the total energy between the two masses. When

exactly one mass is in contact with the trampoline, we use the

convention that the mass that is in contact gets credit for the

energy stored in the string.

See Materials and Methods for how this non-smooth dynamical

system is simulated.

Passive dynamics predicts energy transfer and complex
dynamics

For the following simulations of the above model pertaining to

bouncing people (as opposed to bouncing tennis balls described

later), we use the following parameters: m1~m2~70 kg, L~3:5
m, a~b~c~L=3, and g~9:81 ms22. The vertical stiffness of the

trampoline at its midpoint L=2 is 4T=L. We picked tension T such

that this midpoint stiffness was equal to 5000 N/m, roughly the

secant stiffness of the trampoline described in [1].

Before considering a single bounce and the energy transfer in

greater detail, we examine simulations of the passive dynamical

system for a long time period. Simulating this dynamical system

from any generic initial condition (which does not result

immediately in the two masses touching the trampoline simulta-

neously in the first bounce results) in a complex non-periodic

bouncing motion of the two masses, as shown in Figure 4a. Also,

see video of the animation (movie S3).

The two masses repeatedly exchange energy with each other,

sometimes one mass bounces higher and sometimes the other mass

bounces higher: Figure 4b shows the fluctuating energy content in

mass-1. Thus, over a long enough simulation, if the ‘‘game’’ is

stopped at some random moment sufficiently far into the future,

there is equal likelihood of either player ‘‘winning’’ i.e., having

more energy. The energy transfer between masses occurs when the

masses are in simultaneous contact with the trampoline, perform-

ing work on each other through the trampoline. Thus, it appears

that the passive model is sufficient to explain the energy transfer.

To be clear, while the mechanics of a single bounce interaction

of the two masses may be comparable to that of the interaction

between humans on a trampoline, the details of the long-time

simulation may not be of direct applicability to long-time human

bouncing. We discuss this long-time simulation further for its own

intrinsic dynamical properties.

In a single long simulation, the state of the system appears to

come arbitrarily close to almost every region of the accessible

phase space, consistent with energy conservation. Figure 4c gives a

scatter-plot of the snap-shots of the state, in a single long

simulation lasting about 5|104 phases, at transitions between

phases P0 and P2: when mass-2 lands (y2~0,v2w0, red dots) or

takes off (y2~0,v2v0, blue dots), with mass-1 already in the air

(y1v0). The interior of the disk in Figure 4c is the set of all

possible states consistent with constant total energy. We found that

the histogram of energies for each mass over time is not a constant

function of energy, but has a minimum near symmetric bouncing

when each mass has half the energy. Indeed the thin slivers of

empty regions in Figure 4c near Dv2D&4:201 corresponds to states

at which each mass has exactly half the energy – in particular,

v2~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gHavg

p
~4:201 where Havg~0:9 is the average height of

Figure 3. Simple model of two people or two balls bouncing on
a trampoline, as two point-masses on a massless trampoline. a)
The system can be in one of four phases: neither mass in contact with
the trampoline (P0), only mass-1 in contact (P1), only mass-2 in contact
(P2), and both masses in contact (P12). b) The geometry of the system is
shown, along with the forces on the masses when both are in contact
with the trampoline.
doi:10.1371/journal.pone.0078645.g003
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the masses at initial condition. (We do not know if the system is

ergodic [2].)

The complex dynamics observed for this dynamical system is

not entirely unanticipated. A well-studied dynamical system is a

mass bouncing, elastically or inelastically, on a much more massive

paddle oscillating vertically and exactly sinusoidally [3,4]; this

system is known to be chaotic in certain parameter regimes. Note

that this mass on an oscillating paddle system can be obtained as a

distinguished limit of our dynamical system by making m1&m2

and by ensuring that m1 never has a flight phase, so that it

oscillates exactly sinusoidally. More recently, apparently unaware

of this earlier work, similar chaotic dynamics were observed and

analyzed for water droplets bouncing on a fluid surface, acting as a

trampoline [5,6]. One qualitative difference between these earlier

systems and the two mass system consider in this article, is that

typically the paddle or the fluid trampoline in these systems is

oscillated using external energy input, so that the total system

energy need not be constant.

Maximizing energy transfer
In this section (and in the Appendix S1), the passive bouncing

model will be used to evaluate the effectiveness of various variables

that players could control in order to gain energy from their

opponent and win the ‘‘seat drop war’’ game. Players can control

their jump timing relative to their opponent, their energy at

impact, and the distance between themselves and the opponent.

We find that players should aim to contact the trampoline when

their opponent has maximally deflected the trampoline (half of the

contact time), and should attempt to have more energy than the

opponent (either due to larger mass or higher jump). The transfer

of energy between players is larger when the players are closer

together, than when they are farther apart.

Energy can get transferred only when both masses are in

simultaneous contact with the trampoline. Without loss of

generality, consider the situation in which mass-2 lands on the

trampoline when mass-1 is already in contact, so that the two

masses are in simultaneous contact with the trampoline for a while.

Now simulate the system forward in time until both masses are in

flight again i.e., phase P0 is reached. We examine the energy

increase in the two masses when P0 is reached, as a function of the

time difference between when mass-1 makes contact and mass-2

makes contact with the trampoline — the contact time-lag

(Figures 5a–c). The energy increase in the two balls is normalized

by the pre-contact energy of each mass (DEi=Ei(0)), and the

contact time-lag has been normalized by the contact period of

mass-1 in the absence of interference by mass-2. The model

parameters are as noted in the previous sub-section, including

b~L=3, except when specifically overridden below. An alternative

version of the plot would record the energies at the first moment

one of the balls begins flight. In this alternate version, the ball still

in contact will get credit for the stored elastic energy in the string.

