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Abstract

We demonstrate a strategy to ‘‘sense’’ the micro-morphology of a breast tumor margin over a wide field of view by creating
quantitative hyperspectral maps of the tissue optical properties (absorption and scattering), where each voxel can be
deconstructed to provide information on the underlying histology. Information about the underlying tissue histology is
encoded in the quantitative spectral information (in the visible wavelength range), and residual carcinoma is detected as a
shift in the histological landscape to one with less fat and higher glandular content. To demonstrate this strategy, fully
intact, fresh lumpectomy specimens (n = 88) from 70 patients were imaged intra-operatively. The ability of spectral imaging
to sense changes in histology over large imaging areas was determined using inter-patient mammographic breast density
(MBD) variation in cancer-free tissues as a model system. We discovered that increased MBD was associated with higher
baseline b-carotene concentrations (p = 0.066) and higher scattering coefficients (p = 0.007) as measured by spectral
imaging, and a trend toward decreased adipocyte size and increased adipocyte density as measured by histological
examination in BMI-matched patients. The ability of spectral imaging to detect cancer intra-operatively was demonstrated
when MBD-specific breast characteristics were considered. Specifically, the ratio of b-carotene concentration to the light
scattering coefficient can report on the relative amount of fat to glandular density at the tissue surface to determine
positive margin status, when baseline differences in these parameters between patients with low and high MBD are taken
into account by the appropriate selection of threshold values. When MBD was included as a variable a priori, the device was
estimated to have a sensitivity of 74% and a specificity of 86% in detecting close or positive margins, regardless of tumor
type. Superior performance was demonstrated in high MBD tissue, a population that typically has a higher percentage of
involved margins.

Citation: Brown JQ, Bydlon TM, Kennedy SA, Caldwell ML, Gallagher JE, et al. (2013) Optical Spectral Surveillance of Breast Tissue Landscapes for Detection of
Residual Disease in Breast Tumor Margins. PLoS ONE 8(7): e69906. doi:10.1371/journal.pone.0069906

Editor: Irene Georgakoudi, Tufts University, United States of America

Received January 10, 2013; Accepted June 13, 2013; Published July 26, 2013

Copyright: � 2013 Brown et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This project was supported by the Department of Defense (DOD) Grant Number W81XWH-09-1-0410, and by the Duke Translational Medicine Institute
through a grant from the National Center for Research Resources (1UL1 RR024128), a component of the National Institutes of Health (NIH) and the NIH Roadmap
for Medical Research. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: Dr. Brown, Ms. Junker, and Dr. Ramanujam own stock in, and have been employed by or provided consulting services for, Zenalux
Biomedical, Inc., a company which developed a 2nd-generation version of the technology described in this manuscript. Zenalux Biomedical has licenses, or
options to license, intellectual property invented by Dr. Ramanujam and Dr. Brown. Zenalux Biomedical did not support any of the original work reported in this
manuscript, either in cash or in kind. The relationship of some of the co-authors to Zenalux Biomedical, Inc. does not alter the authors’ adherence to all the PLOS
ONE policies on sharing data and materials.

* E-mail: jqbrown@tulane.edu

¤a Current address: Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, United States of America
¤b Current address: Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
¤c Current address: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America

. These authors contributed equally to this work.

Introduction

Breast cancer is an enduring health problem with more than

200,000 patients diagnosed annually in the United States [1]. Most

of these patients are eligible for breast conserving surgery (BCS)

[2]. BCS, also known as a partial mastectomy or lumpectomy, is a

recommended treatment for early stage breast cancer and for

breast cancers that have been reduced in size by neoadjuvant-

therapy. The goal of BCS is to excise the tumor along with at least

a 1–2 mm margin of surrounding normal tissue [3–5]. Post-

operative histopathologic assessment of the resected specimen is

the current gold standard by which completeness of excision is

determined. Margin status is an important predictor of local

recurrence of an invasive or in situ cancer after BCS [6,7].

Unfortunately, as many as 17.7–72% of patients undergoing BCS

require repeat surgeries due to a close or positive surgical margin

[3,4,8–12]. One recent study observed that in over 2,000 women
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undergoing BCS, the variation in re-excision rate varied from 0–

70% across surgeons, indicating that there is no reliable intra-

operative standard for preventing re-excision [13]. Younger

women in particular tend to have higher percentages of involved

margins and higher local recurrence rates [6,14–19]. These age-

dependent findings may be due to increased breast density; a study

by Bani et al [20] found that higher mammographic breast density

(MBD) was associated with higher re-excision rates, 18% (MBD-

1), 18% (MBD-2), 22% (MBD-3), and 42% (MBD-4). In the U.S.,

touch-prep cytology and frozen section analysis have been used to

help address this need intra-operatively. However, these tech-

niques require a trained pathologist to be present, prolong surgery

time (20–40 minutes), and have technical challenges associated

with processing fatty breast tissues. By 2015, it is expected that the

number of patients undergoing BCS will increase from approx-

imately 200,000 to more than 270,000 per year in the U.S., at an

annual growth rate of 5.5% [2].

The best available method for the detection of residual

carcinoma on a surgical tumor resection specimen is post-

operative histopathology, which is the gold standard. This

approach uses light microscopy to detect the presence of disease

in 4–5 micrometer-thick tissue sections (at micrometer image

resolution), taken from ,3 mm thick slices of the tumor margin

(millimeter sampling frequency). An ideal intra-operative tool

would sample tumor margins at comparable or better sampling

frequency and image resolution. However, the need for micro-

scopic resolution results in a practical sampling limitation, since

there is inherent difficulty in sampling, imaging and analyzing

large tissue areas (ca. 10–100 cm2) with microscopic resolution in

intra-operative time frames [21]. This is a particular problem in

heterogeneous organs such as the breast, in which samples are

routinely large, and it is not possible to grossly observe and

preferentially sample small areas of residual disease, due to the

surrounding mix of normal tissue types including fat, glands, and

fibrous tissues. Achieving microscopic resolution of the tumor

margin in an intra-operative tool also comes at the expense of

sensing depth. In an effort to address this important problem, our

group has developed a strategy to quantify the morphological

features of the breast tumor margin over a wide field of view by

creating quantitative hyperspectral maps of the tissue optical

properties (absorption and scattering) where each voxel can be

deconstructed to provide information on the underlying tissue

composition [21–25]. This strategy provides a means to quickly

survey centimeter-square tissue areas with quantitative analysis of

spectral information serving to provide a surrogate for microscopic

imaging resolution. Further, the visible spectral range (450–

600 nm) provides the requisite sensing depth of 2 mm [22], a

frequently used cut-off for negative margins. The primary

absorbers in the breast over this wavelength range include b-

carotene stored in adipocytes (reflective of fatty tissues) and

hemoglobin found in blood cells in the vasculature (reflective of

tissue vascularity). Likewise, the scattering properties are directly

related to the collagen and cell density within the breast (reflective

of fibroglandular content).

