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Abstract

Background: The main source of HIV prevalence estimates are household and population-based surveys; however, high
refusal rates may hinder the interpretation of such estimates. The study objective was to evaluate whether population HIV
prevalence estimates can be adjusted for survey non-response using mortality rates.

Methodology/Principal Findings: Data come from the longitudinal Africa Centre Demographic Information System (ACDIS),
in rural South Africa. Mortality rates for persons tested and not tested in the 2005 HIV surveillance were available from
routine household surveillance. Assuming HIV status among individuals contacted but who refused to test (non-response) is
missing at random and mortality among non-testers can be related to mortality of those tested a mathematical model was
developed. Non-parametric bootstrapping was used to estimate the 95% confidence intervals around the estimates.
Mortality rates were higher among untested (16.9 per thousand person-years) than tested population (11.6 per thousand
person-years), suggesting higher HIV prevalence in the former. Adjusted HIV prevalence for females (15–49 years) was 31.6%
(95% CI 26.1–37.1) compared to observed 25.2% (95% CI 24.0–26.4). For males (15–49 years) adjusted HIV prevalence was
19.8% (95% CI 14.8–24.8), compared to observed 13.2% (95% CI 12.1–14.3). For both sexes (15–49 years) combined, adjusted
prevalence was 27.5% (95% CI 23.6–31.3), and observed prevalence was 19.7% (95% CI 19.6–21.3). Overall, observed
prevalence underestimates the adjusted prevalence by around 7 percentage points (37% relative difference).

Conclusions/Significance: We developed a simple approach to adjust HIV prevalence estimates for survey non-response.
The approach has three features that make it easy to implement and effective in adjusting for selection bias than other
approaches. Further research is needed to assess this approach in populations with widely available HIV treatment (ART).
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Introduction

About 33 million people were estimated to be HIV infected

worldwide in 2007 [1]. Despite the relative ease of diagnosing HIV

in adults, even in developed countries, the exact number of HIV

infected people is unknown because not all those contacted in

population surveys or surveillance systems will consent to HIV

testing [2]. Traditionally population estimates of HIV prevalence

in sub-Saharan Africa have been based on sentinel surveillance of

pregnant women attending antenatal clinics [3,4]. These data

remain widely available and used particularly in resource poor

settings, even though they are known to be biased due to lower

fertility of HIV positive women, and in some countries, by

unrepresentative selection of surveillance clinics [5].

Many other sources have been utilised in more recent times

such as regional or national household surveys [6], surveys among

high-risk populations [7,8], and population-based surveillance

studies [9]. A common feature of many of these surveys is non-

response, and a major concern for analysis and generalisation is

that the level of non-response can result in substantial biases in the

population HIV prevalence estimates [10]. This is of particular

concern if differential response rates are associated with specific

characteristics of the population or high-risk groups [11] and if

these data are used as inputs for deriving demographic, social and

economic impacts of HIV.

We previously examined mortality patterns and levels by HIV

infection status in rural South Africa using data from three annual

population-based HIV surveys conducted between 2003 and 2006

[12]. The age-adjusted mortality rate in 2005 among HIV-infected

adults (15–54 years) was reported at 53.9 deaths per 1,000 person-

years and among HIV uninfected adults as 4.6 deaths per 1,000

person-years; the age-adjusted mortality among adults contacted
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but who refused to test in the HIV surveillance was estimated to be

26.2 deaths per 1,000 person-years. In the analysis here we use

results of the HIV surveillance conducted by the Africa Centre in

2005 in the Umkhanyakude area of KwaZulu-Natal in which 58%

eligible people refused to participate in the surveillance, to suggest

a method for estimating the effect of gender-specific refusal rates

on HIV prevalence estimates.