We note that this version of the plot (not shown) looks slightly

different from the plots shown, as the ball in flight has the

opportunity to re-contact the trampoline before the other ball

takes off, providing further opportunity for energy exchange.

The energy increase in Figure 5a–c are discontinuous functions

of the contact time-lag. This discontinuity arises because we record

the energy transfer only at the first transition to phase P0 after

mass-2 lands. The number of phases that the system goes through

before reaching phase P0 can depend on the initial conditions.

Thus, on one side of a discontinuity, a mass barely takes off, with

close to zero velocity. And on the other side of the discontinuity,

this same mass comes very close to taking off, but does not have

enough energy to do so, resulting in the system passing through

more contact phases phases, P1, P2, and P12, before phase P0 can

happen.

In Figure 5a, the masses had initially the same energy. So the

normalized energy increases in the two masses are mirror images

of each other about the x-axis because of energy conservation

(DE1~{DE2), and because they have been normalized by the

same quantity (E1(0)~E2(0)).

Here, the mass that lands second, namely mass-2, always gains

energy and mass-1 always loses energy, whatever the contact time-

lag (Figure 5a). As would be expected, we see in Figure 5a that the

energy transfer is close to zero when mass-2 lands when the mass-1

has just landed (close to symmetric simultaneous bounce), or about

to take off (close to no interaction). More significantly, we see that

the normalized energy increase of mass-2 reaches unity

(DE1=E1(0)~1), around when the time-lag is about half of

mass-1’s contact period. That is, if mass-2 makes contact when

mass-1 is approximately half-way through its bounce, the energy

transfer is essentially 100% in a single bounce.

When such complete energy transfer occurs, mass-2 makes

contact when mass-1 just starts to rise or just before it starts to rise

(note the two contact time-lags on either side of contact

timing = 0.5 for which the energy transfer is perfect). As mass-2

pulls the string down, mass-1 remains in contact for a brief while

and then leaves contact with an upward velocity, earlier than it

would otherwise have in the absence of mass-2. This mass-1’s

upward velocity v1 is such that, if left alone, the mass-1 would just

about reach y = 0 at roughly the same time that mass-2 leaves

Figure 4. Long-term bouncing dynamics. a) The motion y1(t) and y2(t) starting at rest from initial conditions y1(0)~1 and y2(0)~0:9. b) The
total energy (kinetic+gravitational potential) in mass-1 when both masses are in flight, as a fraction of the total energy. c) The state of the system
when the right mass either just takes off (red dots) or when the right mass just lands (blue dots), when the left mass is already in the air.
doi:10.1371/journal.pone.0078645.g004
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contact, so that both masses are in flight with mass-1 with close to

zero energy.

The basic energy transfer mechanism can be most simply

understood using an ‘instantaneous argument’ as illustrated in

Figure 6. Given a state as in Figure 6a, in which mass-1 is rising

while in contact with the string, the presence of mass-2 lowers the

upwards vertical force on mass-1 (Fig. 6c) compared to when mass-

2 is not in contact (Fig. 6b, keeping position of mass-1 fixed). Thus,

for any given upward v1, the corresponding acceleration _vv1 and

the instantaneous positive power on mass-1 by the string would be

lower than if mass-2 were not in contact. If this situation persists

until mass-1 takes off, it would take off with an upward speed

smaller than if mass-2 had not interfered. Note that the situation

described in this ‘instantaneous’ argument need not persist in

general until phase P0 is reached — the bounce dynamics can be

quite complex in certain parameter regimes. This heuristic

‘instantaneous’ argument is likely most directly applicable when

mass-2 lands on the string when mass-1 is just about to take off,

when it is likely that the situation presented in Fig. 6a would persist

until at least mass-1 takes off.

The details of the energy transfer’s dependence on the contact

time-lag can be complex and dependent on various other system

parameters including differences in energy of mass-1 and mass-2

before contact (Figure 5b–c). When mass-2 has twice mass-1’s

initial energy (Figures 5b), mass-1 gains half of mass-2’s energy

when both contact simultaneously (contact time-lag = 0). In

contrast, when mass-2 has half mass-1’s initial energy

(Figures 5c), mass-2 gains half of mass-1’s initial energy when

they contact simultaneously (contact time-lag = 0).

Even though the motion is governed by relatively simple linear

differential equations in each phase, an analytical treatment to

obtain the dependencies in Figure 5 was found to be cumbersome

(although likely feasible) because the differential equations had to

be integrated until a certain event happened (namely one or both

masses taking off) and patched together, rather than simply

integrated until a particular time.

In Appendix S1, we discuss energy transfer between the balls

under some simplifying limits: (1) Large energy ‘‘collisional’’ limit,

in which the collision consequence becomes independent of

gravity and many other quantities; (2) limit of masses very close to

each other, in which the mass in contact leaves contact when the

other mass makes contact; and (3) limit of one mass much higher

than the other, in which case the energy transfer scenario is similar

to that of a ‘‘freshman physics’’ demonstration involving dropping

a small ball sitting atop a big ball, from rest, onto the ground

[38,39].

Stability of symmetric bouncing
When the masses are equal (m1~m2) and symmetrically

positioned (a~c), a symmetric periodic motion is achieved by

dropping the two balls from the same height. There is a one-

parameter family of such symmetric motions parameterized by the

initial height. In numerical simulations, we find that a generic

small perturbation of the initial conditions for such symmetric

bouncing leads to the two balls making contact not quite

simultaneously, and this asymmetry grows with time, eventually

leading the motion to be far away from symmetric bouncing.

The stability of symmetric motion is examined by considering

the properties of a time-period-based ‘Poincare map’ [3,7] as

described below. (A state-section-based Poincare map has closely

related properties.) Say the two balls are dropped from height H0

and bounce periodically and synchronously with period Tperiod.

