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Abstract

The relationship between obesity, diabetes, hyperlipidemia, hypertension, kidney disease and cardiovascular disease (CVD)
is established when looked at from a clinical, epidemiological or pathophysiological perspective. Yet, when viewed from a
genetic perspective, there is comparatively little data synthesis that these conditions have an underlying relationship. We
sought to investigate the overlap of genetic variants independently associated with each of these commonly co-existing
conditions from the NHGRI genome-wide association study (GWAS) catalog, in an attempt to replicate the established
notion of shared pathophysiology and risk. We used pathway-based analyses to detect subsets of pleiotropic genes
involved in similar biological processes. We identified 107 eligible GWAS studies related to CVD and its established
comorbidities and risk factors and assigned genes that correspond to the associated signals based on their position. We
found 44 positional genes shared across at least two CVD-related phenotypes that independently recreated the established
relationship between the six phenotypes, but only if studies representing non-European populations were included. Seven
genes revealed pleiotropy across three or more phenotypes, mostly related to lipid transport and metabolism. Yet, many
genes had no relationship to each other or to genes with established functional connection. Whilst we successfully
reproduced established relationships between CVD risk factors using GWAS findings, interpretation of biological pathways
involved in the observed pleiotropy was limited. Further studies linking genetic variation to gene expression, as well as
describing novel biological pathways will be needed to take full advantage of GWAS results.
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Introduction

Cardiovascular events are frequently the final common

endpoint of obesity, hypertension, hyperlipidemia, diabetes and

kidney disease and modification of these traits remains the

Standard of Care in the primary prevention of cardiovascular

disease. The clinical management of Coronary Artery Disease

(CAD), hyperlipidemia, hypertension, Type 2 Diabetes (T2D) and

Chronic Kidney Disease (CKD) assumes an intrinsic interplay

between these conditions and in particular, shared etiological and

risk factors and is strengthened by their frequent co-existence in

general patient populations. Looked at from an epidemiological

perspective, the clinical picture is supported by extensive evidence.

Both obesity and T2D have independently and in combination,

been linked with increased risk of cardiovascular disease and death

[1,2,3]. Diabetes increases the risk for cardiovascular disease 2-fold

in men and 3-fold in women and outcomes following myocardial

infarction are significantly worse in diabetic patients [4]. Diabetes

is also the major risk factor for the development of chronic kidney

disease and the leading cause of end-stage renal disease (ESRD) in

the US [5]. Cardiovascular disease accounts for more than 50% of

the mortality seen in ESRD patients [6]. Obesity has recently been

implicated as an independent risk factor for the development of

CKD, with one study estimating the risk of chronic renal failure

may be up to 3 times higher in obese patients [7,8]. The other

significant risk factor for both cardiovascular and chronic kidney

disease is hypertension. Thirty percent of American adults suffer

from hypertension with less than half of those diagnosed having

their blood pressure adequately controlled [9]. Uncontrolled and

untreated hypertension is strongly associated with increased risk of

cardiovascular mortality [10]. Blood lipid levels are significantly

related to an individuals’ risk of cardiovascular disease [11] and

treatment with lipid-lowering medications, specifically HMG CoA

reductase inhibitors (statins), is associated with decreased cardio-

vascular events in individuals at high and intermediate risk of

cardiovascular disease [12]. It is also known that patients with

hypertension tend to have a higher incidence of dyslipidemia, with

higher triglyceride concentrations and lower high-density lipopro-

tein (HDL) concentrations than patients without hypertension

[13]. Dyslipidemia has also been associated with all stages of

chronic kidney disease [14]. CKD patients have characteristically

elevated triglyceride levels, elevated LDL cholesterol levels, lower

HDL cholesterol concentrations and elevated levels of lipopro-

tein(a) with a recent Cochrane systematic review suggesting that

use of statins in CKD patients not requiring dialysis reduces all-

cause mortality [15].
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The apparent coexistence of these common conditions led to

efforts to categorize these composite phenotypes, characterized by

constellations of atherosclerotic risk factors, with obesity and

hyperglycemia at their core. However there has been a lack of

evidence to support the concept that these syndromes represent a

distinct phenotype and that the risk conferred by a diagnosis of

‘Metabolic syndrome’ is any greater than the risk conferred by the

sum of its’ parts [16,17]. The emergence of high-throughput

genotyping technology and the hypothesis-generating genome

wide association study (GWAS) have created an environment

where disease-associated genomic information has been increasing

at an unprecedented rate and provides an opportunity to assign

biological reasoning to the established notion of shared risk.

