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Abstract

Randomization is a hallmark of clinical trials. If a trial entails very few subjects and has many prognostic factors (or many
factor levels) to be balanced, minimization is a more efficient method to achieve balance than a simple randomization. We
propose a novel minimization method, the ‘two-way minimization’. The method separately calculates the ‘imbalance in the
total numbers of subjects’ and the ‘imbalance in the distributions of prognostic factors’. And then to allocate a subject, it
chooses—by probability—to minimize either one of these two aspects of imbalances. As such, it is a method that is both
treatment-adaptive and covariate-adaptive. We perform Monte-Carlo simulations to examine its statistical properties. The
two-way minimization (with proper regression adjustment of the force-balanced prognostic factors) has the correct type I
error rates. It also produces point estimates that are unbiased and variance estimates that are accurate. When there are
important prognostic factors to be balanced in the study, the method achieves the highest power and the smallest variance
among randomization methods that are resistant to selection bias. The allocation can be done in real time and the
subsequent data analysis is straightforward. The two-way minimization is recommended to balance prognostic factors in
small trials.
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Introduction

Random allocation of subjects is a hallmark of clinical trials.

The simplest allocation method is the ‘simple randomization’

(complete randomization with equal allocation) where the

recruited subjects are assigned to treatment group or control

group based entirely on probabilities (say, using random numbers,

or computer-generated random variates) [1]. In a large trial, a

straightforward simple randomization often suffices to achieve

satisfactory balance between the treatment and the control

groups—with respect to the total numbers of subjects and to the

distributions of prognostic factors [2].

If a trial entails very few subjects and has many prognostic factors

(or many factor levels) to be balanced, one may need to resort to a

more sophisticated method of ‘minimization’ [3,4]. The method

achieves balance not by probability but by design. Thus it is a

more efficient method statistically as compared with the simple

randomization [5,6,7]. Minimization has one notable drawback,

however—its allocation of subjects becomes predictable to some

extent. As such, selection bias may arise and the credibility of the

trial can be questioned.

In this paper, we propose a novel minimization method, the ‘two-

way minimization’. The method separately calculates the ‘imbalance in

the total numbers of subjects’ and the ‘imbalance in the distributions of

prognostic factors’. And then to allocate a subject, it chooses—by

probability—to minimize either one of these two aspects of imbalances.

We perform Monte-Carlo simulations to compare the performances of

the two-way minimization with five existing randomization methods.

Methods

Imbalance Measures
Consider an arbitrary point during the trial. Let nT and nC

denote the total numbers of subjects allocated to the treatment

group and the control group, respectively. The imbalance in the

total numbers of subjects is simply d~ nT{nCj j.
Suppose that a total of m prognostic factors (indexed by j) are to

be balanced, with a total of Lj levels (indexed by k) for the j th

prognostic factor. Let nT
jk denote the number of subjects allocated

to the treatment group, whose j th prognostic factor is at the

k th level. Let nC
jk denote the corresponding number of subjects

allocated to the control group. We then calculate the proportions

(distributions): qT
jk~

nT
jk

PLj

l~1

nT
jl

~
nT

jk

nT

and qC
jk~

nC
jk

PLj

l~1

nC
jl

~
nC

jk

nC

. The

imbalance in the distributions of the j th prognostic factor is

defined as dj~
PLj

k~1

qT
jk{qC

jk

���
���: The overall imbalance in the

distributions is a weighted sum of dj ’s, that is, D~
Pm

j~1

dj

Lj

:

Two-Way Minimization
At the beginning, we let the trial adopt a simple randomization

scheme for allocating subjects. After nTw0 and nCw0, we then

shift to two-way minimization.

The proposed two-way minimization is an adaptive randomi-

zation procedure [7]. In fact, it is adaptive in two ways: (A1)
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Figure 1. Performances of the two-way minimization using different ª values, under a smaller sample size of n~20 (left panels,
A,D: the average effect of the prognostic factors is smaller, �bb~0:5; right panels, E,H: the average effect of the prognostic factors
is larger, �bb~1:5; solid circle: with three binary prognostic factors; hollow circle: with six binary prognostic factors; cross: with three
polytomous prognostic factors.
doi:10.1371/journal.pone.0028604.g001
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Figure 2. Performances of the two-way minimization using different ª values, under a larger sample size of n~40 (left panels, A,D:
the average effect of the prognostic factors is smaller, �bb~0:5; right panels, E,H: the average effect of the prognostic factors is
larger, �bb~1:5; solid circle: with three binary prognostic factors; hollow circle: with six binary prognostic factors; cross: with three
polytomous prognostic factors.
doi:10.1371/journal.pone.0028604.g002
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minimizing the imbalance in the total numbers of subjects

(treatment-adaptive), and (A2) minimizing the imbalance in the

distributions of prognostic factors (covariate-adaptive). That is,

(A1) minimizing d:

If dw0, the new subject is to be allocated to the group with

fewer subjects already in that group, otherwise, to the treatment

and control groups with equal probability.