The challenge for any intra-operative technique for breast

tumor margin assessment is the ability to detect the signal (i.e., the

histologic changes due to varying amounts of malignancy at the

margin) over the noise (i.e., the normal inter-patient and intra-

patient variation in breast composition). If we view the range of

normal tissues in the breast as a ‘‘landscape,’’ then the challenge in

margin assessment is to detect the presence of malignant tissue at

the boundary of an otherwise ‘‘normal’’ margin, as a perturbation

in that landscape. Our hypothesis was that quantitative diffuse

reflectance mapping would be sensitive to those shifts, by

leveraging the interactions of light with tissue at the molecular

and histological level to sense the tissue composition (our

conceptual approach is outlined in Figure 1). To demonstrate

that the technology could meet this task, we first established that

the information inherent in spectral data was specifically related to

salient tissue composition and micro-morphologic features in the

breast. Specifically, the relationship between the quantitative

metrics obtained from the absorption and scattering endpoints,

and the proportion of fat and collagen/glands-quantified from

histopathology of specific sites from negative and positive margins

were quantified. Next, the ability of this spectral mapping

technique to survey shifts in of the morphological features of the

normal breast were determined, by analyzing the spectral

information arising from inter-patient variations in mammograph-

ic breast density (MBD), which further established the morpho-

logical features to which the hyperspectral maps are sensitive.

Finally, the utility of this surveillance approach to detect shifts in

the histologic landscapes caused by the presence of residual

carcinoma was assessed by imaging breast tumor resection

margins intra-operatively in 70 patients undergoing BCS, and

predicting the presence of residual disease through a statistical

predictive modeling approach for automated, unbiased selection of

predictor variables.

Materials and Methods

Ethics Statement
This study was performed in strict accordance with a protocol

approved by the Duke University Institutional Review Board.

Patients over age 18 undergoing BCS granted written consent

under the approved clinical protocol.

Patient Population
The following characteristics were recorded for each patient (if

available): radiographic breast density, menopausal status, neoad-

juvant treatment status (chemotherapy or endocrine therapy), age,

body mass index (BMI), and surgical re-excision status. For the

analyses in this manuscript, data was only included from patients

who had not undergone prior radiation, adjuvant treatment, or

surgery 1) due to limited sample sizes and 2) in order to assess

differences in surgical margin status without these additional

confounding factors. For mammographic breast density (MBD),

each patient was assigned a value based on their pre-surgery

mammogram: 1 (fatty), 2 (scattered fibrous), 3 (heterogeneously

dense), or 4 (extremely dense). For the analyses in this paper an

MBD score of 1 or 2 was considered to be low density, while a

score of 3 or 4 was considered to be high density; the data was

binned this way since the majority of the patients had 29s or 39s.

Instrumentation
The Quantitative Diffuse Reflectance Imaging (QDRI) instru-

ment has been described in detail in prior publications [21–

23,26,27], and consists of a Xenon lamp coupled to a

monochromator (Gemini 180, Jobin-Yvon HORIBA), an 8-

channel fiber-optic imaging probe, an imaging spectrograph

(Triax 320, Jobin-Yvon HORIBA), and a 2-D CCD camera

(Symphony, Jobin-Yvon HORIBA). This system can be used to

measure diffuse reflectance spectra from 8 discrete sites in a

single acquisition. For ease of use and to avoid crosstalk between

adjacent probes at the tissue surface, the 8 channels of the probe

were secured in an aluminum adaptor in a 462 array with a

center-to-center separation of 10 mm between each channel; a

5 mm sampling resolution was achieved by translating the probe

over the tissue in 5 mm increments. This sampling resolution is

Optical Spectral Surveillance of Tissue Landscapes
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comparable to the sampling resolution of pathology where tissue

sections are bread-loafed and examined in ,3 mm intervals. The

sensing depth of the probe was previously simulated to be 0.5–

2.2 mm and is tissue dependent with the deepest penetration

depth in adipose tissues [22]. This analysis was carried out

retrospectively with a Monte Carlo model, which incorporated

the optical properties of adipose, fibroglandular, and malignant

breast tissue obtained from our clinical study. A custom software

application was written in-house using LabVIEW 8.5 (National

Instruments, Austin, TX) and MATLAB R2008a, and was used

for instrument control and data acquisition and processing. Prior

to imaging, the system was calibrated for optical throughput with

a one-time measurement of a Spectralon diffuse reflectance

standard (LabSphere, North Sutton, NH).

Measurement Procedure
Partial mastectomy specimens were excised and oriented by the

surgeon using surgical clips and sutures to mark the center of 4 of

the 6 total margins. Specimens then underwent routine specimen

mammography. QDRI imaging of the excised lumpectomy

specimen was performed intra-operatively, either in the operating

room or in an adjacent room. Approximately 1665 minutes post-

excision, the specimen was placed in a rectangular plexi-glass box

for imaging, oriented such that the clip/suture was at the center of

the box face. The imaging probe was interfaced to the

lumpectomy specimen via holes in the plexi-glass box. Diffuse

reflectance measurements (450–600 nm) were collected from the

tissue surface with 5 mm sampling resolution until the entire

margin had been measured by simply translating the imaging

probe to sample the interleaving pixels [21–23]. Four surgeons

participated in this study. The surgeon was blinded to the imaging

output and performed selective intra-operative re-excision based

Figure 1. Schematic of our conceptual approach. Cartoon representing A) a ‘‘negative’’ tumor margin surface corresponding to a mix of normal
tissues, and B) a ‘‘positive’’ tumor margin surface with areas of residual tumor (red) at the surface. The cumulative distribution functions in C) and D)
are actual optical data from representative margins (sensitive to the relative amount of fat and fibroglandular tissue). In a negative margin (C), there is
a distribution of values, which corresponds to the mixture of tissue types in benign (aka negative) margins. When malignancy is present in varying
amounts (D), a shift in the optical contrast distribution is observed, due to the disruption in the tissue landscape caused by the increase in cancerous
tissue and displacement of normal tissue.
doi:10.1371/journal.pone.0069906.g001
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on only on the review of the specimen mammograms and gross

examination, as is standard of care. Data collection, processing,

and display of optical images were fully automated in the QDRI

imaging platform. Once the specimen was placed in the plexi-glass

box, acquisition-time of spectra from a single probe placement (8

spectra simultaneously) varied on the order of several hundred

milliseconds, and the analysis time was 0.5 seconds per spectrum.

Therefore, the time to acquire and display the results from a single

probe placement was on the order of 5–10 seconds. In this study,

the time required to image a single resection margin (20–40 cm2)

was typically 20–25 minutes, which included loading the

specimen, collecting the data, book-keeping, inking for pathologic

co-registration, and data analysis. However, the time required for

just translating the probe, acquiring the data, and processing the

images was on the order of 5–10 minutes per margin. (The bottle-

neck in this process was translating the probe; a newer version of

the technology decreases this bottle-neck by increasing the number

of parallel channels to 49).

Margin Level Histology
Following imaging of the full margin surface, the four corners of

the measured margin were marked with histological ink for later

pathologic correlation with the imaged area (referred to as margin-

level analysis). The orientation of the imaged margin was recorded

and sent to surgical pathology to ensure orientation concordance.