Although large-scale GWAS have identified numerous signifi-

cant SNP-trait associations, in the majority of cases the underlying

pathophysiological mechanism has not been determined and in

general, all known risk-variants combined explain only a small

fraction of the observed heritability of these conditions [18]. To

date, there has been limited success in identifying susceptibility loci

for metabolic syndrome as an entity [19], however there have been

numerous successes in identifying risk loci for CAD and it’s

clinically and epidemiologically-associated risk factors. This raises

the possibility that some of these risk loci may be shared across

these commonly occurring phenotypes and can account for their

frequent coexistence.

Genetic pleiotropy refers to the phenomenon that single genes

or variants may have an effect on multiple phenotypes [20].

Pleiotropy may occur directly as a shared consequence of the gene

product or may be due to a signaling function affecting multiple

downstream targets [21]. Previous studies have tested the idea of a

shared genetic basis across multiple phenotypes in the context of

GWAS findings. However, earlier assessments have been confined

to the analysis of immune-mediated diseases [22], pancreatic

cancer [23], hematologic and blood pressure traits [21], or

unbiased screenings of a large number of human complex diseases

and traits [20,24].

The relationship between obesity, diabetes, hyperlipidemia,

hypertension, kidney disease and cardiovascular disease is

established and indisputable when looked at from a clinical,

epidemiological or pathophysiological perspective as illustrated in

Figure 1. Yet, when viewed from a genetic perspective, there is

comparatively little data synthesis that these conditions have an

underlying relationship.

The goal of this study was to investigate the overlap of genetic

variants that have been associated independently with each of

these commonly co-existing conditions and intermediate risk

factor phenotypes in an attempt to replicate the established notion

of shared pathophysiology and risk through genetic pleiotropy. We

conducted an analysis to evaluate the immediate interpretability of

GWAS findings in this area of research using crude GWAS-

derived genomic regions without processing or filtering results with

regard to directionality of the reported associations or effect sizes.

Methods

Data Mining
We mined the online National Human Genome Research

Institute’s GWAS catalog [25,26] for studies that conducted

genome-wide screening for CAD, CKD, lipids, obesity and T2D

and related traits using multiple search terms for each phenotype

and traits related to that phenotype (last access June 10, 2011) (see

Table S1 for search terms).

The NHGRI GWAS Catalog is a curated resource for

statistically significant SNP-trait associations (P,161025) derived

from GWAS publications. In order to control data quality, the

catalog mandates standards for inclusion of published studies and

is thus an excellent resource to study pleiotropy among GWAS-

derived genetic variants [20].

We included meta-analyses of GWAS studies that reported

candidate variants that had not been reported in the primary

GWAS publications. Results of copy number variant analysis or

studies that used family-based design in the discovery stage were

excluded. Studies were also excluded because no SNPs were

reported in the catalog. A closer review of these GWAS studies

indicated that they had assayed less than 100,000 single nucleotide

polymorphisms (SNPs) in the discovery stage or did not report

SNP-trait associations with P-values of ,1.061025. In addition to

the phenotype and associated SNPs, we extracted information on

corresponding genes and race/ethnicity of the populations under

study.

Gene Annotation
We assigned genes to the associated SNPs by using the GWAS

catalog’s definition of positional genes that is based on the following

criteria: a) if the SNP falls within a gene, that gene was assigned

and b) if the SNP is intergenic, both the left-flanking and right-

flanking genes were assigned irrespective of distance. In all

instances where multiple SNPs were mapped to the same gene,

only one gene per trait was chosen from each study. We also

recorded author-reported genes.

We excluded human leukocyte antigen (HLA) loci that belong

to the major histocompatibility complex (MHC) and contain a

large number of genes related to immune system function in

humans. The large extent of variability in HLA genes poses

significant challenges in investigating the role of HLA genetic

variations in diseases.