High levels of test refusal are not unique to our research area,

and are common in HIV surveillance in South Africa, as

highlighted by Garcı́a-Calleja et. al. [10]. A review of 20

population-based HIV prevalence surveys conducted between

2001 and 2005 in 19 sub-Saharan countries including South

Africa showed that the proportion of women who refused HIV

testing in the surveys ranged from 1% to 17% in 18 of the 19

countries but in South Africa the refusal rate was 30% (women)

and 35% (men) [10]. Further, within South Africa, a recent

nationally representative HIV survey found KwaZulu-Natal

province (where our study area is located) to have the highest

refusal to HIV testing at 37% (excluding absentees and non-

contacts) [13].

The aim of this paper is to describe a simple model which uses

mortality rates by HIV status to estimate HIV prevalence among

the population who refused to participate in the HIV surveillance.

The estimated prevalence among those who refused testing is then

used to adjust the overall prevalence in the total population in the

area. We use longitudinal demographic surveillance data from

rural South Africa to derive mortality rates for persons who tested

negative and positive during HIV surveillance in the same area in

2005 (testers), and for those who refused to participate in the 2005

HIV surveillance (non-testers) and for whom HIV status was thus

unknown to us. The model uses these mortality rates, and assumes

that mortality among the HIV status unknown group is a weighted

average of the mortality rates of those whose HIV status was

known, to estimate HIV prevalence among non-testers. Given that

the data are from a longitudinal demographic surveillance with

routine recording of deaths and the population at risk, the

resulting mortality data could provide a tool for adjusting HIV

prevalence in the study population to allow for refusal to test. This

method could be applicable in other demographic surveillance

sites, with relatively high rates of refusal to participate in HIV

testing but reliable mortality data for the population which can be

categorised by HIV status.

We compare observed HIV prevalence rates (from those who

consented to testing) to the adjusted HIV prevalence rates by age

and sex, and document a significant underestimate in the observed

prevalence rates.

Methods

Data sources
Data used in this analysis, and the initial work that motivated it,

come from the longitudinal Africa Centre Demographic Informa-

tion System (ACDIS), located in a largely rural district of

Umkhanyakude in northern KwaZulu-Natal, South Africa

(www.africacentre.com). The ACDIS has two components that

run parallel, the bi-annual household surveillance and the annual

individual surveillance. Demographic, social and economic data

have been collected since 2000 from key informants reporting on

all individual household members whether resident or non-

resident in the geographically well-defined surveillance area in

the household surveillance. In the individual surveillance, which

has been conducted since 2003, information on health and sexual

behaviours and a blood sample for HIV sero-status testing is

collected [14,15] from women 15–49 and men 15–54 years and a

dried blood spot is prepared from a finger prick. A broad based

HIV-1/HIV-2 ELISA test (Vironostika, Organon Teknika,

Boxtel, The Netherlands) is used to determine HIV status at the

Centre’s virology laboratory in Durban. All positive test results are

confirmed by a second ELISA (GAC-ELISA, Abbott, Abbott

Park, Illinois, USA) on the same sample. HIV infection is defined

by positive antibody status on both ELISAs, ‘HIV negative’ status

was defined by a negative first ELISA. Those not consenting to

HIV testing were classified as ‘HIV unknown’.

Ethics statement
During household visits with eligible individuals in the individual

surveillance, written informed consent is obtained for the collection,

storage and use in research of the blood sample and sexual

behaviour data. For household surveillance in which demographic

data are collected, oral informed consent is obtained from the key

informant who is usually the head of household, but in his or her

absence a competent adult household member. Field workers are

thoroughly trained every year and between the surveillance rounds

to ensure they offer both written and oral informed consent in a

uniform manner. Ethical approval for the individual surveillance

involving written consent and the household surveillance using oral

consent was obtained from the University of KwaZulu-Natal

Biomedical Research Ethics Committee.

Study sample
On January 1st 2005 there were 84,964 individuals in 11,000

households under demographic surveillance; 21,472 resident

individuals (women and men 15–49 years) were contacted during

the 2005 HIV surveillance. Person-years of exposure were

estimated from the date at which an individual was HIV sero-

tested in 2005, or from the date of visit for individuals contacted

but who refused to participate in the HIV testing, and right-

censored on 31st December 2007 or by death, out-migration, or

household membership ending. Mortality rates were calculated by

dividing the number of deaths by the person-years of exposure for

three groups of people 1) HIV-negative, 2) HIV-positive and 3)

HIV status unknown (i.e. eligible resident individual was contacted

but not tested in the HIV surveillance).