We define our Poincare map as the mapping of states

fy1,v1,y2,v2g at time t~0 to time t~Tperiod. We approximate

the Poincare map’s Jacobian about the fixed point fH0,0,H0,0g
using a central difference scheme. Even though the map is perhaps

not arbitrarily differentiable (because the differential equations are

non-smooth), the map appears once continuously differentiable, as

multiple finite difference approximations using random state

perturbations give identical eigenvalues for the Jacobian, up to

numerical errors. See Figure 7 for the eigenvalues as functions of

bouncing height H0. The Jacobian has two unit eigenvalues (equal

to +1) for any H0 because of energy conservation. We further

noticed that for all heights H0, the two non-unit eigenvalues, real

or complex, were reciprocals of each other (l and 1=l), and

therefore, the product of all four eigenvalues equals one (true

numerically, up to error v10{4). These properties follow from the

map being ‘‘symplectic’’ [8], as the map is derived from a

Hamiltonian (energy conservative, holonomic) system [25]. For

most initial heights H0, the Jacobian has two non-unit real

eigenvalues, with one real eigenvalue greater than one in absolute

value, and the other real eigenvalue less than one. Thus symmetric

bouncing displays obvious linear instability for these heights. For a

small range of heights, the two non-unit eigenvalues were complex

conjugates with absolute value equal to one, within numerical

error, about 10{4, suggesting ‘‘spectral stability.’’ We did not

perform any similar analyses that take the non-smooth dynamics

into account more carefully. Nevertheless, we note that for all

heights, even for heights H0 where all eigenvalues seem to have

unit magnitudes, long-enough numerical simulations eventually

take the system far away from symmetric bouncing. For these

simulations, we used a high accuracy integrator that preserved

energy at a level of 10{7 over long durations of integration, but

not a ‘symplectic’ integrator [9].

Game-theoretic analysis: bouncing as a zero sum game
We began this article with a game played on the trampoline as

motivation, but all the analysis so far has been of passive

mechanical models. Consider, for instance, two players dropping

from the same height, with legs extended. Say player 1 knows that

player 2 will bounce passively. Then, player 1 can bend her knees

during flight, just enough so that she will land slightly after player

2, gaining most of player 2’s energy and winning the game. But

what if player 2 is thinking strategically as well, trying to time her

landing just right so that she can gain all of player 1’s energy?

Figure 5. Energy transfer and contact time-lag. Energy increase in
mass-1 (red) and mass-2 (blue) as a function of the impact time-lag. The
masses are equal and are placed symmetrically on the trampoline, so
that a~c~(L{b)=2. The separation between the masses b~L=3. a)
The initial energies E1(0)~E2(0) are equivalent to dropping from rest
from a height of 1 m. b) Mass-1’s initial energy E1(0) is the same as for
panel-a, but E2(0)~2E1(0). c) Mass-1’s initial energy E1(0) is the same
as for panel-a, except mass-2’s energy is E2(0)~E1(0)=2.
doi:10.1371/journal.pone.0078645.g005
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What strategy should a player adopt knowing that the other player

is also thinking strategically? A rational analysis of such strategic

interactions is the purview of game theory. In this section, we

examine two people jumping on a trampoline from a game

theoretic perspective.

For the reader unfamiliar with game theory, we recommend

[10] for a non-technical introduction, and [11] for a more

advanced mathematical treatment and precise definitions. Game

theory is broadly applicable to analysis of any strategic interaction,

be it between humans, other animals, computer software – indeed,

between any set of agents, such that the consequences of any one

agent’s action are affected by the actions of other agents. Game

theory, pioneered initially by von Neuman [12], has been applied,

for instance, to the arms race [13] and to the evolution of species

and animal behavior [14].

Model with legs. Consider two players modeled as point-

masses as shown in Figure 8, now with mass-less legs that the

players can extend and contract within a range of lengths. The leg

lengths are respectively L1 and L2, and 0ƒLiƒLmax. We assume

that the leg lengths are picked before contact, and during a

bounce, the legs are completely rigid and perform no mechanical

work. After interacting with the trampoline, eventually, both

players reach flight phase (phase P0) and the leg lengths go back to

zero. The object of the game, then, is for each player to pick their

leg length Li so that their energy is maximum when they reach

phase P0, when both are in flight again.

We analyze the energy transfer over only one bounce; that is,

over only one complete interaction through the trampoline.

Strategies for maximizing energy transfer over multiple bounces

were not considered. Picking a non-zero leg length has two

possible effects for a player: (1) It makes the player contact the

trampoline earlier, thus altering the contact timing relative to the

other player. (2) It reduces the initial effective potential energy of

the player.

A zero-sum game. Player 1 wishes to maximize her energy

increase DE1 and player 2 wishes to maximize her energy increase

DE2. For this game, in the language of game theory, the energy

gain after a bounce is the players’ payoff and the leg length choice

during flight is their strategy or move. This is a continuous game [15] in

that the players pick continuous-valued variables L1 and L2. The

energy gain functions DE1(L1,L2) and DE2(L1,L2) are called

payoff functions or payoff surfaces.

Because energy is conserved in this system, we have

DE1zDE2~0. Thus, player 1’s energy gain is player 2’s energy

loss and vice versa. Games such as these, in which the total payoff

to all players add up to zero, in which one player’s gains exactly

equal total losses of the other player(s), are called zero-sum games or

strictly competitive games [11]. Thus, instead of stating that player 2

wishes to maximize DE2, we could equivalently state that player 2

wishes to minimize DE1~{DE2.