Figure 1. Bubble Chart representing the clinical and epidemi-
ological relationship of cardiovascular risk factors. Connecting
lines are unweighted (0/1) and indicate epidemiological relationships
recreated from evidence presented in [1–15].
doi:10.1371/journal.pone.0046419.g001
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Genetic Overlap
We identified all combinations of genes shared between 2 or

more phenotypes using the assigned genes, for all studies

combined and then for studies conducted in populations of

European and African origin separately. To test for the robustness

of the detected pleiotropy, ethnicity-pooled analyses were repeated

using a SNP-trait associations that met a more stringent cutoff of

P,161027. Significance of the extent of pleiotropy was calculated

with two methods. We first estimated the probability of genes

associated with different phenotypes overlapping by chance alone

by using the hypergeometric distribution with a pool of 4,105

genes, the number of non-HLA positional genes in the full GWAS

catalog (as of June 911), and positional gene lists of size as specified

in Table 1. As described previously, these gene lists were derived

from assigning the applicable reported SNPs to positional genes

using the GWAS catalog definition. The hypergeometric approach

assumes equal probability for each gene selected from the pool.

Since the GWAS catalog contains multiple instances of genes, we

then weighted the list according to how many times a gene

appeared either because of unique SNPs mapped to that gene or

unique phenotypes associated with that gene. Positional gene lists

for each phenotype were randomly sampled 10,000 times from the

weighted list of all 4,105 GWAS catalog genes and the number of

gene intersections between phenotypes was used to calculate p-

values.

We generated ‘bubble charts’ to visually represent the pairwise

overlaps of genes associated with phenotypes (Figure 2, Figures
S1, S2, S3, S4) and to have a comparison to the relationships

presented in Figure 1. In these diagrams, the size of the

phenotype bubble is representative of the percentage of genes

studied attributed to that phenotype. Line thickness is represen-

tative of the number of intersecting genes between two pheno-

types.

Pathway Analysis
To identify common pathways shared between CVD-related

phenotypes and CAD, Gene Relationships Among Implicated

Loci (GRAIL) was used [27,28]. GRAIL scores association signals

by evaluating whether observed genomic regions are non-

randomly linked to the other genes through word usage in

PubMed abstracts, as well as the Gene Ontology and Gene

Expression Atlas (Novartis) databases. GRAIL was chosen over

other pathway-based genome-wide approaches (reviewed in [29])

for several reasons: 1) it seeks to infer relationships between genes,

SNPs, or genomic regions without relying on predefined pathways

or ontologies enabling to derive entirely novel networks of related

genes; 2) it is superior to other analysis tools initially designed for

microarray data that rely on large pathways and tend to have a

greater chance of being statistically significant when GWAS data

are considered [30]; 3) it analyzes regions defined by linkage

disequilibrium (LD) and, therefore, relationships are only tested

between genes in different regions minimizing any bias of LD

between nearby genes representing the same association signal,

and 4) it allows to visualize the resulting connections. We used the

lists of pair-wise overlaps between all combinations of study

phenotypes to assess the degree of connectivity between the

implicated genes through word-similarity metrics [27]. To avoid

publications that are influenced by disease regions discovered in

the recent scans included in this study, we focused on PubMed

abstracts published prior to December 2006, before the recent

onslaught of GWAS papers identifying novel associations.

However, in order to map all pleiotropic genes observed in our

analyses, we repeated the analysis using abstracts published up to
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2011, as well as the Gene Ontology (GO) and Gene Expression

Atlas (Novartis) databases.

To accurately assess the statistical significance of the GRAIL

connections, we conducted simulations in which we selected 100

sets of 38 positional genes (the subset of the 44 shared positional

genes with most connections that were found in the GRAIL

database) from both the unweighted and weighted list of all genes

in the GWAS catalog (N = 4,105) that were also in the GRAIL

database. Each of those 100 sets was scored with GRAIL to test for

the likelihood of observing the same number or more significant

connections at random.

Results

Of the 125 potentially eligible articles in the GWAS catalog, we

selected 107 that reported genetic associations with CAD and

related risk phenotypes and met our inclusion criteria (Table 1,
Table S2). We extracted a total of 708 associated SNPs, with 37

SNPs (5%) in coding regions, 311 SNPs (44%) in intergenic, 26

(4%) in near gene, 22 (3%) in UTR regions, and 312 SNPs (44%)

in introns. These SNPs were assigned to 737 genes, with 101 genes

associated with CAD and related traits, 137 with diabetes and

related traits, 219 with obesity and related traits, 141 with lipids,

85 with blood pressure and related traits, and 105 with CKD and

related traits (Table 1). Of the 107 eligible GWAS studies, 81

(76%) had initial scans performed in European and 5 (5%) in

African-ancestry populations.