We used non-parametric bootstrapping [16] with replacement

over 1,000 repetitions to estimate the 95% confidence intervals

associated with the HIV prevalence point estimates.

Presentation of a simple analytical model
We used reported mortality rates by HIV status (positive,

negative, unknown) to infer the HIV prevalence among those who

refused to participate in the HIV surveillance. We assumed that

mortality in the untested group is associated with the same factors

as in the tested group, and that apart from sex, age and HIV

status, mortality determinants were distributed in the untested

group in the same way as in the general population. The total

person-years lived in the group with unknown HIV status is

contributed partly by HIV infected persons and partly by

uninfected persons. Using this understanding and the assumptions

above, the simple analytical model can be presented as follows.

Allowing for mortality in the HIV negative, HIV positive and

HIV unknown group to vary by sex, s, age group, a, and time

period, t, and denoting mortality rates by M, and using the

subscripts p, n and u to denote the rates in persons with positive,

negative and unknown HIV status respectively:

Mu s,a,tð Þ~hu s,a,tð Þ �Mp s,a,tð Þz 1{hu s,a,tð Þ½ � �Mn s,a,tð Þ ð1Þ

Adjusting HIV Prevalence
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where hu(s,a,t) is the proportion of total person-years lived in the

HIV unknown population (of sex s, age a, time t) contributed by

infected persons. Another name for hu is the period HIV

prevalence in the untested population. hu(s,a,t) is unknown,

but all the mortality rates are known as Mp, Mn and Mu have

been measured in the demographic surveillance system. Thus, we

can solve for hu(s,a,t),:

hu s,a,tð Þ~ Mu s,a,tð Þ{Mn s,a,tð Þ
Mp s,a,tð Þ{Mn s,a,tð Þ ð2Þ

We can also compare the period HIV prevalence in the

untested population hu(s,a,t), with period HIV prevalence in the

population whose status is known, hk(s,a,t), because the latter is

the person-years lived by those who tested positive as a fraction of

the person-years lived by positive and negative people.

hk s,a,tð Þ~ PYp s,a,tð Þ
PYp s,a,tð ÞzPYn s,a,tð Þ ð3Þ

An adjusted estimate, hw(s,a,t), of the HIV prevalence in the

whole population can be obtained as a weighted sum of the

estimated period HIV prevalence in the untested population and

the observed HIV prevalence among those who tested, weighting

by the person-years lived by the tested and the untested

populations.

hw s,a,tð Þ~

hu s,a,tð Þ � PYu s,a,tð Þzhk s,a,tð Þ � PYp s,a,tð ÞzPYn s,a,tð Þ
� �

PYp s,a,tð ÞzPYn s,a,tð ÞzPYu s,a,tð Þ
ð4Þ

Results

Overall, 59% of the 21,305 resident individuals did not provide

a sample for HIV testing in the 2005 round, and their HIV status

was marked as unknown; slightly more females 54% (n = 6846)

than males 46% (n = 5762) were in this unknown HIV status

category. Table 1 gives the consent rates by sex among eligible

adult residents in the ACDIS annual HIV surveys between 2003

and 2006. The proportion of men refusing to participate in the

HIV survey is higher than that of females in each year. By age

refusal to participate was relatively high in the age range 25–44

years, which is also a peak prevalence age range, which in itself is

likely to bias downwards the crude observed prevalence derived

from those tested. Figure 1 shows that those who did not test, for

males and for females, had an older age distribution than those

who tested, except for the 15–24 age group. The adjustment

method proposed here goes further than identifying differences in

age and sex composition of those who agree to participate and

those who refuse, looking within specific age- and sex- groups for

evidence of systematic differences between the tested and those

who refused.

A comparison of mortality rates by age and sex of the

population who tested versus the untested (Figure 2), suggests that

those who tested had higher mortality than those who did not.