(A2) minimizing D:

Let DT be the overall imbalance in the distributions of

prognostic factors if the new subject is allocated to the treatment

group, and DC , the overall imbalance if allocated to the control

group. We then actually allocate the new subject to the treatment

group if DTvDC , to the control group if DTwDC , and to the

treatment and control groups with equal probability if DT~DC .

We let chance dictate which rule (A1 or A2) to use for allocating a

new subject. To be precise, we define a parameter p (0ƒpƒ1). Then,

the new subject is allocated according to A1 rule with probability~p,
and to A2 rule with probability~1{p. This allocation scheme is

equivalent to a scheme that minimizes a weighted sum of d and D,

that is, to minimize S~Wdz(1{W )D, where W (W~1 or 0) is

Bernoulli distributed with parameter p. Note that S above adopts a

‘stochastic’ weight (the weighting changes each time we allocate a

new subject) rather than the usual ‘deterministic’ weight (the

weighting is a fixed value). This makes the method robust to any

monotone transformation of d and D. In other words, all allocation

schemes that minimize S~Wf (d)z(1{W )g(D) are equivalent

for any monotonically increasing f (:) and g(:), and therefore one

need not worry about the functional forms.

Furthermore, the parameter p itself need not be fixed

throughout the course of allocation, either. It can be made to be

responsive to d, such that when d is larger (greater imbalance in

the total numbers of subjects), p is also larger (higher probability to

take action to counter that imbalance). We propose to base p on a

simple geometric accrual function: p~fc(d)~1{(1{c)d, where

c(0vcv1) is a tuning parameter. This function has the following

properties: (1)p~0 when d~0; (2)p increases as d increases; and

(3)p?1 as d??. The role of the tuning parameter c is to govern

the accrual rate (an increase in c implies an increase in the accrual

rate). In the simulation studies that follow, we found that a tuning

value of c~0:05 is a satisfactory choice.

Results

Simulation Setups
We assume that there are a total of n subjects (indexed by i) to

be allocated and a total of m prognostic factors (indexed by j) to be

Table 1. Biases and variances for the two-way minimization with c~0:05.

Sample Size Number and Type of Prognostic Factors Treatment Effect

0.0 0.5 1.0

Bias

20 Three binary prognostic factors 0.0031 0.0013 0.0073

Six binary prognostic factors 20.0042 0.0007 20.0012

Three polytomous prognostic factors 20.0061 0.0007 0.0016

40 Three binary prognostic factors 20.0095 20.0021 0.0023

Six binary prognostic factors 0.0052 0.0032 20.0012

Three polytomous prognostic factors 20.0039 0.0032 20.0028

Variance of estimates/Average of estimated variances

20 Three binary prognostic factors 0.2117/0.2123 0.2136/0.2124 0.2112/0.2128

Six binary prognostic factors 0.2306/0.2287 0.2253/0.2298 0.2289/0.2270

Three polytomous prognostic factors 0.2699/0.2741 0.2758/0.2711 0.2773/0.2720

40 Three binary prognostic factors 0.1009/0.1016 0.1029/0.1017 0.1042/0.1018

Six binary prognostic factors 0.1024/0.1034 0.1011/0.1031 0.1036/0.1035

Three polytomous prognostic factors 0.1109/0.1080 0.1081/0.1073 0.1059/0.1074

doi:10.1371/journal.pone.0028604.t001

Table 2. Type I error rates and powers at a significance level of 0.05 for the two-way minimization with c~0:05.

Sample Size Number and Type of Prognostic Factors Type I Error Rate Power

Treatment Effect = 0.5 Treatment Effect = 1.0

20 Three binary prognostic factors 0.0491 0.1738 0.5338

Six binary prognostic factors 0.0511 0.1569 0.4946

Three polytomous prognostic factors 0.0511 0.1457 0.4154

40 Three binary prognostic factors 0.0495 0.3339 0.8639

Six binary prognostic factors 0.0483 0.3268 0.8537

Three polytomous prognostic factors 0.0507 0.3192 0.8421

doi:10.1371/journal.pone.0028604.t002
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balanced with a total of Lj levels (indexed by k, with k~1
indicating the reference level) for the j th prognostic factor. Let xij

denote the factor level of the j th prognostic factor for the i th

subject (xij[ 1,:::,Lj

� �
). Let ti denote the group to which the i th

subject is allocated, ti~1 if to the treatment group, and ti~0 if to

the control group. Let bt denote the treatment effect, bjk (bj1~0,
by definition), the effect of the kth level of the j th prognostic

factor. We generate the trial response for the i th subject from

a normal distribution with unit variance and a mean of

mi~bttiz
Pm

j~1

PLj

k~2

bjk|I(xij~k), where I(statement), an indica-

tor function, is 1 if the statement is true and 0 if otherwise.