The payoff functions for our problem (namely, energy transfer

DE1) are shown as surfaces in Figure 9a–b, for two different cases

in which the two players start at rest from identical initial heights

H~0.9 m and H~2 m respectively. To construct these payoff

surfaces, we discretized the continuous space of strategies, by using

a 1006100 grid of L1{L2 pairs, each ranging from 0 to

Lmax~0.5 m. We computed the energy transfers for each L1{L2

pair on this grid, by performing numerical integrations similar to

those that produced Figure 5. This gives a 1006100 payoff matrix,

a discrete approximation to payoff function DE1(L1,L2).
Given this zero sum game, how should players pick their

strategies? Next, we discuss two kinds of game-theoretic solution

strategies, namely, deterministic and probabilistic (mixed).

Deterministic (pure) strategies. If the player 1 chooses her

leg-length L1 first and player 2 chooses L2 second — with full

knowledge of player 1’s choice — then player 2 will pick the L2

that minimizes the DE1 for the already chosen L1. Thus, when

player 1 chooses first, she would pick the L1 for which the DE1 has

the maximum minimum. That is, she performs the following

optimization problem:

max
L1

min
L2

DE1:

This is the maximin strategy for player 1. Similarly if player 2 chooses

her leg length first, she will pick the minimax strategy, which solves

the following optimization problem:

min
L2

max
L1

DE1,

or equivalently,

max
L1

min
L2

DE2:

When each player picks a strategy deterministically as above, they

are called pure strategies.

When the two players have to pick their strategies (leg lengths)

simultaneously, another solution concept called the Nash equilibrium

[16] is more appropriate. An ordered pair of (pure) strategies

(L�1,L�2) is called a Nash equilibrium if each player cannot improve

her value by unilaterally changing her strategy, as the other keeps

her strategy fixed. That is, DE1(L�1,L�2)§DE1(L1,L�2) for every L1

and DE2(L�1,L�2)§DE1(L�1,L2) for every L2. Nash equilibrium

captures a idea of stability in the space of possible strategies; once

found, neither player has an incentive to choose any other

strategy, assuming the players do not cooperate. Note that this

notion of stability is different from that discussed earlier in Figure 7

in the context of differential equations. A Nash equilibrium might

or not exist in the space of pure strategies.

Probabilistic (mixed) strategies. When the two players

have to pick their strategies simultaneously, without knowledge of

the other player’s strategy, it is appropriate to not just consider the

Figure 6. Basic mechanism of passive energy transfer from
mass-1 to mass-2. When mass-1 is moving up, the presence of mass-2
lowers the work done by the string on mass-1. Thus mass-1 takes off
with lesser upward velocity than if mass-2 had not interfered.
doi:10.1371/journal.pone.0078645.g006

People Bouncing on Trampolines

PLOS ONE | www.plosone.org 6 November 2013 | Volume 8 | Issue 11 | e78645



deterministic pure strategies as above, but expand the space of

strategies to allow probabilistic strategies – called mixed strategies

[10,11]. Here, each player picks randomly from the set of possible

strategies, with a particular fixed probability distribution. In our

case, we assume that player 1 picks her leg length using a fixed

probability distribution p1(L1) and player 2 picks her leg length

with probability distribution p2(L2).

The mixed Nash equilibrium is the ordered pair of mixed

strategies such that a player cannot improve the expected value of

her payoff by changing her mixed strategy unilaterally, while the

other player keeps her strategy fixed. Given the probability

distributions, the expected value of the payoffs Ji are, respectively,

J1 p1(L1),p2(L2)ð Þ~
ðð
DE1(L1,L2):p1(L1)p2(L2) dL1 dL2 and ð6Þ

J2 p1(L1),p2(L2)ð Þ~
ðð
DE2(L1,L2):p1(L1)p2(L2) dL1 dL2: ð7Þ

Thus, for a mixed Nash, we seek the two probability distributions

p�1(L1) and p�2(L2) such that

J1 p�1(L1),p�2(L2)
� �

§J1 p1(L1),p�2(L2)
� �

for every admissible distribution p1(L1)

and

J2 p�1(L1),p�2(L2)
� �

§J2 p�1(L1),p2(L2)
� �

for every admissible distribution p2(L2):

In addition to Nash equilibria, analogous to the minimax problem

for pure strategies, one can define a minimax problem over mixed

strategies. For instance, player 1 will now solve the following

maximin problem:

max
p(L1)

min
p(L2)

DE1:

For zero-sum games, the minimax theorem due to von Neumann [11]

shows, remarkably, that the solutions to maximin and the minimax

problems over mixed strategies are equivalent; one obtains the

same optimal mixed strategy and the same optimal payoff for each

player by solving either the minimax or the maximin problem.

Further, for zero sum games, the mixed Nash equilibrium is

equivalent to the mixed minimax strategy [11]. Thus, only one of

minimax, maximin, or Nash need be computed.

Strategies and game-theoretic equilibria for bouncing on
a trampoline

We compute the game theoretic solutions by first reducing the

continuous game to a finite game by discretizing the space of leg

length strategies: 50 leg length choices for each player, so that the

payoff function is a 50650 payoff matrix. Then, the computation

of the pure minimax/maximin strategies reduce to finding the

minimum or maximum of rows and columns (as appropriate) of

the payoff matrix. The computation of the mixed minimax or

Figure 7. Stability of symmetric passive bouncing. The four eigenvalues of the Jacobian (Floquet multipliers) corresponding to the mapping of
the state over one period of the periodic motion: symmetric bouncing for symmetric masses. The product of the eigenvalues was equal to 1 (with an
error of about 10{4). Two eigenvalues are equal to z1. In the intermediate regime shown, all four eigenvalues, two of which are complex conjugates
and reciprocals of each other, have unit absolute values. At other regimes, one eigenvalue has magnitude greater than one, implying linear instability.
doi:10.1371/journal.pone.0078645.g007