Mortality rates were higher among the untested (16.9 per

thousand person-years) than the tested population (11.6 per

thousand person-years). By individual age groups and sex, females

who did not test had higher mortality than those who tested, with

the difference in the age group 45–49 being statistically significant

(Figure 2). A similar pattern was observed for males, except for the

age group 35–44 years, where those who did not test had a lower

mortality than those who tested. For both sexes combined, the

differences were marginally significant in the age groups 25–34

and 45–49 years respectively.

The individual age group differences do not reach statistical

significance, but overall mortality is significantly higher in the

untested group than in the tested, due not only to differences in the

age and sex composition of the tested and untested groups, as can

be shown by direct standardisation. Applying the age- and sex-

specific mortality rates in the tested group to the age-sex

composition of the total population we obtain a standardised

mortality rate of 13.7 per thousand (12.6, 14.7) whereas the

standardised rate resulting from applying the age- and sex- specific

rates of the untested population is 16.2 per thousand (15.1, 17.3).

Since the overall difference between the crude mortality rates in

the tested and untested populations is 4.8 per thousand ( = 15.9 -

11.1), as shown in Table 2, and the standardised difference is 2.5

per thousand ( = 16.2 - 13.7), we can attribute a difference of 2.3

per thousand to the age- and sex composition difference between

the tested and untested populations, and a difference of 2.5 per

thousand to actual mortality differences between the tested and

untested groups. Assuming that this mortality difference can be

explained by differences in HIV infection rates between the tested

and untested groups we investigate the implied HIV prevalence in

the untested group, and hence deduce an adjusted value for overall

prevalence, allowing for the effects of test refusal. We make these

estimates separately for females and males and by age group, with

95% confidence intervals estimated using a bootstrap resampling

method.

Prevalence estimates by age and sex, 2005
Using equation 4 above, results shown in Figure 3, the adjusted

HIV prevalence for females aged 15–49 years in 2005 was 31.6%

(95% CI 26.1–37.1) compared to an observed prevalence of 25.2%

(95% CI 24.0–26.4). For males aged 15–49 years the adjusted and

observed prevalence was 19.8% (95% CI 14.8–24.8) and 13.2%

(95% CI 12.1–14.3) respectively. For both sexes combined, the

adjusted HIV prevalence was 27.5% (95% CI 23.6–31.3),

compared to an observed prevalence among resident adults 15–

49 years who participated in the 2005 survey of 19.7% (95% CI

19.6–21.3). Figure 3 strongly suggests that the model presented

here results in a significant upwards adjustment of the observed

prevalence for males and for both sexes combined as the 95%

confidence limits for the adjusted prevalence estimate are outside

the confidence limits of the observed prevalence from those tested.

The adjusted HIV prevalence patterns by age for males and

females were broadly similar to the age pattern of the overall

adjusted prevalence for both sexes combined, as shown in Figure 4.

Prevalence was highest in the 25–34 years age range (Table 3).

Table 1. Participation rates among residents aged
15–54years in HIV testing, 2003–6.

Female Male Both sexes

Survey year n (%) n (%) n (%)

2003/4 12,259 59 9,010 56 21,269 58

2005 12,011 43 9,294 38 21,305 41

2006 12,537 40 9,452 34 21,989 38

doi:10.1371/journal.pone.0012370.t001

Adjusting HIV Prevalence

PLoS ONE | www.plosone.org 3 August 2010 | Volume 5 | Issue 8 | e12370



Given the mortality rates observed by HIV sero-status, and in

those of unknown HIV status in particular, the adjusted

population HIV prevalence level after allowing for the likely

prevalence level among the non-testers suggests an under-

estimation in the observed HIV prevalence rate of around 7

percentage points for females, males and both sexes combined or a

relative difference of about 28% for females (32 vs 25), 54% for

males (20 vs 13) and 37% (27.5 vs 20) for both sexes. The relative

difference in the prevalence rates for males should however be

interpreted with caution as they were sensitive to the small

numbers of males participating in HIV testing in the surveillance

on one hand and their relatively high mortality on the other.