We detected 44 positional pleiotropic genes shared between at

least 2 phenotypes (Table 1, Table S3). The largest number of

genes was shared between CAD and lipids (14 positional genes).

There were 9 genes shared between T2D and related traits and

obesity-related traits. Using only positional genes, the extent of the

CAD-lipid overlap reached statistical significance (P,0.001 by

hypergeometric and 0.002 by weighted permutation test), whereas

other 2-way overlaps did not (Table S3).

Seven positional genes showed pleiotropy across at least 3 CVD-

related phenotypes in ethnicity-pooled analysis (Table 2). The

most pleiotropy carried by a single gene was detected for KLHL29

in the pooled analysis of all studies regardless of ethnic

backgrounds and in stratified analyses that included only studies

of individuals of African ancestry as defined in Table S2.

Significant GWAS signals represented by KLHL29 were found to

overlap between blood pressure, lipids, CKD and CAD pheno-

types, which is unlikely to occur by chance alone (P = 0.002 by

hypergeometric and 0.050 by weighted permutation test). We also

found additional suggestive 3-way overlaps of: 1) CAD, CKD-

Figure 2. Bubble Chart representing the genetic relationship of cardiovascular risk factors including GWAS positional genes across
all populations. The size of the phenotype is representative of the percentage of genes studied attributed to that phenotype. Line thickness is
representative of the number of intersecting genes between two phenotypes.
doi:10.1371/journal.pone.0046419.g002
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related traits, and lipids with KLHL29 and APOB (P = 0.003 by

hypergeometric and 0.082 by weighted permutation test) and 2)

obesity, CKD-related traits, and T2D-related traits with C6orf223

and VEGFA (P = 0.015 by hypergeometric and 0.251 by weighted

permutation test). Three out of seven genes (GCKR, C6orf223,

VEGFA) remained significant when only studies of European

populations were considered.

Using pair-wise phenotype overlaps, we attempted to recreate

all connections from the bubble chart, Figure 1, with information

entirely from the GWAS catalog. We could replicate every

relationship (line) using pleiotropy detected in the ethnicity-pooled

analysis of positional GWAS genes (Figure 2). In studies of

European populations only, positional genes did not independent-

ly replicate all connections (Figure S1). When exclusively African-

ancestry studies were considered, we found that only 3 connec-

tions, between the blood pressure, lipids and chronic kidney

disease phenotypes, were reproduced by one genomic region

(APOB/KLHL29) (Figure S2).

Next, we limited the list of positional genes to reflect SNP-trait

associations detected at a more stringent P,161027 and found

that, as expected, many overlaps disappeared, especially those with

the blood pressure phenotypes, or decreased in number. Impor-

tantly, the overlaps that did not change were between the chronic

kidney disease phenotypes and CAD, lipids and obesity, in

addition to type 2 diabetes and lipids (Table S3, Figure S3). It is

worth noting that less pleiotropic connections were also detected if

only author-reported genes were used compared to positional

genes (Figure S4).

To identify the key pathways suggested by the GWAS signals,

we used GRAIL on positional pleiotropic genetic regions shared

across at least two phenotypes. Based on abstracts published up to

2006, six out of 44 regions were dropped from the analysis as they

were not found in the GRAIL database either due to the lack of

sufficient literature or inconsistent mapping to Human Genomes

(hg) 18. The lost genes were CDKN2BAS, the most replicated CAD

locus (chromosome 9p21), C6orf223, RPL12P33, EIF3FP3,

UBA52P6 and KLHL29 that showed the greatest level of pleiotropy

in this study. We re-ran GRAIL using alternative data sources,

such as GO and Gene Expression Atlas, and found matches for the

2 target genes (KLHL29 and CDKN2B, an alias for CDKN2BAS).

Nevertheless, no connections were established for these genes,

whereas many other connections previously obtained through the

literature search were lost. We screened interaction databases [31]

and found no additional information on KLHL29 and CDKN2BAS,

supporting the notion that our knowledge of biological pathways is

far from complete.

Figure 3 demonstrates the most connectivity between the 38

positional genes by their enrichment in overlapping pathways that

predominantly relate to lipid transport and metabolism. Nine of

these genes were significantly scored with GRAIL indicating that

they were non-randomly linked to the other genes through word

usage in 2006 PubMed abstracts at P,0.05. In 100 simulated lists

of 38 genes from the weighted GWAS catalog, the probability of

observing 9 hits with P,0.05 by chance was 7%.