In the simulation, the treatment effects are set at bt~0 (for

examining the type I error rates), bt~0:5 (for powers) and bt~1:0
(for powers), respectively. As for the prognostic factors, we

examine three scenarios: 1) three binary prognostic factors; 2) six

binary prognostic factors; and 3) three polytomous prognostic

factors, with number of levels of 5, 4 and 3, respectively. For a

binary prognostic factor, the probability of observing a non-

reference level is generated from a uniform[0.2, 0.8] distribution.

For a polytomous prognostic factor, we assume equal chances of

observing any of its levels. The factor levels, xij ’s (for i~1,:::,n and

j~1,:::,m), are then generated from the corresponding binomial

distributions (for binary prognostic factors) or multinomial

distribution (for polytomous prognostic factors), respectively. The

effects, bjk’s (for j~1,:::,m and k~2,:::,Lj ), are generated from a

uniform[0:8|�bb, 1:2|�bb] distribution, where �bb is the average

effect of the prognostic factors. In the simulation, �bb is examined for

various values.

We consider two different sample sizes: n~20 and 40. A total of

10,000 simulations are performed for each scenario. (To estimate a

p-value with the absolute relative error median level no larger than

5%, the number of simulations should be no less than 180=p [8].

With p~0.05, the number is 3600, justifying our use of 10,000

simulations.)

In each round of the simulation, we perform a multiple linear

regression with the dependent variable being the trial response,

and the independent variables, the ti and the xij ’s. (If a prognostic

factor has more than two levels, say a total of 5, we enter all its 4

dummy variables into the regression model.) The estimate of the

treatment effect and its p-value are recorded. The bias is

calculated as the difference between the mean of the estimates

and its true value. The variance is calculated as the empirical

variance of the estimates across the 10,000 simulations. For

comparison, we also calculate the average of the estimated

variances from the multiple linear regression. The type I error rate

(under the null hypothesis: bt~0) and power (under the alternative

hypothesis: bt=0) are calculated as the proportion of the

simulations with the treatment-effect p-value,0.05.

In addition to the power and the variance described above,

predictability of treatment allocation is also an important criterion

for evaluating a trial (especially when perfection in masking/

concealment is difficult to achieve). If the allocation in a trial can

somehow be predicted, the study will be prone to selection bias. In

our simulation study, we derive two indices of predictability:

Predictability-I: defined as the probability that the next subject is

allocated to the group different from the one the previous subject

allocated to; and Predictability-II: defined as the probability that

the next subject is allocated to the group with fewer subjects

already allocated to.

Simulation Results
Figure 1 shows the performances (when bt~1:0) of the two-way

minimization using different c values (0 to 0.1, by 0.01), under a

smaller sample size of n~20. Figure 2 shows the corresponding

performances under a larger sample size of n~40. From both

figures, we see that to have better statistical performances (higher

power and smaller variance), one should choose a c value that is

larger. On the other hand to make the allocation less predictable,

one should choose a c value that is smaller. Taken together, we

settle on c~0:05 as a satisfactory compromise.

Table 1 shows the biases and variances for the two-way

minimization with c~0:05. We see that the two-way minimization

produces approximately unbiased estimates of the treatment

effects. We also see that the averages of the estimated variances

closely match with the corresponding empirical variances of the

estimates, indicating that the standard estimates of variances in a

multiple linear regression (with ti and dummy codes of xij ’s as

regressors) are accurate, even for a complex allocation scheme

such as the two-way minimization. For hypothesis testing of the

treatment effect (at a significance level of 0.05), Table 2 shows that

the two-way minimization can maintain quite accurate type I error

rates, and that its power increases as the treatment effect increases.

Figure 3 compares the performances (when bt~1:0) of the two-

way minimization (c~0:05) with five other allocation methods: the

simple randomization, the block randomization (block size~4),

the stratified randomization (block size~4), the deterministic

minimization, and the biased coin minimization (coin

probability~0.7), under a smaller sample size of n~20. Figure 4

presents the corresponding results under a larger sample size of

n~40. We see that as the average effect of the prognostic factors

increases, the performances (in terms of power and variance) of the

simple randomization and the block randomization run down

quickly, whereas the performances of the four methods that

balance prognostic factors (the stratified randomization, the

deterministic minimization, the biased coin minimization, and

the two-way minimization) remain fairly stable. However, when

there are more prognostic factors (panels E and F) or more factor

levels (panels I and J) to be balanced (as compared to the situation

of three binary prognostic factors, panels A and B), the

performances of the stratified randomization and the biased coin

minimization deteriorate. By contrast, the deterministic minimi-

zation and the two-way minimization suffer very little performance

loss, if they are charged with balancing more prognostic factors or

more factor levels.