Figure 8. Bouncing as a zero sum game. a) Two players drop from
the same height and they can pick a rigid leg length to modify their
contact times. b) The normalized energy increase in mass-1 (the payoff
function) as a function of the leg length choices of the two players,
when the two players drop from an initial height of H~2 m. The
vertical line (blue/red) shows the minimax and maximin strategy that
coincide. c) The payoff function when initial height is H~0.9 m. For
this height, the pure minimax (denoted player 2) and maximin (denoted
player 1) strategy do not coincide. The second panel shows the optimal
probabilities corresponding to mixed minimax strategies. For these
calculations, we used parameter values pertaining to people, as used
earlier (m1~m2~70kg, etc).
doi:10.1371/journal.pone.0078645.g008
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Nash equilibrium can be reduced to a linear programming

problem: that is, the minimization of a linear function subject to

linear equality and inequality constraints [17]. See Materials and

Methods for more methodological details. The unknowns in this

linear optimization problem are the probabilities at which the

various L1 and L2 values are chosen by the respective players. A

mixed Nash equilibrium always exists for a game with finitely

many strategies; and this is true of our game, once we have

reduced our continuous game to a finite game.

Pure strategies. For our bouncing game, the pure maximin

and minimax strategies are shown by vertical blue and red lines,

overlaid on the payoff functions in Figure 9a and 9b. The minimax

and maximin (the vertical lines) happen to coincide at

(L1,L2)~(0,0) for falling from a larger height (H~2 m,

Figure 9a). That is, starting from this height, it is best to not

extend the legs. On the other hand, the minimax and the maximix

strategies do not coincide for a smaller drop height (H~0:9 m,

Figure 9b): the maximin strategy for player 1 has a small non-zero

L1, with L2~0; the minimax strategy for player 2 is the mirror

image of the maximin strategy (reflected about L1~L2). Other

than to draw attention to the differences in the shape of the payoff

functions in the two cases, namely Figures 9a–b, we cannot

provide a simple mechanically intuitive explanation for this

qualitative difference in pure strategies depending on initial

energy.

Mixed strategies in symmetric bouncing games: No

expected gain for either player. When the initial heights

are equal and all other parameters are symmetric, we have a

‘symmetric’ zero-sum game [11], defined by

DE1(L1,L2)~DE2(L2,L1)~{DE1(L2,L1), or in terms of the

corresponding payoff matrices, we have, DE1~{DET
1 . Symmetry

is relevant because it implies some properties of the game’s

solution. When all parameters are symmetric, including equality of

the initial heights, perhaps not surprisingly, neither player can

have a strategy (pure or mixed) that guarantees a non-zero

expected energy gain. That is, the expected value DE1~0, and

both players will, on average bounce back up to the same height.

Indeed, a standard theorem for symmetric zero sum games states

that the expected value for minimax mixed strategies is zero [11].

When the initial heights both equal 2 m, the optimal mixed

strategy coincides with the pure strategies, namely (L1,L2)~(0,0).
For a lower initial height (both equal 0.9 m), when the pure

strategies did not coincide (Figure 9b), the optimal mixed strategy

for the two players, namely, the probability distribution over the

allowed leg lengths, is shown in Figure 9c. We see that the players

will have to choose zero leg length with a probability of about 1=2
and a leg length of about 0.6 with a probability of about 1=2 —

more precisely, two neighboring grid points with leg length around

0.6 have about 1=4 each. That the probability is distributed over

two neighboring grid points is likely a discretization artifact, with a

‘correct leg length’ to be used being between the two grid points.

Mixed strategies in asymmetric bouncing games: Rich

get richer. When a zerosum game is not symmetric, there is no

longer a theorem that states that the expected value of the payoffs

will be zero. The bouncing game is not symmetric (generically) if

the players start with different initial heights from rest, different

initial velocities, have different masses, or have asymmetric

positions along the trampoline (lengths a=c). We considered all

these asymmetries, one at a time, and computed the expected

payoff of each player’s minimax strategy, also the Nash

equilibrium.

For Figure 10a, we considered the two players dropping from

rest from slightly different initial heights, holding all other

parameters symmetric as before; we have y1(0)~2 m, and y2(0)
is varied between 1.6 and 2.4 m. For each of these initial heights,

we first compute the payoff surface and then obtain the mixed

Nash/minimax solution by linear programming. For this range of

initial heights, we find that the mixed Nash/minimax solution

always had the following property: the player that initially has a

higher energy – that is, drops from a higher initial height – had an

expected energy gain. That is, the rich get richer. Thus, any small

initial energy asymmetry only grows in time, making synchronous

bouncing unstable (unstable in the sense of Figure 7 which pertains

to time-evolution of the bouncing – rather than unstable in the

sense of Nash). Similarly, in Figure 10b, we consider the effect of

mass m2 ranging from 50 to 90 kg, while keeping everything else

symmetric. Again, we find that the mixed minimax/Nash is such

that the player that has the greater mass – and therefore starts with

more energy – stands to gain even more energy in a single bounce.

For Figure 10c, we keep everything symmetric except change

the initial speed v2(0) of player 2, keeping v1(0)~0. Thus, the

initial energy of player 2 is greater than that of player 1 for all the

cases considered here. Nevertheless, one player can gain energy

from the other — we see that the player with the greater

downward speed – that is, the player that lands first – gains more

energy. Note that this trend is consistent with that observed earlier

Figure 9. Symmetric games: Dropping from the same height. a) The normalized energy increase in mass-1 (the payoff function) as a function
of the leg length choices of the two players, when the two players drop from an initial height of H~2 m. The vertical line (blue/red) shows the
minimax and maximin strategy that coincide. c) The payoff function when initial height is H~0.9 m. For this height, the pure minimax (denoted
player 2) and maximin (denoted player 1) strategy do not coincide. The second panel shows the optimal probabilities corresponding to mixed
minimax strategies. For these calculations, we used parameter values pertaining to people, as used earlier (m1~m2~70kg, etc).
doi:10.1371/journal.pone.0078645.g009
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with the passive bouncing – for instance, similar to Figure 5a,

which however has the two masses start with equal energy.