The specimen was further inked by surgical pathology per

standard protocol. Post-operative pathology served as the standard

to classify each margin as negative (malignant cells .2 mm from

tissue surface), close (malignant cells #2 mm from tissue surface),

or positive (malignant cells at surface). For the purposes of this

study, the close and positive margins were lumped together as

‘‘positive’’.

Site Level H&E Image Analysis
In addition to the margin-level analysis, up to 10 sites per

margin were inked with a unique color histological ink at the time

of optical assessment and denoted as ‘‘research sites,’’ which were

analyzed in detail to provide a histologic assessment of the

underlying tissue composition; this site-level analysis is described in

greater detail by Kennedy et al [27]. In the cases where individual

imaged pixels were marked with ink, the resulting pathologic tissue

sections could be paired with quantitative optical parameters from

those pixels. In the work by Kennedy et al [27], extracted optical

parameters for each research site were paired with the overall

diagnosis (adipose, fibroadipose, fibroglandular, fibrous, malig-

nant, etc.), and Wilcoxon rank-sum testing was used to detect

significant differences in optical parameters between diagnostic

categories. To further investigate the relationship between

optically-measured b-carotene concentration, reduced scattering

coefficient, mammographic breast density, and tissue micromor-

phology in adipose tissues specifically, hematoxylin and eosin

(H&E) stained sections of histologically confirmed adipose tissues

(n = 84) were digitally imaged. 53 tissue sections from 16 patients

in the low MBD subgroup, and 31 tissue sections from 9 patients

in the high MBD subgroup were digitally imaged (mean of 3.4 and

3.3 sections per patient, respectively). Patients were further

matched for body-mass index (BMI) in the range of 25–30, which

left 9 sections from 2 high MBD patients and 16 sections from

3 low MBD patients. The images were acquired with a Zeiss Axio

Imager upright microscope with a 10% neutral density filter, 10X

objective, a halogen light source, and a QImaging MicroPublisher

5.0 MP color camera. MetaMorph 7.6.5 was used to adjust the

acquisition time and RGB gain. The field of view (FOV) for the

adipose images was 1 mm61.3 mm with a resolution of 1.1 mm.

Digital images of the H&E-stained adipose tissue sections were

analyzed with an automated image processing algorithm to extract

average cell area and cell density. The green channel of the RGB

images obtained from the color camera was used in the algorithm,

as it provided a convenient method of separating the primarily

pink and blue stained tissue from white fat. All images were

preprocessed with a 2-D implementation of an edge-preserving

bilateral filter. Subsequently, the MATLAB implementation of the

Canny edge detector was used to extract the outlines of the

adipocytes. The interior of each outlined shape was measured and

the number of shapes was counted to provide an estimate of cell

density. Empirically determined cell-area thresholds of 129.3 mm2

and 22,569 mm2 were used to limit the counted results to those

with a high probability of being an adipocyte.

Spectral Data Analysis
Details of the analysis of the diffuse reflectance data from the

partial mastectomy specimens can be found in prior publications.

For each site, diffuse reflectance spectra were calibrated using a

Spectralon 99% reflectance standard (Labsphere, North Sutton,

NH). Collection of throughput-calibrated diffuse reflectance

spectra from each site on the surface of each specimen allowed

creation of a spectral reflectance cube R(x,y,l), where R is

calibrated reflectance, x and y are spatial coordinates of the tissue

surface, and l is wavelength. An inverse Monte Carlo model

[24,25] was then used to extract the wavelength-dependent

absorption and reduced scattering coefficients from the diffuse

reflectance spectra from each site (or pixel) on the spectral image.

Diffuse reflectance spectra measured from the tissue were fit over

the wavelength range of 450–600 nm. The free parameters related

to absorption were the concentrations of the intrinsic absorbers in

this wavelength range, namely, oxygenated hemoglobin (HbO2),

de-oxygenated hemoglobin (Hb), and [b-carotene]. Lymphazur-

inTM (Tyco Healthcare), a blue dye injected peri-tumorally prior

to surgery to locate the sentinel node during surgery, was also

included as an extrinsic absorber since it was present in many of

the samples. For scattering, the fixed parameters were the

refractive indices of the scatterers (1.4) and the surrounding

medium (1.36), and the anisotropy factor (0.8), whereas the free

parameters were the size and density of the spherical scatterers.

Taking these concentrations directly, the spectral absorption

coefficient cube ma(x,y,l) was reduced to a series of 2-D surface

maps An(x,y), which are the maps of the nth absorber A at each (x,y)

location. Likewise, the reduced scattering coefficient cube was

reduced to ,ms9.(x,y), where ,ms9. is the wavelength-averaged

reduced scattering coefficient. This allowed the creation of surface

parameter maps of the tissue, which reflects either absorber

concentrations (oxyhemoglobin, deoxyhemoglobin, total hemoglo-

bin, b-carotene, or LymphazurinTM) or a summary of the

scattering characteristics of the tissue, or combinations thereof.

Empirical Cumulative Distribution Functions
Using all pixels from all parameter maps acquired from

lumpectomy specimens, four empirical cumulative distribution

functions (eCDFs) for each parameter were created for positive

and negative margins from high density and low density breasts

(negative, high density; negative, low density; positive, low density;

positive, high density). To calculate statistical differences between

the eCDFs, empirical p-values for a Kolmogorov-Smirnov statistic

were computed using blocked permutation to maintain the

correlation structure of multiple site level measurements within

each margin.

Optical Spectral Surveillance of Tissue Landscapes
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Image Reduction
Three approaches were adopted for reducing the 2-D param-

eter maps to image descriptive scalar variables, which are more

easily paired with the overall binary margin diagnosis. The first

approach was to simply take the median value of the image. The

second approach was to quantify differences in the distribution of

values within an image by computing the percentage of image

pixels, which lie below a particular value threshold for each image.

For each of the 5 quantitative parameter maps (b-carotene, total

hemoglobin, ,ms9., b-carotene/,ms9., and total hemoglobin/

,ms9.), 19 variables were computed which represented 19

thresholds. These thresholds were pre-selected for each quantita-

tive parameter by placing all image pixels from all margins into a

single vector, and then selecting the 0.05–0.95 data quantiles in

0.05 quantile increments as the threshold values. This method

ensured that the threshold values were selected to evenly split the

data on the actual data distribution, as opposed to the data range

(which is sensitive to outliers and extremes in the data). Then, for

each individual margin sample and quantitative parameter

combination, these 19 thresholds were used to compute the

percentage of image pixels below each threshold. The third and

final approach was a statistical approach which, compared the

distribution of a given image’s pixels to the distribution of all pixels

from all (positive + close) margins. Specifically, the two-sided

Kolmogorov-Smirnov test was used to compute the likelihood that

the distribution of pixels in the image of interest came from a

‘‘positive’’ pixel distribution, and the resulting Kolmogorov-

Smirnov statistic was directly used as an image-descriptive

variable.

