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Abstract

Background: Overcoming spaceflight-induced (patho)physiologic adaptations is a major challenge preventing long-term
deep space exploration. RNA interference (RNAi) has emerged as a promising therapeutic for combating diseases on Earth;
however the efficacy of RNAi in space is currently unknown.

Methods: Caenorhabditis elegans were prepared in liquid media on Earth using standard techniques and treated acutely
with RNAi or a vector control upon arrival in Low Earth Orbit. After culturing during 4 and 8 d spaceflight, experiments were
stopped by freezing at 280uC until analysis by mRNA and microRNA array chips, microscopy and Western blot on return to
Earth. Ground controls (GC) on Earth were simultaneously grown under identical conditions.

Results: After 8 d spaceflight, mRNA expression levels of components of the RNAi machinery were not different from that in
GC (e.g., Dicer, Argonaute, Piwi; P.0.05). The expression of 228 microRNAs, of the 232 analysed, were also unaffected during
4 and 8 d spaceflight (P.0.05). In spaceflight, RNAi against green fluorescent protein (gfp) reduced chromosomal gfp
expression in gonad tissue, which was not different from GC. RNAi against rbx-1 also induced abnormal chromosome
segregation in the gonad during spaceflight as on Earth. Finally, culture in RNAi against lysosomal cathepsins prevented
degradation of the muscle-specific a-actin protein in both spaceflight and GC conditions.

Conclusions: Treatment with RNAi works as effectively in the space environment as on Earth within multiple tissues,
suggesting RNAi may provide an effective tool for combating spaceflight-induced pathologies aboard future long-duration
space missions. Furthermore, this is the first demonstration that RNAi can be utilised to block muscle protein degradation,
both on Earth and in space.
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Introduction

The RNA interference (RNAi) machinery regulates posttran-

scriptional gene expression by using small (,20 nucleotide long)

non-coding double-stranded RNA (dsRNA) molecules, in com-

bination with nuclease-containing argonaute complexes, to

sequence-specifically silence target mRNAs. Since its discovery

[1] RNAi technology has emerged as a promising tool for

combating a variety of pathologies. Despite technical difficulties

surrounding the effective delivery of dsRNA to diseased tissues,

rapid progress has been made towards utilising this technique as a

therapeutic over recent years. Indeed, more than a dozen clinical

trials are currently underway employing RNAi to target illnesses

ranging from cancer to asthma [2], [3].

One currently unexplored use for RNAi technology is within

the space (microgravity) environment. A primary aim of the

world’s space agencies is to send humans to other planetary bodies

such as Mars. However, preventing attainment of this goal is the

frequent occurrence of various (patho)physiologic adaptations

during spaceflight, which may be detrimental for crew health and

mission performance. For example, decreases in skeletal muscle

mass occur during spaceflight [4–6] to levels which are sufficient to

impair contractile function [4] and rehabilitation [7]. Loss of bone

mass also occurs with 92% of crewmembers experiencing
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decreases of 5 to 10% [4], [8]. Furthermore, indirect measures of

metabolism indicate an increased reliance on glucose utilisation

and decreased fat oxidation as a fuel source (reviewed in [9], [10]),

which may negatively affect physical performance during extra-

vehicular activities requiring prolonged energy expenditure.

Finally, T lymphocytes harvested and cultured from crew

members display a lowered ability to activate in response to

mitogens [11] and also increases in chromosomal aberrations [12],

suggesting impaired immune function which, if persistent over

longer flights, may pose a serious health risk. Therefore, in order

to minimise the inherent risks associated with embarking on long-

term deep space explorations, effective countermeasures to these

(mal)adaptations must be developed.

Drug-based therapies are limited in spaceflight by their short shelf

life due to radiation but RNAi may circumvent this disadvantage

due to simple and cheap production of dsRNA in flight. However, a

number of factors unique to the space environment render the

efficacy of RNAi during spaceflight in question. First, total muscle

RNA content is lowered after just 7 days spaceflight in LEO [13].

Thus, because the biogenesis of small RNAs is an integral level of

RNAi regulation [14] and since the potency of RNAi is amplified by

the replication of cellular RNA [15] it is possible that the RNAi

machinery may malfunction in space. Second, RNA is less-stable

than DNA and may, therefore, be more susceptible to damage by

increased radiation in space which again may reduce the

effectiveness of RNAi. Third, RNAi evolved as an immune

surveillance system whereby malicious genetic material in the form

of viruses and transposons are rapidly targeted for destruction [16].