The 5 of 7 genes that showed pleiotropy across three or four

phenotypes and were mapped by GRAIL did not reveal any inter-

connectivity or connection to genes with an established pathway

affiliation. When the analysis was repeated with abstracts

published up to 2011 and inevitably informed by studies included

in this analysis, we found that many of the 3+-way overlaps

remained missing despite a dramatic increase in the amount of

new information as expressed by the density of connections overall

(Figure S5).

Discussion

This year marks the fifth anniversary of the first large, well-

designed GWAS that employed a dense SNP chip with varying

opinions on the contribution of this study design to a better

understanding of common disease susceptibility [32,33,34].

Despite the fact that over 2,000 loci have been found to be

robustly associated with one or more complex traits, GWAS

studies did not account for much of the individual trait’s

heritability. They generated reproducible hits often far from

known genes that limited immediate translation of GWAS results

into mechanistic understanding of phenotypic variation. Using

genetic variants detected by GWAS studies of CAD and related

traits, we sought to test whether unprocessed GWAS findings

would support genetic pleiotropy that exists across several

commonly co-existing morbidities and the extent to which the

clinical and epidemiological notion of shared etiology can be

reproduced. We report 44 genes identified by GWAS as being

directly implicated in phenotypic variation, located upstream or

downstream of the associated SNPs that were shared across at least

two CVD-related traits. These overlapping genes recreated the

established pathophysiological relationship between obesity, dia-

betes, hyperlipidemia, hypertension, kidney disease and CAD

(Figures 1 and 2). However, this was only true if studies

representing non-European cohorts were also included.

Previous reports have mined the GWAS catalog, testing the idea

of a shared genetic basis across multiple phenotypes, such as

pancreatic cancer, immune-mediated diseases, and hematologic

traits, in the context of GWAS findings [20,21,22,23,24]. Instead,

we conducted analyses focused on a cardiovascular disease domain

while including intermediate risk factor phenotypes and co-

Table 2. List of genes from all studies that showed three-way and four-way overlaps across CVD-related phenotypes.

Phenotype GWAS Catalogue Genes
Hypergeometric (unweighted)
p-value

Weighted
p-value

BP CAD CKD Lipids KLHL29 0.002 0.050

BP Lipids Obesity ATG4C 0.147 0.549

CAD CKD Lipids APOB, KLHL29 0.003 0.082

CAD Obesity T2D DMRTA1 0.165 0.601

Lipids CKD T2D GCKR 0.110 0.458

Obesity CKD T2D C6orf223,VEGFA 0.015 0.251

BP, blood pressure; CAD, coronary artery disease, T2D, type 2 diabetes.
doi:10.1371/journal.pone.0046419.t002
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morbidities to evaluate the immediate interpretability of unpro-

cessed GWAS results in this area of research.

We found that genes within or flanking the reported SNPs

independently replicated the clinical, epidemiological and patho-

physiological notion of cardiovascular risks in the ethnicity-pooled

dataset. However, when only studies of European populations

were included, some of the relationships were lost (Figure S1).

The fact that only 24% of the eligible studies were conducted in

non-Europeans emphasizes the value of genetic studies in diverse

ethnic/racial groups. When only studies of African ancestry

cohorts were included in the analyses, we found that only 3

connections, between the blood pressure, lipids and chronic kidney

disease phenotypes, were reproduced (Figure S2).

Several genes showed an overlap between at least three CVD-

related traits (Table 2). Notably, one region on chromosome

2p24.1, in the proximity of two genes, Apolipoprotein (APOB) and

kelch-like protein 29 (KLHL29), revealed the most extensive

pleiotropy across multiple phenotypes, such as blood pressure,

lipids, CKD and CAD. While APOB is well known for coding the

main apolipoprotein of chylomicrons and low density lipoproteins,

KLHL29’s function is widely unknown. Consistent signals pointing

to that genomic area included a KLHL29 intronic SNP and several

intergenic SNPs positioned 19–2,323 bp from either gene, both

imputed and typed, suggesting that both genes can be involved.