Based on the image-reduction schemes outlined above, for each

margin, a set of 105 image descriptive values were computed (5

quantitative optical parameters6(19 thresholds +1 image median

+1 Kolmogorov-Smirnov statistic) = (5621) = 105 total variables).

For each quantitative optical parameter, a single threshold value

which best separated positive/close margin samples from negative

margin samples was determined by calculating Wilcoxon rank

sums and selecting the threshold value with the lowest p-value.

Thus, a final set of 5 quantitative optical parameters6 (1 optimum

threshold +1 image median +1 Kolmogorov-Smirnov statis-

tic) = (563) = 15 image descriptive variables per imaged margin

were available for construction of a predictive model.

Conditional Inference Tree Models
A conditional inference tree (CIT) model for automated

selection of predictor variables and estimation of prediction

accuracy was employed [28]. This was accomplished using the

‘ctree’ function of the library (party) in the R programming

environment. All 15 candidate variables for all imaged margins

were available for selection by the conditional inference tree (CIT)

model. The CIT model-building process resulted in the selection

of a subset of the predictor variables, and optimum cut-points on

those variables, which gave the best classification accuracy for the

entire patient cohort. The statistical significance of the models

(including the entire model-building or variable selection aspect of

the models) was computed using Fisher’s exact test (1000

permutations), by randomly sampling the margin diagnosis vector

without replacement to shuffle the margin classifications, before

building the CIT models. For each of the permutations, the

performance of the permuted model was compared against the

performance of the observed (true) model using the quantity

F = (1-sensitivity)2+(1-specificity)2, which is minimized in well-per-

forming models. The P-value (probability of a random model

performing better than the observed model) was computed by

determining the fraction of Fpermuted,Fobserved.

Results and Discussion

Table 1 contains a breakdown of statistics for patients enrolled

stratified by mammographic breast density. Note that in the

subsequent results, all margin statistics are related to the margin

status of the initial excised surgical specimen only, and do not

include information about intra-operative re-excision specimens;

therefore, the positive margin rates reported here are not the same

as the final margin status for these patients (since the surgeons in

some cases performed an intra-operative re-excision which

‘‘corrected’’ a positive or close margin on the primary specimen).

In addition, a significant number of imaged margins were those

from the anterior and posterior positions on the specimen. In cases

where a close or positive margin was identified in these locations, if

the surgeon had removed associated anterior skin or the posterior

pectoral fascia, no additional surgery or re-excision would have

been anticipated in these patients. Margins were imaged in 99

neoadjuvant-therapy naı̈ve patients; 88 margins imaged from 70

patients were retained for analysis in this paper. Patients were

excluded due to instrumentation failure (n = 3), discrepant

pathological orientation (imperfect co-registration between the

imaged area and the margin surface as delineated by pathology,

n = 20), atypical ductal hyperplasia (n = 1), re-excision lumpecto-

my (n = 2), and incomplete images (n = 3). The low density group

consisted of 11 MBD-1 patients and 27 MBD-2 patients; the high

density group consisted of 25 MBD-3 patients and 7 MBD-4

patients. No significant differences (using a Wilcoxon rank-sum)

were observed between breast density subgroups for invasive

tumor component size (p = 0.76), in-situ tumor component size

(p = 0.77), or lumpectomy volume (p = 0.1). There was a

borderline significant result for age (p = 0.06), reflecting the fact

that breast density can be decreased with age although there is

significant variability between patients.

Spectral Contrast is Sensitive to Differences in Benign
Breast Composition

With quantitative spectral imaging, the concentrations of b-

carotene and hemoglobin can be quantified, which should be

directly related to the amount of fatty tissue and vasculature,

respectively. Likewise, the reduced scattering coefficient has been

shown to be sensitive to changes in cellular density and collagen

content [29]. We chose to exclude hemoglobin from our analysis

because of a study we performed on the post-excisional kinetics of

that parameter in freshly bisected mastectomies and fresh

lumpectomy specimens using our device, in which we found that

hemoglobin is not a stable diagnostic parameter post-excision [26].

Since our quantitative technique explicitly determines the molar

concentration of each relevant absorber in the spectral range, no

further correction is needed to account for the effects of

hemoglobin on our measurements. In addition, shielding of b-

carotene absorption by hemoglobin is not a concern due to the fact

that b-carotene absorbs primarily in the spectral window between

the Soret band and alpha and beta absorption bands where

hemoglobin absorption is low. Therefore, for the purposes of this

study, the hemoglobin content was not considered further.

It was previously hypothesized that [b-carotene]/,ms9. is

sensitive to the relative amount of fat (from the [b-carotene]

parameter) to fibroglandular tissue (from the ,ms9.parameter)

[23]. Figure 2A contains an image of [b-carotene], ,ms9., and [b-

carotene]/,ms9. from a negative margin with histologically-

confirmed adipose, and fibroglandular plus adipose, sites high-

lighted. The sites with both fibroglandular and adipose tissue have

lower [b-carotene] and higher ,ms9., and lower [b-carotene]/

,ms9. compared to purely adipose tissue as expected. These

Optical Spectral Surveillance of Tissue Landscapes
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trends were confirmed in a larger cohort of histologically-

confirmed sites from the margins imaged in this study where

H&E images of the sites were broken down into specific categories:

fibroglandular (collagen and benign epithelium), fibroadipose

(collagen and adipose), and adipose. The empirical cumulative

distribution functions (eCDFs) in Figure 2B show that [b-carotene]

decreases, ,ms9. increases and [b-carotene]/,ms9. decreases as

the tissue changes from predominantly adipose tissue to predom-

inantly fibroglandular tissue components (i.e. decreasing fat and

increasing collagen/glands).

Spectral Surveillance Tracks Shifts in Tissue Composition
Related to Breast Density

To further elucidate the sensitivity of this technique to the

histological landscape in the breast when it is used to ‘‘map’’ large

areas, mammographic breast density (MBD) in negative margins

was used as a model system. It is expected that as breast density

increases, the percentage of collagen/glands in the overall breast

should increase whereas the percentage of fat should decrease.

Based on the findings in Figure 2 this would suggest a decrease in

[b-carotene] and an increase in scattering. To test this hypothesis,

the spectral information from negative neoadjuvant-naı̈ve margin

images was used to investigate whether the b-carotene and

,ms9.parameters would reflect this shift due to differences in

breast density between patients. Figure 3 shows a representative

set of images and eCDFs of all pixels from negative margins,

separated by low (MBD = 1 or 2) and high (MBD = 3 or 4) density

breasts. Interestingly, [b-carotene] and [b-carotene]/,ms9. are

significantly higher in the negative margins of high density

compared to low density breasts, which is counter intuitive (since

Table 1. Patient and tumor demographics.