Since T lymphocytes demonstrate impaired activation and

increased chromosome aberrations in space [11], [12], and the

transcription of genes integral to effective T-cell immune responses

is suppressed [17], it may be logical to hypothesise that the RNAi

immune response may also be specifically altered by spaceflight,

perhaps in the form of reduced mRNA transcription for

components of the RNAi machinery. Indeed, UV radiation

significantly affects the mRNA expression of major components of

RNAi silencing processes in plants [18]. Therefore, before the space

agencies can begin to commit the large sums of money necessary to

investigate therapeutic strategies during spaceflight, an important

initial step is to demonstrate the efficacy of RNAi in this unique

environment. Since the nematode Caenorhabditis elegans (C. elegans)

was the first animal in which RNAi was demonstrated [1] and

because we have established C. elegans as an in vivo model organism

for understanding the effects of spaceflight [19–22] we tested the

efficacy of RNAi in C. elegans during spaceflight.

The aim of this experiment was, therefore, to extend the use of

C. elegans to determine whether the RNAi machinery continues to

function normally during spaceflight. We report for the first time

the stable expression of microRNAs and mRNA of genes encoding

for components of the RNAi machinery during spaceflight. We

also show that RNAi treatment in space induces alterations in

target protein expression and localisation that are not different

from ground controls. Furthermore, treatment with RNAi against

lysosomal enzymes during spaceflight prevents the degradation of

muscle proteins on return to Earth. Thus, RNAi presents a viable

option for targeted therapeutic strategies onboard future long-term

manned space explorations.

Results

Expression of RNAi machinery and microRNAs are normal
after spaceflight

We first examined the expression of mRNAs encoding for

components of the RNAi machinery after spaceflight to determine

whether spaceflight per se may affect cellular capacity to silence

genes in response to exogenous dsRNAs. To achieve this we flew

L1 larvae in nutrient-deprived media, which were subsequently

introduced to a liquid food source upon arrival in microgravity to

activate the experiment. Animals were cultured for 8 d before

experiment cessation by freezing at 280uC and remained frozen

on return to Earth. Identical conditions were conducted on Earth

simultaneously (ground control) using the orbital environmental

simulator (OES) which adjusts temperature, O2 and CO2

concentrations, and relative humidity, but not microgravity or

radiation levels, to simultaneously match conditions on the

International Space Station. Only adult animals (2nd generation)

were collected, by sedimentation, and their total RNA was

isolated. Microarray analysis revealed normal expression of genes

encoding for key proteins involved in the RNAi process after 8 d

spaceflight versus ground controls (table 1).

We also aimed to determine whether the expression of

microRNAs was altered in adult animals after 4 d (1st generation)

and 8 d (2nd generation) spaceflight in order to test the capacity of

cells to silence-genes in response to aberrant genome-encoded

RNA during spaceflight. Of the 232 microRNAs analysed, 228

remained unchanged during spaceflight. Only 4 targets showed a

significant change (increase or decrease 620% in flight versus

controls (ground control and 1G centrifuge) in expression after

spaceflight: miR-60 +1.33-fold (P = 0.038); miR-1819 20.72-fold

(P = 0.049); miR-1823 20.68-fold (P = 0.005); miR-2215 20.76-

fold (P = 0.003). Thus, congruent with the lack of change in

mRNA expression levels, the expression of the vast majority of

microRNAs is not affected by microgravity.

RNAi effectively silences transgenic and endogenous
genes in the gonad after 4 d spaceflight

To directly determine if RNAi functions normally in spaceflight,

L1 larvae of the strain AZ212 (integrated array pAZ132;

pie-1::GFP::histone H2B fusion, which express histone-tagged green

fluorescent protein (GFP) in the nuclei of oocytes and embryos)

were prepared as above. Upon arrival in space larvae were grown

to adulthood by culturing under three conditions: gfp RNAi; rbx-1

RNAi, and; vector control for 4 d before freezing at 280uC. RNAi

against gfp was chosen due to its use in the seminal demonstration

of the efficacy of RNAi in C. elegans [1]. RNAi against rbx-1 was

employed for its previous validation by the authors [23].

Fluorescent light microscopy on return to Earth demonstrated

that in vector controls, GFP expression levels were comparable

between 4 d spaceflight and ground controls (figure 1). RNAi

against gfp resulted in decreased embryonic GFP expression that

was not different between spaceflight and ground controls

(figure 1). Furthermore, in both spaceflight and ground control

conditions, RNAi against rbx-1 induced abnormal embryonic

nuclear segregation and arrest of meiotic division observed by

histone::GFP localisation (figure 2).