As for the allocation predictability (panels, C, D, G, H, K and L,

in Figures 3 and 4), we see that the deterministic minimization and

the block randomization are rather predictable. With these two

methods, an artful patient can have a 70:30 chance of getting what

he/she desires. The biased coin minimization shows some

improvement, though it is still not good enough (pre-

dictability&0:6). To have a satisfactory control of the selection

bias, one needs to turn to the stratified randomization or the

two-way minimization (predictabilityv,0.55), or to eliminate it

Figure 3. Performances of the two-way minimization with ª~0:05 (red star), as compared to those of the simple randomization
(black square), the block randomization with block size = 4 (orange cross), the stratified randomization with block size = 4 (green
triangle), the deterministic minimization (purple rhombus), and the biased coin minimization with coin probability = 0.7 (blue
circle), under a smaller sample size of n~20 (left panels, A,D: with three binary prognostic factors; middle panels, E,H: with six
binary prognostic factors; right panels, I,L: with three polytomous prognostic factors). The treatment effect is set at 1.0.
doi:10.1371/journal.pone.0028604.g003
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Figure 4. Performances of the two-way minimization with ª~0:05 (red star), as compared to those of the simple randomization
(black square), the block randomization with block size = 4 (orange cross), the stratified randomization with block size = 4 (green
triangle), the deterministic minimization (purple rhombus), and the biased coin minimization with coin probability = 0.7 (blue

Two-Way Minimization
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completely, to the gold-standard simple randomization (pre-

dictability~0:5).

Discussion

In this study, we focused on trials with small sample sizes. We

showed that the proposed two-way minimization has the correct

type I error rates. It also produces point estimates that are

unbiased and variance estimates that are accurate. We compared

the performances of the new method with several existing

methods. Four methods can maintain stable performances as the

effects of prognostic factors increase, namely: 1) the stratified

randomization; 2) the biased coin minimization; 3) the determin-

istic minimization; and 4) the proposed two-way minimization.

However, the first three methods have drawbacks: the stratified

randomization and the biased coin minimization perform less than

ideally when they are charged with balancing more prognostic

factors/levels; the deterministic minimization is rather easy to

predict and is therefore prone to selection bias. By comparison, the

proposed two-way minimization is a better method for balancing

prognostic factors in small trials.

For a large trial, it is generally held that even a simple

randomization suffices. But there is no reason why one cannot

force balance a large trial using the two-way minimization. In fact

in doing so, he/she will be rewarded with even higher statistical

performances as compared to leaving everything to chance. For

example in a trial with n~1000 and six binary prognostic factors,

the powers are 0.6612 (two-way minimization) and 0.6113 (simple

randomization), the variances are 0.0039 (two-way minimization)

and 0.0045 (simple randomization), when the treatment effect is

0.15 and the effect of the prognostic factors is 0.3.

The two-way minimization may appear to be a fancy allocation

procedure that is unduly complex. Yet, the entire algorithm of it

can actually be incorporated into a simple spreadsheet program

(available from the authors). Then, all that a trial researcher has to

do is to simply feed in the prognostic-factor information for the

subjects consecutively recruited in the trial. The allocation for

them shall be produced one by one from the program fully

automatically. The two-way minimization also calls for simple

analysis despite its complex allocation scheme—a regression

adjustment for the force-balanced prognostic factors is all that is

needed. Further studies are warranted to extend the two-way

minimization to deal with unbalanced designs where the treatment

and the control groups are not to be of equal sample size due to

ethical or logistical considerations. More work is also needed to

study the performances of two-way minimization for other types of

trial response, such as non-normal, binary, Poisson, and time-to-

event data, etc, and whether the optimal value for the tuning

parameter of 0.05 that was identified remains optimal for these

other response types.

Recently, Perry et al. [9] also proposed an improved

minimization method, the ‘studywise minimization’. The method

exhaustedly searches among all possible allocations in a trial for

one that leads to minimum imbalance. It also has virtue of being

nearly unpredictable. However, the allocation of subjects (and also

the administering of the treatment) in that method has to be

deferred until all subjects intended for study has been recruited.

This essentially excludes its applicability in trials with extended

recruitment period and for treatments which must be immediately

given once subjects are recruited.

In conclusion, the proposed two-way minimization has desirable

statistical properties and is resistant to selection bias. The

allocation can be done in real time and the subsequent data

analysis is straightforward. The two-way minimization is recom-

mended to balance prognostic factors in small trials.
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