Low MBD Patients High MBD Patients

# of Patients 38 32

Avg. Age (range) 61.9 (43–87) 56.8 (36–83)

Avg. BMI (range) 31.7 (18.3–49.2) 28.1 (18.4–43.7)

Tumor Receptor Status

ER +,2 33 (86.8%), 5 (13.2%) 27 (84.4%), 4 (12.5%)

PR +,2 29 (76.3%), 9 (23.7%) 25 (78.1%), 6 (18.8%)

HER-2/neu +,2 0 (0%), 33 (86.8%) 5 (15.6%), 20 (62.5%)

Triple-negative 4 (10.5%) 0 (0%)

Avg. Lumpectomy Volume (range) 63.7 cm3 (10.2–192.0 cm3 ) 49.5 cm3 (9.5–175.9 cm3 )

Primary Tumor Histology

IDC 4 (10.5%) 3 (9.4%)

DCIS 4 (10.5%) 5 (15.6%)

IDC/DCIS 16 (42.1%) 17 (53.1%)

Other 4 (10.5%) 3 (9.4%)

No Tumor 0 (0%) 1 (3.1%)

Avg. Invasive Component Size (range) 1.68 cm (0.6–4.3 cm) 1.59 cm (0.4–3.6 cm)

Avg. In situ Component Size (range) 3.33 cm (0.1–10 cm) 3.04 cm (0.1–7 cm)

Measured Margin Histology

IDC 8 (16.7%) 6 (15.0%)

DCIS 8 (16.7%) 9 (22.5%)

IDC/DCIS 1 (2.1%) 1 (2.5%)

Other 6 (12.5%) 7 (17.5%)

No Tumor 25 (52.1%) 17 (42.5%)

Surgical Margin Status

Negative (.2 mm) 25 (52.1%) 17 (42.5%)

Close (,2 mm) 15 (31.3%) 14 (35.0%)

Positive 8 (16.7%) 9 (22.5%)

Measured Margin

Anterior 10 (20.8%) 7 (17.5%)

Posterior 11 (22.9%) 12 (30.0%)

Superior 7 (14.6%) 8 (20.0%)

Inferior 8 (16.7%) 4 (10.0%)

Medial 6 (12.5%) 6 (15.0%)

Lateral 6 (12.5%) 3 (7.5%)

BMI – body mass index, IDC – invasive ductal carcinoma, DCIS – ductal carcinoma in situ.
doi:10.1371/journal.pone.0069906.t001
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low density breasts are associated with higher proportions of fatty

tissues). The increased ,ms9. is likely associated with an increase

in glandular and collagen tissue in the breasts of these patients.

However, the significant increase in [b-carotene] with breast

density, and thus the ratios of [b-carotene] to ,ms9., could not be

attributed to differences in the relative percentage of adipose

tissue, since low density breasts should by definition have a higher

percentage of this tissue type. This result suggested that the

adipocytes in high density breasts have a higher baseline b-

carotene concentration than those in low density breasts.

Adipocytes in High Density Breasts are Smaller and have
a Higher Baseline b-carotene Concentration

Under normal conditions b-carotene is absorbed through the

intestines and circulates in the blood before being transported to

the liver; excess b-carotene is stored in adipose tissue [30–32].

Inside the adipocyte, b-carotene and retinol (a byproduct of b-

carotene) are converted into retinaldehyde; retinaldeyde can then

be converted into retinoic acid [33]. This b-carotene/retinoic acid

pathway is important in adipocyte differentiation and has also

been shown to play an important role in modulating adipocyte size

[33,34]. This suggests that b-carotene concentration is related to

adipocyte size, which prompted an investigation into whether

differences in adipocyte size existed between high and low density

breasts.

Digital H&E images of optically-sampled adipose tissues from

breasts covering the full range of density classes are shown in

Figure 4A. Qualitatively, the average adipocyte size appears to

decrease as breast density increases. We compared the adipocyte

morphological metrics computed from digital images of tissue

sections; an average of 3.4 and 3.3 tissue sections per patient were

imaged for the low and high MBD subgroups, respectively, in

order to sample the intra-patient variability. A quantitative

analysis of the adipose tissue images (n = 84) showed increased

adipocyte density (p = 0.093) and smaller adipocyte areas

(p = 0.17) in the adipose tissues of high density breasts (MBD-3

and MBD-4) as compared to low density breasts (MBD-1 and

MBD-2). After restricting the body mass index (BMI) range of the

patients included in this analysis to BMI = 25–30 (n = 25) to

correct for the influence of BMI on adipocyte size, statistically

significant differences were observed: namely, increased adipocyte

density (p = 0.034) and smaller adipocyte areas (p = 0.05) in the

adipose tissues of high density breasts as compared to low density

breasts (Figure 4C). This BMI range was chosen since the majority

of the patients fell within this range. This analysis suggests that

increased [b-carotene] is associated with smaller adipocytes, and

that high density breasts overall have smaller adipocytes, thus

resulting in an increased baseline level of [b-carotene] in the fatty

tissues of patients with high breast density. Adipose tissues from

high density breasts had higher scattering values and smaller

adipocytes, indicating larger scattering signals from smaller cells

that are more tightly packed.

Spectral Surveillance of Shifts in Breast Tissue
Composition can be Leveraged for Detection of Residual
Cancer on a Tumor Margin

When areas of malignancy are present, the tissue composition

landscape should shift to one with less fat and more fibroglandular

components, i.e. one with less b-carotene and higher ,ms9..

Figure 5A shows [b-carotene], ,ms9., and [b-carotene]/,ms9.

in a positive and negative margin from patients matched for breast

density (MBD-3). In the positive margin there are lower values of

[b-carotene] and [b-carotene]/,ms9. and higher values of

,ms9.present as compared to the negative margin; in these

Figure 2. Relationship between optical parameters and benign breast composition. A) 50x bicubic interpolated images of [b-carotene],
,ms9., and [b-carotene]/,ms9. from a negative margin. Sites with corresponding histopathology are highlighted with diagnoses of adipose (A) or
fibroglandular plus adipose (FG+A). B) Empirical cumulative distribution functions (eCDFs) of the site-level data for fibroglandular (FG), fibroadipose
(FA), and adipose (A) sites.
doi:10.1371/journal.pone.0069906.g002
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particular images, these lower values of [b-carotene]/,ms9. were

histologically-confirmed to correspond to sites with ductal

carcinoma in situ (DCIS) that was less than 0.5 mm below the

margin surface. The benign sites, which had fattier composition,

had higher [b-carotene] and [b-carotene]/,ms9. values and

lower ,ms9. values, although fibroglandular tissues obscure some

of the differences between benign and malignant tissue. Figure 5C

shows the eCDFs for each of these optical variables, comparing the

negative and positive margin distributions. These eCDFs show the

expected trend for increased ,ms9. in the positive margins

compared to the negative margins. Interestingly, the [b-carotene]

eCDF’s show that the positive margin is characterized by a greater

proportion of very low [b-carotene] values (,25 mM) compared to

the positive margin, but that it also contains a considerable

fraction of pixels with [b-carotene] values higher than the negative

margin. Even though these samples were matched for MBD, again

this speaks to the inter-patient variability in tissue composition.

However, the fact that the presence of malignant sites results in

markedly low [b-carotene] values, along with a shift to higher

,ms9. values, increases the contrast in the [b-carotene]/

,ms9.parameter between positive and negative sites within the

positive margin distribution. In other words, malignant sites with

very low fat content and correspondingly low [b-carotene] values,

would show better contrast if the surrounding fat had a very high

[b-carotene] concentration.