Discussion

In this analysis we set out to explore a simple model to obtain an

adjusted estimate of HIV prevalence in a population with a high

rate of non-response, using HIV surveillance data and where

Figure 1. Distribution of tested and untested by age and sex, ACDIS 2005 HIV survey.
doi:10.1371/journal.pone.0012370.g001

Figure 2. Mortality patterns by age and sex between tested and untested participants, 2005.
doi:10.1371/journal.pone.0012370.g002

Adjusting HIV Prevalence
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mortality data are available and reliable. A major benefit of the

model presented here is that it does not rely on complex computer

simulations, or very detailed demographic data. It is simple to

apply in a DSS setting as the only data required are on HIV

testing status and mortality rates separately estimated by HIV

status. Other more complex procedures are available to address

non-response problems such as (multiple) imputations [17] and

regression equations [9]. However, these methods tend to rely on

individual-level variables such as mobility, marital status, work

status, alcohol use, number of partners, age at first sex,

Table 2. Person-years, mortality rates and HIV prevalence rates by age and sex, 2005.

Negative Positive UnTested Tested

Female PYO MR [95% CI] PYO MR [95% CI] PYO MR [95% CI] PYO MR [95% CI]

15–24 5,325 2.4 1.1 3.8 888 21.4 11.8 31.0 6,260 5.9 4.0 7.8 6,214 5.2 3.4 6.9

25–34 1,211 3.3 0.1 6.5 1,078 42.7 30.3 55.0 4,229 24.4 19.7 29.0 2,289 21.8 15.8 27.9

35–44 1,710 2.9 0.4 5.5 774 42.6 28.0 57.2 3,745 18.7 14.3 23.1 2,484 15.3 10.4 20.2

45–49 1,090 5.5 1.1 9.9 286 45.4 20.5 70.4 1,787 19.6 13.1 26.1 1,376 13.8 7.6 20.0

Total 9,336 3.0 1.9 4.1 3,027 36.7 29.8 43.5 16,021 15.3 13.4 17.2 12,363 11.2 9.4 13.1

Male

15–24 5,333 2.3 1.0 3.5 166 18.1 22.5 38.6 6,719 4.5 2.9 6.1 5,499 2.7 1.3 4.1

25–34 779 6.4 0.8 12.1 416 40.8 21.4 60.3 2,793 25.4 19.5 31.3 1,195 18.4 10.7 26.1

35–44 582 12.0 3.1 21.0 299 93.6 58.7 128.5 2,162 34.2 26.4 42.0 881 39.7 26.5 52.9

45–49 323 15.5 1.8 29.1 105 94.8 35.5 154.2 935 38.5 26.0 51.0 429 35.0 17.2 52.8

50–54 319 25.1 7.8 42.4 71 112.6 34.1 191.2 742 51.2 35.2 67.1 390 41.0 21.0 61.0

Total 7,337 5.0 3.4 6.7 1,058 62.4 47.3 77.4 13,352 18.6 16.3 21.0 8,394 12.3 9.9 14.6

Both sexes

15–24 10,658 2.3 1.4 3.3 1,054 20.9 12.2 29.6 12,979 5.2 3.9 6.4 11,713 4.0 2.9 5.2

25–34 1,990 4.5 1.6 7.5 1,494 42.2 31.7 52.6 7,022 24.8 21.1 28.5 3,485 20.7 15.9 25.4

35–44 2,292 5.2 2.3 8.2 1,073 56.8 42.5 71.2 5,907 24.4 20.4 28.4 3,366 21.7 16.7 26.7

45–49 1,413 7.8 3.2 12.4 392 58.7 34.5 82.9 2,722 26.1 20.0 32.1 1,805 18.8 12.5 25.2

Total 16,354 3.5 2.6 4.4 4,014 42.1 35.8 48.5 28,631 15.9 14.5 17.4 20,368 11.1 9.6 12.5

PYO = Person-years of observation; M = mortality rate per 1000 person-years of observation.
doi:10.1371/journal.pone.0012370.t002

Figure 3. Observed and Adjusted HIV prevalence rate in adults 15–49 years by sex, 2005.
doi:10.1371/journal.pone.0012370.g003
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concurrency and religiosity [6], which are subject to much more

reporting bias than mortality data that we use in our method.