Notably, KLHL29 was only mapped to this genomic region in

studies of African ancestry. This observation could suggest ethnic/

Figure 3. A plot of 38 positional genes that overlapped between at least two CVD-related phenotypes. Plotted using VIZ-GRAIL [28]. For
each plot, phenotypic overlap is arranged along the outer circle; bold indicates three-way or four-way overlaps. Inner circle represents individual
genes. The redness and thickness of lines connecting pairs of genes represent the strength of the connections with the thickness of the lines being
inversely proportional to the probability that a literature-based connection would be seen by chance. Pathway-related links between 9 of 38 genes
scored P,0.05 using GRAIL. To accurately assess the statistical significance of this set of connections, we conducted simulations in which we selected
100 sets of 38 genes and scored them with GRAIL. We determined that the likelihood of observing 9 hits with P,0.05 by chance is about 7%.
doi:10.1371/journal.pone.0046419.g003

GWAS Pleiotropy for CVD and Related Traits

PLOS ONE | www.plosone.org 6 September 2012 | Volume 7 | Issue 9 | e46419



racial differences in LD in the region or an ethnic-specific variant

associated with multiple risks. Recently, there have been reports of

variants associated with risk in specific ancestral populations,

particularly in African-ancestry populations for diabetes [35,36],

kidney disease [37], and hypertension [38]. These discoveries

could explain in part the increased prevalence of certain diseases

in particular ancestral populations. However, whilst racial

disparities or population differences in disease prevalence may

correlate with differences in allele frequency resulting in different

association signals, we were unable to effectively control for

differences in allele frequency as the unit of analysis in our study

was gene rather than SNP. Additionally, as the majority of

GWAS-derived SNPs are not causal and population differences

may be attributed to differences in LD structure, a lack of

association in non-European populations may demonstrate

ascertainment bias of GWAS markers rather than true population

differences. Targeted re-sequencing should be conducted in

multiple populations in an attempt to identify potential functional

variants that generated the observed association signals.

We used pathway-based analysis as implemented in GRAIL to

identify subsets of positional pleiotropic genes, shared across at

least 2 phenotypes, involved in similar biological processes.

GRAIL uses abstracts from the entirety of the published scientific

literature to look for relatedness among genes within disease

regions that may represent key pathways. We undertook this

approach to capture both clearly established close gene relation-

ships and potentially undocumented or distant ones. We found

that the strongest connections were between genes involved in

lipid transport and metabolism, such as PCSK9, LDLR, LPL, APOB,

APOC1 (Figure 3), significantly contributing to the GRAIL

results. Among other significant connections was a link between

the two growth factors, PDGFD and VEGFA, that belong to the

platelet-derived growth factor/vascular endothelial growth factor

(PDGF/VEGF) family implicated in a variety of functions in

vertebrates, especially angiogenesis. Defects in VEGFA have been

shown to be associated with diabetic retinopathy, diabetic

nephropathy leading to end-stage renal disease and diabetic

neuropathy. These genes were also connected to the lipid genes by

GRAIL.

It is of interest that many pleiotropic GWAS loci had no

relationship to each other or to genes with established functional

connection regardless of how current the reference data. An

incomplete gene function annotation and limited knowledge of

biological pathways could potentially explain this finding. Despite

considerable advances in expression quantitative trait loci (eQTL)

research, there are questions about the completeness of the eQTL

databases. Most of the human eQTL studies to date have analyzed

cell types in blood, because these are the most readily available

tissues, only recently moving to a wider variety of tissues such as

cortical, adipose and liver tissues [39,40,41]. This reality prevented

us from formally evaluating the contribution of eQTLs to genetic

pleiotropy. Further studies will help elucidate pathways whose

relevance to a particular disease or trait was previously

unsuspected.

We sought to analyze the data in as unbiased a way as possible.

To this effect, we did not include metabolic syndrome as a CVD-

related phenotype, as its definition encompasses two or more of

the included phenotypes and would thus positively bias any

overlapping gene lists. We also excluded catalog genes that were

reported by investigators who may have had pre-existing notions

about disease causality, and relied only on positional information

provided by the catalog. Of note, the complete replication of the

established relationships was not reproduced when the analysis

was limited to associations that reached genome-wide significance

(P,161027) or based on author-reported genes instead of

positional genes.