Finally, for Figure 10d, we keep everything symmetric except

for the horizontal position of player 2 along the trampoline. That

is, we keep the position a of player 1 fixed, change length b by Db

and change length c by Dc~{Db. Here, the players start with the

same energy, and we find that the player closer to the center gains

more energy.

Overall, the results for asymmetric games in Figure 10 are

similar to those obtained earlier for passive bouncing. This is

because even though the panels in Figure 10 were obtained by

computing the mixed minimax/Nash strategies, ultimately, the

‘mixed’ strategies obtained were pure. That is, almost all

computed strategies for Figure 10 involved using L1~L2~0 with

unit probability. The only exception we found was for especially

large and small y2(0) in Figure 10a, for which the computed mixed

strategies actually had a non-trivial probability distribution spread

over the different available leg lengths.

Many balls bouncing
As an aside for future work, we generalized our two-ball

simulation to the the bouncing of N balls on the trampoline

(N§1). While we did not examine this system in great detail, we

found that even with small numbers of balls, say about 10, the

system starts to exhibit properties reminiscent of macroscopic

statistical mechanical systems. For instance, Hamiltonian systems

with very large number of degrees of freedom, even though

energy-conservative, are capable of phenomena analogous to

‘damping’ — conversion of macroscopically observable kinetic

energy to internal degrees of freedom. Figure 11 demonstrates this

phenomenon in a 25 ball system. Here, initially the macroscop-

ically coherent motion of the masses, moving together as a whole,

gets converted into largely incoherent motion of the individual

particles. Thus, we see that the oscillation amplitude of the string

decays, even through the total energy in the masses is conserved.

The mean velocity of the masses (center of mass speed) decreases,

while the kinetic energy relative to the system’s center of mass

increases. See section on Materials and Methods for simulation

details. See video animation in movie S4.

Discussion

In this article, we have examined the mechanics of energy

transfer between two masses bouncing on a trampoline and

various aspects of their corresponding dynamics. First, we

demonstrated this energy transfer with a table-top set-up,

consisting of two balls dropped onto a mini-trampoline landing

almost simultaneously. We find that sometimes, when the timing

between the two balls landing is just right, one ball bounces much

higher than the other. Next, we devised a simple mathematical

model of two masses bouncing passively on a massless trampoline

with no dissipation. With this mathematical model, we showed

that with specific landing conditions, it is possible to transfer all the

kinetic energy of one mass to the other through the trampoline,

explaining the dramatic energy transfer observed in actual

bouncing with humans as well as our table-top demonstration.

To our knowledge, we do not know of a prior mathematically

based explanation or documentation of this energy transfer. For

human-like parameters, starting with equal energy, the energy

transfer is maximal when one person lands approximately when

the other is at the bottom of her bounce. The passive energy

conservative model also has the interesting property that over a

long time, the energy shuttles back and forth between the two

masses, sometimes almost entirely in one mass and sometimes in

the other.

Thus, while the passive model tells us what a player should do

(land a little later) to steal the other person’s energy in an otherwise

passive bounce, it does not tell us what each player would or

should do when she knows that the other player is also thinking

strategically about the game. We address this strategic interaction

question through a game theoretic analysis. To the passive model,

we added legs that can change length in flight so as to affect when

the player lands and the energy at landing. Starting from both

players in flight, we computed the energetic payoff of each player

choosing a range of leg lengths before landing. We then computed

Nash equilibria and minimax-maximin strategies for the players,

which tell us what each player should do given the other player is

also thinking strategically. Not surprisingly, we found that if the

two players start from the same height, the Nash equilibrium

strategies involve neither player gaining or losing energy after a

single bounce. However, under asymmetric conditions, one player

Figure 10. Asymmetric games. All parameters are kept at their default symmetric values, except for the one parameter that is varied for each
panel. a) Players drop from different initial heights. Player 1 has initial height H~2 m; player 2’s initial height is varied as shown. All else is symmetric.
The player that starts higher, that is, has higher initial energy, gains even more energy in a single bounce, further increasing her energy. b) Players
have different masses. Player 1’s mass m1 is kept at 70 kg and player 2’s mass m2 is varied as shown. Again, the player with greater initial energy gains
even more energy. c) Players have different initial speeds. Player 1 starts at rest and player 2’s initial speed v2(0) is changed. When player 2 has a
positive or upward initial speed, it lands second and gains energy from player 1. d) Players have asymmetric positions on the trampoline: player 2’s
position is moved to the right by Db. We find that the player that is closest to its end of the trampoline loses more energy.
doi:10.1371/journal.pone.0078645.g010
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can gain another player’s energy by appropriate choice of leg

lengths. For instance, when the two players started from slightly

different initial heights, the player that had the greater initial

height could pick a leg length that will increase her energy further

after a single bounce, for whatever other player does.

Thus, we find that symmetric bouncing is unstable, both for the

passive mathematical model and for the game-theoretic version in

which leg lengths are chosen strategically by the subjects. The

game theoretic model is also able to predict – how body

parameters and trampoline location might or not give one or

another player a strategic advantage, given the state of the game.

In our game theoretic analysis, we assumed a simplification of

the game that preserved total energy conservation, making the

game zero-sum. Allowing for active leg work or passive dissipation

during contact with the trampoline will make the game non-zero

sum. Also, allowing for positive or negative leg work will require

appropriately discretizing the space of leg actuation strategies,

perhaps similar to that used in other optimization studies of

human movement [18–20]. Such leg work will let a player adjust

the landing timing by adjusting the jump height as well – in

addition to leg length change during flight as we have considered

here. We considered the strategic interaction over only a single

bounce; it may be interesting to examine what the long-term

outcomes will be if the players pick their leg lengths before each

bounce.