Figure 6 shows eCDFs of all measured image pixels from

negative (2,186 measurements) and positive margins (2,539

measurements), stratified by breast density. These eCDFs show

the trends that we expected for this shifting biological landscape:

decreased [b-carotene], increased ,ms9., and decreased [b-

carotene]/,ms9. in the positive margins compared to the

negative margins. The significant increase in baseline [b-carotene]

levels in the negative margins of high density patients, although

originally unexpected, actually served to markedly improve

contrast between positive and negative margins in this cohort of

patients (this is also demonstrated in Figure 6C, where there is a

large difference between the [b-carotene] values in benign and

malignant sites in the positive margin). The ratio of [b-carotene] to

,ms9. also benefited from the differences in the negative margins

due to breast density, and was found to be the most useful

parameter in discriminating positive and negative margins.

Figure 6C shows the difference in eCDFs (positive minus negative

margin distributions) for low and high density patients and also

shows the increased contrast in the high density patients.

A Conditional Inference Tree (CIT) model was fitted to the

dataset using the 15 image descriptive variables described in the

Methods. The CIT model can be thought of as a set of ‘‘rules’’

which are applied to any candidate margin image to determine

whether it will be classified as positive or negative. For this model,

the margin samples were first classified into low and high breast

density subgroups (MBD #2 and MBD $3, respectively) prior to

Figure 3. Relationship between optical parameters and benign breast composition with differences in breast density. A) Parameter
maps from a low density margin; B) Parameter maps from a high density margin; blue indicates higher values of the corresponding variable. C) eCDFs
of all measured sites from negative, neoadjuvant-naı̈ve margins, separated by mammographic breast density. P-values were calculated with modified
Kolmogorov-Smirnov statistics.
doi:10.1371/journal.pone.0069906.g003
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construction of the predictive model – this was in an effort to

account for the differences in baseline optical variables between

MBD subgroups previously observed. This in effect creates a single

decision tree model, in which the first decision node is MBD

subgroup. The primary quantitative parameter chosen in both the

low and high MBD subgroups was the ratio of [b-carotene]/

,ms9.; however, the statistical parameter computed on that

variable was different between the MBD subgroups. The other

quantitative parameter selected by the CIT model was ,ms9.,

and in particular, the Kolmogorov-Smirnov statistic, which

compared a given margin sample ,ms9. distribution to the

distribution of ,ms9. from all pixels from all positive margins.

Table 2 summarizes the predictor variables selected by the

conditional inference tree (CIT) model for each MBD-subgroup.

Variable 1 in the Low MBD model is the percentage of [b-

carotene]/,ms9. image pixels below 1.2388 mM-cm, which

reflects the proportion of the image with either very low [b-

carotene] values or very high ,ms9. values, or both, which would

be indicative of malignant regions (this is also demonstrated in

Figure 5). Variable 2 in the Low MBD model is the 2-sided

Kolmogorov-Smirnov statistic for ,ms9.. In this case, the

Kolmogorov-Smirnov statistic for ,ms9., which compares the

,ms9. eCDF of any given margin image to the ,ms9. eCDF of

all pixels from all positive margins (the reference distribution), is

helpful in further classifying these margin samples. Samples with a

Kolmogorov-Smirnov statistic of 0 indicate that their pixel

distribution was drawn from the reference distribution; therefore,

samples with lower Kolmogorov-Smirnov statistics have distribu-

tions which more closely mimic the reference distribution of all

positive margins, and are therefore more likely to be positive. For

the high breast density subgroup, a single variable, the median of

the [b-carotene]/,ms9. margin distribution, was selected by the

CIT model. In this case, positive margins were characterized by a

lower median (0.5 quantile) [b-carotene]/,ms9. than negative

margins (as observed in Figure 5C). Taken together, these results

indicate that the presence of residual carcinoma on the cancer

margin indeed results in a shift in breast tumor margin

morphology to one with less fat and more fibrous and glandular

components, which is reflected as a shift to lower values of [b-

carotene]/,ms9.. In addition, the presence of residual carcinoma

results in a ,ms9. image distribution, which is similar to the

,ms9. distribution for all pixels from positive margin samples.

Table 3 contains a summary of the performance of the

technology for intra-operative detection of close or positive margin

status. Margin assessment based on quantitative spectral imaging

would have detected close/positive margins with 74% sensitivity

(65% and 83% in low and high density breasts, respectively) and

86% specificity (92% and 76% in low and high density breasts,

respectively). Overall, the surgeon sensitivity was 65% (69.6% and

60.9% in low and high density breasts, respectively), which was

calculated based on the number of positive primary margins for

which an additional intra-operative shaving was not obtained.

However, determination of the true surgeon specificity is not

straightforward, since at our institution some surgeons obtain

Figure 4. Analysis of adipose tissue between low and high density breast tissue. A) Representative H&E micrographs (100x) from all 4
mammographic breast densities (MBD). Cell area and cell density were calculated from an automated image analysis algorithm applied to H&E slides.
[b-carotene] and ,ms9. were measured via quantitative spectral imaging. B) The adipose sites are from the negative margins of neoadjuvant-naı̈ve
patients with a BMI restricted to 25–30. P-values were calculated with a Wilcoxon rank-sum.
doi:10.1371/journal.pone.0069906.g004
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additional shavings of multiple margins as a matter of course,

whether or not they believed residual disease to be present – this

had the effect of artificially increasing the false-positive rate

(thereby decreasing the specificity), if we calculate it as the number

of times the surgeon took a shaving of a negative primary margin.

Therefore, although we compute the surgeon specificity (26%,

Table 3) for comparison to the device, the preceding caveat

applies. The surgeon sensitivity is also potentially decreased due to

the inability, in some cases, of the surgeon to remove extra

shavings of the anterior and posterior margins when they are

abutting skin and muscle, respectively. This is demonstrated in

Table 3 by the calculated sensitivity of 48% in anterior and

posterior margins, compared to 86% in all other margin

orientations. Therefore, the true surgeon sensitivity is likely more

accurately reflected by the higher number, and is consistent with

the eventual repeat surgery rates (27.1% of patients overall, or

21.1% (8/38) in low MBD patients and 34.4% (11/32) in high

MBD patients). (Due to the difficulty in calculating the true

surgeon performance on the primary specimen against histopa-

thology, we do not report PPV, NPV, and overall accuracy.) 74%

of the margins imaged in this study were in the MBD2 and MBD3

subgroups, which indicate that the lowest and highest density

subgroups (MBD1 and MBD4) were unequally represented in this

dataset. Although the sensitivity of the device and the surgeon are

relatively similar overall, when broken down by MBD the

sensitivity of the device is much higher in the high density

subgroup.

Table 4 provides a breakdown of the false negatives and false

positives for the CIT model and the surgeons’ performance.