This study has several limitations. We mined data exclusively

from the NHGRI GWAS catalog, which includes data on

published GWAS studies meeting pre-specified criteria. The

catalog does not include variants derived from candidate gene or

linkage studies and as such, variants discovered through these

means that may exhibit pleiotropy were not included in our

analysis. Similarly, we could only assess pleiotropy in the context

of which phenotypes have been already studied, thus the absence

of pleiotropy may denote insufficient data rather than true absence

[42]. Conversely, it is possible that the degree of pleiotropic

findings are artifactual because the implicated diseases have been

explored in greater depth [20]. Furthermore, we could not control

for gene size, which may affect the likelihood of observing

statistically significant associations, as this inherited bias is present

from the ascertainment of markers on GWAS arrays through to

the reporting of association results in the GWAS catalog.

Nevertheless, we limited adding to this bias by only including

one instance of any gene that could be represented by multiple

SNPs per phenotype in the analysis. Additionally, it is rare for

causal variants to be identified by GWAS and, in many cases;

variants in LD with the true causal variant are recorded in the

catalog. These may in turn have been mapped to alternate genes

in our analysis and may have affected the observed pleiotropy. It is

possible that we included GWAS studies that used the same

samples to study different phenotypes. Also, consistent with other

studies examining pleiotropy in the GWAS catalog [21], we did

not address the directionality of the reported associations, nor did

we consider the level of statistical significance (other than the sub-

analysis at the more stringent threshold) or their effect sizes. The

goal of this study was to determine if it is possible to replicate an

indisputable notion of commonly co-occurring CVD-related

conditions using crude GWAS-derived genomic regions. Future

studies will be needed to determine whether these genetic risks act

independently, in synchrony or whether antagonistic pleiotropy

exists between these phenotypes. The choice of the genotyping

platform could have biased our results. Nevertheless, the top

pleiotropic region, APOB-KLHL29, has been detected through the

imputed and typed SNPs available from both Affymetrix and

Illumina genotyping platforms. Furthermore, although variability

in phenotypic characterization of CAD and related traits used by

various GWAS studies may have affected our results, it has been

shown that differences in phenotype definition in CAD have a

small effect in between-study heterogeneity [43]. Another chal-

lenge of our study was that genes clearly implicated in the

pleiotropy were not fully annotated with respect to function. That

is, KLHL29, a gene within our most substantive pleiotropic region,

as well as 5 other pleiotropic genes including the most widely

replicated CAD locus on 9p21, were not found in the GRAIL

databases and therefore, we could not examine whether their

function is connected to that of other pleiotropic genes. For these

genes, greater efforts will be required to chart new paths that could

eventually lead to the most novel and important insights.

Conclusions

Whilst we recreated the established pathophysiological relation-

ship between obesity, diabetes, hyperlipidemia, hypertension,

kidney disease and cardiovascular disease using genetic regions

detected by GWAS, many of the observed pleiotropic genes could

not be linked to each other or to known biological pathways.

Further studies are needed to expand gene expression databases,
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characterize new pathways and improve gene annotation in order

to take full advantage of GWAS findings.
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Figure S1 Bubble Chart representing the positional GWAS

genes intersection in cohorts of European Ancestry only. The size

of the phenotype is representative of the percentage of genes

studied attributed to that phenotype. Line thickness is represen-

tative of the number of intersecting genes between two

phenotypes.

(TIF)

Figure S2 Bubble Chart representing the positional GWAS

genes Intersection in studies in cohorts of African Ancestry only.

The size of the phenotype is representative of the percentage of

genes studied attributed to that phenotype. Line thickness is

representative of the number of intersecting genes between two

phenotypes.

(TIF)

Figure S3 Bubble Chart representing the positional GWAS

genes intersection in the ethnicity-pooled analysis with more

stringent GWAS P-values,1027. The size of the phenotype is

representative of the percentage of genes studied attributed to that

phenotype. Line thickness is representative of the number of

intersecting genes between two phenotypes.

(TIF)

Figure S4 Bubble Chart representing the GWAS author-

reported genes intersection in the ethnicity-pooled analysis. The

size of the phenotype is representative of the percentage of genes

studied attributed to that phenotype. Line thickness is represen-

tative of the number of intersecting genes between two

phenotypes.

(TIF)

Figure S5 A plot of 38 genes that overlapped between at least

two CVD-related phenotypes based on the PubMed abstracts

published up to 2011. Plotted using VIZ-GRAIL. For each plot,

phenotypic overlap is arranged along the outer circle; blue

indicates three-way or four-way overlaps. Inner circle represents

individual genes; genes in bold belong to one of the connecting

lines in the middle of circle. The redness and thickness of lines

connecting pairs of genes represent the strength of the connec-

tions.

(TIF)
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