There have been a few specific applications of game theory to

physical games played by humans, such as soccer [21], tennis [22],

and indeed pursuit games [23]. We have provided a further

example in the current paper — an example with rich dynamics,

arising out of the hybrid mechanical system consisting of the

interaction between the subjects and the trampoline.

Further, while we considered a simple adversarial situation in

which each player is trying to steal energy from the other, we

could also consider other scenarios that involve a cooperative

flavor, in which the subjects are trying to maximize their combined

energy or decide how they should cooperate to avoid a non-

optimal solution to each, analogous to the bargaining problem

[16,24]. This will be relevant mainly in the non-zero-sum setting,

perhaps when there is the possibility of each player adding or

removing energy from the system by performing leg work.

We found that our mathematical model of the passive bouncing

dynamics has complex dynamics, which might be of interest to

dynamicists. This system is energy-conservative and Hamiltonian

[25], even though only piecewise smooth. Other non-Hamiltonian

energy conservative systems, such as an ideal bicycle [20,21],

which is non-holonomic, and a spring-mass model of human and

animal running [14], which is non-smooth (and involves some

non-passive but energy-neutral external control), have partial

asymptotic stability that Hamiltonian systems cannot have

(because Hamiltonian systems satisfy Liouvilles theorem of

phase-space volume preservation [25].). Perhaps there are variants

of our trampoline bouncing model which do have partial

asymptotic stability. We conjecture that it may be possible to

achieve partial asymptotic stability of symmetric bouncing, by

actively changing leg lengths by the two players during flight, but

without ever changing the total energy of the system. This would

be an example of ‘‘cooperative control’’ [26], albeit in an

unconventional energy conservative setting. Indeed, it would be

interesting to see if two human players can intentionally stabilize

symmetric bouncing. There is an Olympic sport called synchro-

nized trampoline, in which two gymnasts perform the same

routine but on neighboring trampolines. Presumably, attempting

this sport on the same trampoline would cause the gymnasts’

performance degrade substantially, because of the sensitive

dependence of the bounce on the contact timings. But perhaps

this would be a way to detect asynchrony that may be harder to

perceive with the naked eye.

The phenomenon of dramatic energy transfer discussed here

has relevance to the mechanics of collisions. The energy transfer

here persists even when the trampoline’s stiffness is very large and

the contact duration very short – our table-top demonstration is

already near this ‘collisional’ limit. In this limit, the dramatic

energy transfer between the two masses through the trampoline is

reminiscent of certain results in the literature on simultaneous

‘rigid-body collisions.’ In particular, simultaneous collisions of

nominally rigid-bodies – collisions in which there are multiple

points that are making contact at the same time – are known to be

often ill-posed. That is, when these simultaneous collisions are

‘regularized’ either by making the contacts happen in sequence or

by making the collisions last a non-infinitesimal period with

varying time-overlaps between the various contacts, it is found that

the details assumed (either the collision sequence or the overlap

details) substantially affect the collision consequence [27–31]. The

current article provides another example of such sensitivities.

Finally, we comment on possible implications to the bouncing

games that children and adults play on trampolines. The dramatic

energy transfer between players bouncing on a trampoline may

have an effect of trampoline injuries. Some epidemiological studies

[32–34] suggest that a substantial fraction of trampoline injuries

are when multiple people were on the trampoline simultaneously.

Indeed, official USTA safety manual [35] recommends that more

than one person never bounce on the same trampoline. It is

possible that the greater injury likelihood with many players on the

Figure 11. Statistical mechanics of many balls bouncing
passively. a) Twenty five balls are dropped from approximately but
not exactly the same height. b) The angle of the string is shown as a
function of time. Note that the string oscillates macroscopically initially,
as the masses bounce together coherently on it. However, eventually
this macroscopic coherent motion of the masses and the coherent
oscillatory string motion gets ‘damped out’ with the energy getting
transferred to incoherent motion of the masses. c) A ‘macroscopic’
kinetic energy computed as mv2

mean=2 with mean ball velocity vmean

decreases with time, as the masses’ velocities cancel each other more.
doi:10.1371/journal.pone.0078645.g011
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trampoline could be due to three inter-related effects. First, of

course, the large energy transfers between people can produce

high bounces that may be harder to control, resulting in injuries.

Second, the larger energy transfers are also associated with larger

forces on the body, often twice as much as when only one person is

bouncing. Third, as is clear from the Figures 5 and Appendix S1

(Figures S1, S2, S3), the amount of energy transfer can depend

very sensitively on the contact time-lag, lowering the player’s

ability to brace for and control the bounce. Thus, while the energy

transfers may make multiple people bouncing on a trampoline

more fun, they also make such bouncing more dangerous and

unpredictable.

Materials and Methods

Non-smooth dynamics simulations
The equations of motion (Eq. 1) describing two balls bouncing

were integrated in MATLAB using standard ordinary differential

equation solvers (ode45 and ode15s with high accuracy specifica-

tions *10{9). Switching from one phase to another phase of the

hybrid system is achieved with the in-built ‘event detection’

capabilities of the ODE solvers, so that the solution is formed as a

patch-work of solutions to smooth differential equations. See

Programs S1 for the complete MATLAB code.

For N ball simulations, Nw2, we now present the equations of

motion in an algorithmic form. Let (xi,yi) denote the horizontal

and vertical positions of the ith ball, i~1 . . . N . If ball-i is not in

contact with the string, its motion is governed by €yyi~{g. At any

moment, the set of balls that are in contact with the string are

determined as those with yv0. Say there are m balls in contact

and the set p contains the indices of the balls in contact. For

instance, if balls 3, 5, and 8 are in contact, p~f3,5,7g and

p(2)~5.