These numbers are broken down by the type of cancer found at

the margin, the surgical margin status, and MBD. Of the 12

false-negatives in the CIT model, close margins and margins

containing DCIS had higher percentages (75% and 33%,

respectively) of being missed than positive margins or margins

that contained IDC (25% and 25%, respectively). This was also

true of the surgeons’ performance where 38% DCIS margins

were missed and 63% close margins were missed. Four out of

the 6 false positives in the model were associated with histologic

features that may explain why they were incorrectly diagnosed.

One of the measured false-positive margins consisted of

fibrocystic change and fibroadenoma; two of the measured

margins had adjacent margins that contained atypical ductal

hyperplasia and fibrocystic change; and another measured

margin had cancer ,4 mm from the surface.

Figure 5. Optical parameters reflect presence of residual disease. 50x bicubic interpolated images of [b-carotene], ,ms9., and [b-carotene]/
,ms9. from a A) negative and B) positive margin in 2 different patients with MBD-3. Sites with corresponding histopathology are highlighted with
diagnoses of adipose (A), adipose plus fibroglandular (A+FG), and ductal carcinoma in situ (DCIS). C) eCDFs of the pixels from the representative
images in panels A and B.
doi:10.1371/journal.pone.0069906.g005
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Summary and Conclusions
The technology presented here seeks to bridge the gap between

the requirement for microscopic resolution and cm2 imaging areas

and millimeter sensing depth for tumor margin assessment, by

leveraging quantitative optical spectral imaging to report on the

underlying composition of the interrogated tissue. Specifically, the

device has an imaging area throughput of 5 cm2/min with 5 mm

lateral resolution and 0.5–2 mm sensing depth; higher lateral

resolution can be achieved by finer sampling at the expense of

imaging throughput. An important advantage of this technique is

the ability to be sensitive to the tissue down to 2 mm below the

tissue surface, which is important for detection of residual cancer

lying surreptitiously below the surface. A point-scanning probe

based on RF spectroscopy [35–37], the MarginProbe, commer-

cialized by Dune Medical, has recently obtained FDA approval for

breast tumor margin assessment. Compared to that technology,

notable differences of our device are the use of optical

wavelengths, and the ability to quickly collect images or maps of

Figure 6. Optical contrast between negative and positive margins, stratified by mammographic breast density. A–B) eCDFs of all
measured sites from negative and positive, neoadjuvant-naı̈ve margins, separated by radiographic breast density. The P-values indicated correspond
to modified Kolmogorov-Smirnov tests between: 1) negative versus positive margins in low density patients and 2) negative versus positive margins
in high density patients. C) Difference eCDFs calculated between the positive and negative margin eCDFs of all measured sites for both low and high
density breasts. Negative values indicate the negative margin distribution has higher values of the optical variable.
doi:10.1371/journal.pone.0069906.g006

Table 2. Summary of predictor variables selected by the
conditional inference tree model, stratified by mammographic
breast density (MBD).

Model
Optical Parameter
(Unit) Image Descriptive Parameter

Low MBD

Variable 1 [b-carotene]/,ms9.

(mM-cm)
% image pixels ,1.2388 mM-cm

Variable 2 ,ms9. (cm21) 2-sided Kolmogorov-Smirnov statistic

High MBD

Variable 1 [b-carotene]/,ms9.

(mM-cm)
Median value in image

doi:10.1371/journal.pone.0069906.t002
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the surface. Other emerging optical technologies meant to address

this problem include point-scanning reflectance spectroscopy [38–

41], spatial frequency domain imaging [38], and optical coherence

tomography [42]. The point-scanning reflectance techniques are

fundamentally equivalent to our approach, and nicely demonstrate

what is possible in terms of spatial resolution with the technique

when the specimens are densely sampled (similar resolutions could

be achieved with our multi-point-scanning system by translating

the probe in finer increments). Spatial frequency domain imaging

is a relatively new wide-field reflectance imaging technique, which

is capable of acquiring quantitative optical property maps of the

tissue, similar to our system, and was shown to be sensitive to

absorbing and scattering inclusions beneath the surface of cleverly-

designed contrast detail phantoms [38]. The strengths of our

reflectance approach compared to alternate implementations are

the use of parallel-pixel detection (8 parallel pixels in the system

used for this study, 49 parallel pixels in the 2nd-generation system),

the robust and simple calibration scheme (requiring a single

measurement of an off-the-shelf Spectralon reflectance standard

for each imaging session), and the contact sensing geometry which,

coupled with the specimen holder, allows well-defined sampling

characteristics and readily facilitates accurate pathologic co-

registration. Optical coherence tomography is a depth-resolved

technique which observes information related to light scattering of

tissue from suitable depths, but at this time has not been scaled for

observation of .1 cm2 fields of view [42,43], although the

potential for such scaling exists. In addition, any microscopic

imaging approach will result in a preponderance of image data

(i.e., more data than a human can reasonably assess in an intra-

operative timeframe), which must be analyzed with an appropriate

computational algorithm, which can detect spatial signatures

associated with residual cancer.

The technique presented here (along with other diffuse

reflectance techniques), although not capable of microscopic

image resolution, does offer a pragmatic solution that has potential

as a clinically translatable tool for tumor margin assessment.

Resolution specifically pertains to the ability to spatially separate

the locations of adjacent structures, whereas sensitivity pertains to

the ability to quantify a measureable change in contrast. Rather

than leverage high spatial resolution, we instead leverage sensitivity to

optical sources of contrast, which are related to tissue composition.

In other words, sensitivity to small tumor foci would be more

related to the difference in optical properties between benign and

malignant tissue, than to the spatial resolution of the device (as

demonstrated in the study by Laughney [38]). A previous study by

our group using a single channel version of the device determined

that the technique could detect malignancy with 78% sensitivity

when it comprised ,25% of the interrogated volume; that

sensitivity went up to 84% when malignancy comprised 25–50%

Table 3. Sensitivity (Se), specificity (Sp), positive predictive
value (PPV), negative predictive value (NPV), and classification
accuracy (A) of the device and the surgeon.

Samples (n) Se (%) Sp (%) PPV (%) NPV (%) A (%)

Device Performance

All (88) 74 86 85 75 80

MBD 1–2 (48) 65 92 88 74 79

MBD 3–4 (40) 83 76 83 76 80

Anterior & Posterior (40) 64 73 80 55 68

Other orientation (48) 86 93 90 89 90

Surgeon Performance*

All (88) 65 21

MBD 1–2 (48) 70 28

MBD 3–4 (40) 61 12

Anterior & Posterior (40) 48 33

Other orientation (48) 86 15

Performance within each MBD subgroup is given. *The surgeon’s performance
is based on the primary specimen (and no additional shavings) taken during the
first operation.
doi:10.1371/journal.pone.0069906.t003

Table 4. Number of false negative (FN) and false positive (FP) margins (stratified by margin histology and surgical margin status)
and patients (stratified by MBD) calculated from the surgeon performance, as well as, the performance of the device.