These individual-level variables, unlike mortality, are in addition

not routinely or uniformly collected in many surveillance sites.

Furthermore, unlike the individual-level analysis that is adopted in

most DHS to adjust the prevalence estimates for test refusal which

require predicting the probability of an individual non-tester being

infected based on his/her peculiar characteristics, the method we

propose here is an aggregate model which does not suffer from the

limitations of individual-level analyses. Our mortality differentials

suggest that non-testers are significantly different from testers, and

thus our results are different to Mishra et. al. because a) non-testers

appear to have relatively higher prevalence rates than testers and

b) we have a higher refusal rate than any of the studies cited by

Mishra et. al.

Figure 4 shows the confidence intervals to be relatively narrow

for the overall adjusted rate, but very wide in the age groups 25–34

and 45–49 years, suggesting greater uncertainty in the adjusted

estimates for these age groups. This would suggest that prevalence

rates in the age groups 25–34 and 45–49 years are more of an

under-estimate than in other age-groups. The former age group is

associated with higher HIV prevalence but relatively lower

participation in HIV surveillance, while the latter age group is

associated with high mortality and generally high participation

rates in HIV testing. Particularly for the 45–49 years age group,

the high uncertainty could be partially explained by the small

Figure 4. HIV prevalence rate in adults 15–49 years untested and overall adjusted, 2005.
doi:10.1371/journal.pone.0012370.g004

Table 3. Observed and Adjusted HIV prevalence rate in adults 15–49 years, 2005.

Observed HIV pre-valence Adjusted prevalence among untested Adjusted overall HIV prevalence

Age group Prevalence (%) 95% CI Prevalence (%) 95% CI Prevalence (%) 95% CI

15–24 9.0% 8.3 10.0 14.9 3.0 26.7 12.2 5.9 18.5

25–34 42.9% 41.5 46.4 53.6 34.9 72.2 50.4 37.8 63.0

35–44 31.9% 30.9 35.7 37.2 24.0 50.4 35.8 27.3 44.3

45–49 21.7% 19.6 24.7 39.8 16.9 62.8 33.0 18.9 47.0

Total 19.7% 19.6 21.3 32.3 25.7 38.8 27.5 23.6 31.3

doi:10.1371/journal.pone.0012370.t003

Adjusting HIV Prevalence
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numbers. The overall adjusted HIV prevalence rates for females

and males as well as by age from application of our proposed

model were consistently above the upper confidence limits of the

observed prevalence rates. We show from this approach that the

prevalence in those who consented to HIV testing in the 2005

survey under estimated the prevalence in the population as a

whole by around seven percentage points. Our results suggesting

the true HIV prevalence in the study population is likely under-

estimated if only the observed data are considered, are in line with

other studies [6,9].

Data from our research site shows that relative to individuals

who had tested negative in the first HIV round, persons who had

tested positive were 23% significantly less likely to test again in the

2005 survey round. A recent study using longitudinal data from

Malawi to examine the effect of prior knowledge of being HIV

infected on consent to subsequent HIV surveillance testing found

that Malawians who knew their positive HIV status were five times

more likely to refuse participation than those who had tested

negative previously [18]. A positive association between age, urban

residence, being employed and absenteeism from home with

refusal to participate in HIV sero-testing survey has also been

shown [6,19]. We are therefore confident that the suggested

under-estimate in the observed HIV prevalence rate is valid, and

our mortality-based procedure provides a reasonable method of

adjustment of the observed HIV prevalence rates.

Our approach may have utility even in the context of HIV

treatment (ART), although it would require making a further

assumption that the proportion of infected people on treatment

amongst those testing and those refusing to test in the surveillance

round are broadly similar. An alternative approach would be to

divide the population into four groups rather than three: those

tested HIV negative, those tested HIV positive but not on

treatment, those on ART regardless of whether they consented to

testing or not, and those who did not test and were not on ART.