The equation for jth ball in contact (j~1 . . . m) is:

€yyj~{gz
T

m

yp(j{1){yp(j)

xp(j{1){xp(j)

z
yp(jz1){yp(j)

xp(jz1){xp(j)

� �

in which, in addition to the above definitions, we have p(0)~0,

p(mz1)~Nz1. Also, (x0,y0) and (xNz1,yNz1) are the fixed

positions of the left and right ends of the string. See Programs S1

for the complete MATLAB code. For this ODE solution, we

simply integrate over the non-smoothness in the right-hand side of

the differential equation, using the stiff solver ode15s. While this is

not ideal for solution accuracy (as the solvers assume higher-order

differentiability), the adaptive step-sizing keeps the error small

enough that energy is conserved over reasonable time-scales. This

accuracy seems sufficient for obtaining overall qualitative or

statistical properties of the dynamics (as verified by comparing

with the more accurate two-ball simulation).

Table-top demonstration
For the physical table-top demonstration, we used lacrosse and

tennis balls dropped onto Gold’s Gym mini trampoline, 36 inches

in diameter. We did not tune any of the stiffnesses, and our

calculations suggest that the effects will be seen on trampolines of

vastly different mechanical properties.

Computing game-theoretic solutions: Pure strategies
As noted, first, we evaluate the payoff function DE1(L1,L2) at

finitely many L1 and L2 to obtain a payoff matrix. Evaluating the

payoff requires solving the differential equations until both players

are in flight again. We used 50-element lists of L1 and L2, namely

L1list(1 . . . 50) and L2list(1 . . . 50), with the lengths ranging from 0

to 0.5 m, to get 50650 payoff matrices. Let us call the payoff

matrix A for player 1 and B~{A for player 2, to distinguish

them from the corresponding continuous functions DE1 and DE2.

We use the convention that the matrix element

Ajk~DE1(L1list(j),L2list(k)), where L1list(j) represents the jth

element of the list of L1’s.

Given the payoff matrix A, we find the maximin strategy for

player 1 by first finding the minimum of each row of A; and then

finding the row with the maximum minimum. The L1 and L2

corresponding to those rows and columns give the maximin

solution. Equivalently, the minimax strategy for player 2 is found

by repeating this same maximin procedure on B. Alternatively, the

minimax strategy for player 2 is found by first finding the

maximum for every column of A and then finding the column with

the minimum maximum.

Computing game-theoretic solutions: Mixed strategies
The mixed equilibria, as noted earlier, are solved using linear

programming, briefly described as follows. Consider the perspec-

tive of player 1, who wishes to maximize DE1. Again, we discretize

the continuous space of strategies, so that we can examine finitely

many strategies L1list(j) and L1list(k) chosen by the two players

(j~1 . . . q,k~1 . . . q, say). The corresponding payoff matrix is A,

with elements Ajk~DE1(L1list(j),L2list(k)). Player 1 chooses

strategy L1list(j) with probability pj (j~1 . . . q). These probabilities

pj are our unknowns and are found by solving the following

maximin problem:

max
pj

min
1ƒkƒq

J1~
Xq

j~1

pjAjk ð8Þ

subject to p1z . . . zpq~1, ð9Þ

pj§0 for j~1, . . . ,q: ð10Þ

As outlined in [17,36], in his maximin problem can be converted

into a simple optimization problem, with linear objective function

and linear constraints – a linear programming problem – by

introducing an additional variable u as follows:

maximize u

such that

p1z � � �zpq~1, 0ƒpjƒ1: ð11Þ

uƒ

Xq

j~1

pjAj1 ð12Þ

..

.
ð13Þ

uƒ

Xq

j~1

pjAjq ð14Þ
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where the solution for variable u equation gives the expected

payoff for player 1. This linear programming problem has qz1
unknowns, namely, the probabilities pj ,(j~1 . . . q) and u. The

optimization problem can be solved reliably with provable

guarantees using standard software (linprog in MATLAB). See

[37] for an introduction to linear programming.

To obtain the probabilities with which player 2 should choose

leg length L2list(k), we repeat the above procedure after replacing

every occurrence of A replaced by B. We verified that the

expected payoffs for the two players, obtained by solving the

problem independently from each player’s perspective, are

identical up to numerical tolerances.

The MATLAB code used to solve these problems are part of

Programs S1.

Supporting Information

Movie S1 Video of the people bouncing on a trampoline,
playing the game ‘‘seat drop war’’. Video features the

Dublin University Trampoline Club (bounce@tcd.ie). See also

[40].

(MP4)

Movie S2 Video of table-top experiment, in slow
motion. Two balls are dropped nearly simultaneously onto a

table-top trampoline. They rise to same or different heights

depending on the time-lag between their contacting the trampo-

line.

(ZIP)

Movie S3 Animation of two balls bouncing on an ideal
trampoline, obtained by simulating the passive-bounc-
ing energy-conservative mathematical model for a long
time. We see that the two masses exchange energy back and forth

over the many bounces.

(ZIP)

Movie S4 Animation of many balls bouncing on an ideal
trampoline, obtained by simulating the many-ball

version of the passive-bouncing mathematical model.
Different initial conditions and ball positions are shown.

(ZIP)

Appendix S1 This appendix contains text and three
figures discussing energy transfer under three different
simplifying limits (1) when the initial energy of the two
masses is large; (2) when the two masses are closely
spaced; and (3) when one mass is much heavier than the
other.

(PDF)

Programs S1 This is a compressed folder, containing
MATLAB programs that enable the major simulations
and calculations in this article. In particular, we provide (1)

programs which simulate two balls bouncing on an ideal

trampoline; (2) programs which simulate many balls bouncing

on an ideal trampoline; (3) programs which perform the game

theoretic calculations.

(ZIP)
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