# of FN (%) # of FP (%)

Surgeon Device Surgeon Device

Margin Histology IDC 3 (19)% 3 (25%) 0 (0%) 0 (0%)

DCIS 6 (38%) 4 (33%) 0 (0%) 0 (0%)

IDC/DCIS 1 (6%) 1 (8%) 0 (0%) 0 (0%)

Other 6 (38%) 4 (33%) 0 (0%) 0 (0%)

No Tumor 0 (0%) 0 (0%) 33 (100%) 6 (100%)

Surgical Margin Status Negative 0 (0%) 0 (0%) 33 (100%) 6 (100%)

Close 10 (63%) 9 (75%) 0 (0%) 0 (0%)

Positive 6 (38%) 3 (25%) 0 (0%) 0 (0%)

MBD 1 2 (13%) 3 (25%) 4 (18%) 1 (20%)

2 5 (31%) 5 (42%) 9 (41%) 1 (20%)

3 8 (50%) 3 (25%) 7 (32%) 2 (40%)

4 1 (6%) 1 (8%) 2 (9%) 1 (20%)

Measured Margin Anterior and Posterior 13 (81%) 9 (75%) 10 (30%) 4 (67%)

All Others 3 (19%) 3 (25%) 23 (70%) 2 (33%)

doi:10.1371/journal.pone.0069906.t004
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of the interrogated volume [44]. Those results reinforce our

findings that the sensitivity to ‘‘close’’ margins (where the

malignancy is below the surface) is less than that for ‘‘positive’’

margins (where the malignancy is at the surface and comprises

more of the sensing volume). However, as shown in Table 4, our

device would have resulted in fewer false negatives than the

surgeon for both close and positive categories, respectively.

The primary sources of contrast in this study were b-carotene

concentration, the reduced light scattering coefficient, and the

ratio of b-carotene concentration to the scattering coefficient.

These parameters are sensitive to a shift in the tissue composition

landscape from a ‘‘normal’’ mix of adipose, fibroadipose, and

fibroglandular tissues, to a landscape with decreased adipose and

an increased fibroglandular component (associated with malig-

nancy). We did find differences in the baseline b-carotene

concentration in the adipose tissues of breasts with differing

mammographic breast density, which required these cohorts of

patients to be considered separately. However, we do not envision

this as a fundamental limitation of our approach, since mammo-

graphic breast density is generally known prior to surgery and

could be used as a priori information in the predictive model.

The differences in adipocyte size and [b-carotene] with breast

density were an unexpected finding, but actually served to increase

optical contrast in high density breasts. This was a fortuitous

finding given that surgeons have less flexibility to resect large

volumes in high density breasts (which tend to be smaller),

therefore increasing the need for an intra-operative assessment

tool. From this cohort of 70 patients the percentage of patients

who returned for a second surgery was 21.1% (8/38) of low density

patients and 34.4% (11/32) of high density patients. This higher

re-excision rate in high-density patients is consistent with others

reported in the literature. For example, Bani et al [20] found that

higher MBD was associated with higher re-excision rates;

specifically their re-excision rates were: 18% (MBD-1), 18%

(MBD-2), 22% (MBD-3), and 42% (MBD-4). These studies speak

to the fact that surgeons face greater difficulties in excising tumors

in a denser breast and that an optical device would especially

benefit this patient population. However, in our study, the number

of combined close and positive margins on the primary specimen

was identical in both MBD cohorts, which points to the need for

an intra-operative assessment tool even in cases where the surgeon

is free to resect large tissue volumes. With regard to the

relationships observed between adipocyte size and b-carotene

concentration, it is not clear if it is simply the result of higher

concentrations due to smaller individual storage volumes in the

smaller adipocytes, or if b-carotene plays a more active role in the

determination of adipocyte size. A limitation of this analysis was

the small sample size and the assumption of independence in the

statistical tests used. However, for the purposes of our study,

observing these trends helped us to account for some of the inter-

patient variance and improve the diagnostic potential of the

device, and suggest an area of further study.

There are a number of limitations of the study that must be

addressed. One limiting factor in this study was the lack of a

control group consisting of entirely normal breast tissue (i.e.

reduction mammoplasty specimens). Analysis of normal tissue will

be essential to ensure that the relationship between mammo-

graphic breast density and adipocyte size does exist independent of

malignancy and is not due to a cancer ‘‘field effect’’. Future studies

will include non-cancerous breasts to validate the observation that

the b-carotene concentration and adipose size are related and

modulated by breast density, independent of the presence of

malignancy. Another limitation of this particular study was the

imaging of only 1–5 full margins per specimen, due to time

constraints. The bottle-neck in the process was the need to

manually translate the probe to cover the entire margin. In this

study, the entire process (acquiring the sample, mounting in the

holder, imaging, book-keeping, data analysis, and clean-up) took

between 20–25 minutes, or roughly the amount of time between

acquiring the sample and the patient leaving the operating room.

The number of margins, which were imaged for each patient was

thus limited by the size of the sample and the length of time

available in the operating room. Imaging of all sides of a 100 cm2

specimen would take approximately 20 minutes with the 8-

channel probe described here, in terms of probe translation and

imaging/analysis time (5 cm2/min area throughput, limited by

manual probe translation time). We note however, that this

process has been sped up through the incorporation of approx-

imately 6 times as many channels in the imaging probe to yield a

49-channel probe in a commercial prototype (Zenascope PC49,

Zenalux Biomedical, Inc., Durham, NC). The entire collection,

processing, and display process for a full margin has been

automated and can be completed in 30 seconds with the click of

a single button in the software, demonstrating the feasibility of

scaling this technology for clinical translation. With this 49-

channel version, a 100 cm2 BCS specimen can be scanned in ,3

minutes at 5 mm lateral resolution (imaging area throughput = 35

cm2/min). With regards to our findings related to b-carotene

concentration in adipose tissues, in this study, we did not collect

the diet or supplement history of the patients, so we do not know

how dietary b-carotene intake affected the measured adipose b-

carotene concentration levels. In fact, we do not know of a study

that has systematically investigated to what extent excess b-

carotene in the diet is stored in the adipose tissue. However, we did

not observe a clear correlation between breast density and BMI in

our study, which indicates that our observations of differences in

adipose b-carotene concentration across mammographic density

levels was not biased by BMI (assuming that patients with higher

BMI might have poorer nutrition and lower b-carotene intake).

However, this is an open area for investigation and must be

considered in future studies with the device. A final limitation of

the work presented here is that the CIT predictive model has not

been validated on an independent dataset, and is therefore an

estimate of the model prediction accuracy only; validation studies

are underway.

In conclusion, quantitative optical spectral imaging may provide

a practical adjunct to established clinical paradigms in breast

conservation surgery and histopathology, by providing a rapid

survey of the margin surface that is reflective of underlying tissue

composition. In particular, the technology could be especially

useful in patients with dense breast tissue, which present a greater

challenge to the surgeon in obtaining negative margins. The study

described here was not designed to definitively demonstrate the

advantage of this technique over the unaided surgeon with respect

to patient outcomes, but it does demonstrate in a relatively large

number of specimens the potential clinical utility and translational

feasibility of such a device to detect residual cancer on the primary

specimen as compared to histopathology. A 150-patient prospec-

tive validation study, using a faster second-generation version of

the device, is currently underway at Duke University Medical

Center.
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