Such an approach would only be feasible if ART clinic data could

be linked to demographic surveillance data. There is a future

opportunity in the study setting with the increasing availability of

HIV treatment [20] to validate this model post-HIV treatment

roll-out.

Limitations
A limitation of this simple model is that it is dependent on the

population consenting to participate in HIV surveillance not being

significantly different from those not consenting with respect to

factors other than HIV that determine mortality. Non-response is

a common feature of population-based HIV surveys [9,10,11]. If

non-response is particularly high among a select group or persons

with particular characteristics, that pre-dispose them to lower or

higher mortality from HIV, such as disease stage [21], or causes

other than HIV it is likely to bias this adjustment procedure. This

is why it would be useful to apply the adjustment procedure in

more homogenous social categories by breaking down by

residence and education - this was not possible in the present

study because of small numbers. Even data from nationally

representative studies such as by the Human Sciences Research

Council of South Africa (HSRC) [13] also suffer from problems of

test refusal which is likely to bias their results. But since such

studies tend to be cross-sectional, the mortality-based method we

propose here can not be applied to estimate the extent of bias. In

addition, it cannot be used to adjust cross-sectional sources of

national HIV prevalence data where no prospective adult

mortality data are available, for example the demographic and

health surveys or the South African HSRC national HIV survey.

Another major limitation of this analysis was the use of

information on 29% of deaths (and accounting for 36% of the

exposure) with known HIV status to adjust the HIV prevalence in

the nearly two-thirds of population with unknown HIV status.

This was a result of the generally high refusal rate to participate

in HIV surveillance in our study population. This may have

biased our findings. We examined these mortality data in detail

since the proposed method so crucially depends on them to check

our assumption that the same type of reporting bias affects all

ages and whether mortality rate differentials might be accounted

for by differences in age and sex composition in the tested and

untested populations. The chi-square test (not shown) for the

differences in mortality rates between tested and untested in

Table 2, does not attain significance in individual age groups

(because of relatively small numbers), however, for both sexes

combined, and for males and females of all ages (except for males

aged 35–44) the mortality rates in the untested group are higher

than in the tested group. Furthermore, the fact that the

relationship goes in the same direction for every age-sex group

(except one) adds support to the appropriateness of using the

mortality rates to adjust HIV prevalence. We further urge caution

in the interpretation of mortality rates and the adjusted figures

particularly at the older age groups and for males as the small

numbers may have affected the mortality estimates particularly at

the older age groups. The availability of information to assess

tested person years of observation (Table 2) as a proportion of all

person years also assists in avoiding over-interpretation. Despite

these limitations the proposed method remains methodologically

sound.

In conclusion, after adjusting for the untested population, there

was very little change in the pattern of age specific HIV prevalence

rates for women or men, but a significant difference between the

overall adjusted and observed prevalence (7 percentage points in

absolute terms).

Our approach renders itself to easy application and should be

relevant for demographic surveillance sites such as our own that

have conducted HIV prevalence surveys and can classify ensuing

deaths by HIV status. Application of this method in populations

with wide availability of HIV treatment (ART) may require

identifying people on ART as a separate group. Our approach to

adjusting for selection effects by conditioning on observed factors

has three highlighted advantages over other approaches. First,

only aggregate mortality and HIV prevalence data are needed.

Second, HIV prevalence is highly associated with mortality [12],

and third, the approach is easily applicable even in settings with

only one HIV sero-survey but longitudinal mortality follow-up of

those who participated in the sero-survey and those who refused.

These features make our approach easy to implement and effective

in adjusting for selection bias than other approaches. Given the

very high proportion of our population with unknown HIV status

and limitations of our mortality data in general, there is an

opportunity for validation of the proposed adjustment method in

this analysis in other surveillance sites with lower refusal rates and

reliable mortality data. This method appears to be methodolog-

ically sound hence such a validation exercise will help to determine

its reliability and robustness.
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