RNAi against lysosomal protease genes prevents muscle
protein degradation after 4 d spaceflight

Finally, to test whether RNAi against lysosomal cathepsins in

space (asp-4, asp-6) prevented the degradation of muscle protein a-

actin on return to Earth, dauer animals were flown in liquid media

as above. On arrival in space dauers were cultured in either a

vector control or asp-4 and asp-6 [24] RNAi for 4 d until

adulthood. Samples were prepared for Western blot analysis in the

presence of a protease inhibitor cocktail, which inhibits the activity

of the proteasome, calpains and caspases but not that of lysosomal

enzymes. Immunoblotting was performed against a-actin for its

RNAi Is Effective in Spaceflight
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specificity to muscle, with b-actin used as a ubiquitously expressed

loading control. Multiple Western blots (each blot using a different

primary antibody against a-actin) revealed a preservation of a-

actin protein levels in animals cultured in the presence of asp-4 and

asp-6 RNAi versus vector control, in both spaceflight and ground

control conditions. A near complete loss of a-actin, within limits of

detection, was observed in animals cultured in vector control

(figure 3); these observations were found to be statistically

significant (P,0.01).

Discussion

The incidence of spaceflight-induced (patho)physiological ad-

aptations is a major obstacle preventing long-term space

Figure 1. RNAi against gfp reduces chromosomal GFP expression in spaceflight and ground control (GC). Animals fed RNAi vector
control for 4 d from L1 larvae developed into normal adults in GC and spaceflight conditions. These animals also displayed GFP expression in oocytes
and embryos in GC and spaceflight. Animals fed gfp RNAi for 4 d also developed normally to adulthood in GC and spaceflight, and demonstrated a
loss of GFP expression in both GC and spaceflight. Scale bars represent 50 mm.
doi:10.1371/journal.pone.0020459.g001

Table 1. Gene expression of the RNAi apparatus is unaltered by spaceflight.

RNAi compo-
nent protein Gene name Description

Ground control
mRNA expression
(av. fold change)

Spaceflight
mRNA expression
(av. fold change) Significance

Dicer (RNase III) rnh-1.0 Predicted RNase H 1.0160.11 1.0060.10 P.0.05

rnh-1.1 RNase H family member 0.4760.02 0.4960.06 P.0.05

rnh-1.2 RNase H family member 1.2960.11 1.0960.33 P.0.05

rnh-1.3 RNase H family member 1.0360.01 1.0760.09 P.0.05

rnh-2 RNase H2 subunit 0.9660.11 1.0760.10 P.0.05

dcr-1 Dicer family member 0.9960.04 1.1860.10 P.0.05

drh-1 DExH-box helicase 1.0260.10 1.1260.11 P.0.05

drh-3 Dicer related helicase family member 0.9860.07 1.1260.09 P.0.05

PIWI ppw-1 PIWI-domain containing family member 1.1160.05 1.0060.06 P.0.05

ppw-2 PIWI-domain containing family member 1.0160.19 0.9460.11 P.0.05

prg-1 PIWI protein 1.0760.07 1.0360.05 P.0.05

rde-1 PIWI family member 1.0760.06 1.0860.09 P.0.05

Argonaute ergo-1 Endogenous argonaute family member 1.0560.07 1.2060.04 P.0.05

sago-1 Argonaute mutant family member 1.0360.09 0.8960.05 P.0.05

sago-2 Argonaute homolog 1.1360.13 0.8960.12 P.0.05

RDE-4 rde-4 dsRNA binding protein 1.0760.10 1.1960.09 P.0.05

Adult hermaphrodites (2nd generation) collected at 8 d during spaceflight showed no change in gene expression for components of the RNAi machinery, which were
not different ground controls (P.0.05). mRNA expression values are the average of 18 separate probes over six microarrays, and are relative to an internal control (1G
controls).
doi:10.1371/journal.pone.0020459.t001
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exploration. RNAi may provide an effective strategy for therapy,

though validation of this technique in the unique space

environment is initially required. Here we report for the first time

that the RNAi machinery functions as effectively during 4 and 8 d

spaceflight as it does on Earth, as evidenced by normal expression

of genes encoding for the RNAi machinery and of microRNAs,

comparable patterns of GFP transgene abnormalities with RNAi

treatment, and inhibition of a-actin protein degradation with

lysosome-targeting RNAi in both spaceflight and ground control

conditions.

The finding that expression of genes involved in the RNAi

apparatus (e.g. Dicer, Argonaute and PIWI) is normal during

spaceflight indicates that the RNAi machinery maintains the

capacity to function normally. Thus, earlier reports of reduced

global RNA synthesis after 7 d spaceflight [13] do not appear to be

reflected at the level of mRNA transcription, at least of genes

coding for RNAi components. Additionally, we report here that

the expression of 228 of the 232 microRNAs analysed is unaffected

in spaceflight samples. It appears therefore that factors unique to

spaceflight, for example microgravity and increased radiation

exposure do not impair cellular ability to recognise and initiate

gene silencing in response to both exogenous and endogenous

genetic material.

We also demonstrate that treatment with gfp RNAi in space

causes reduced gonad GFP expression to levels comparable to

those found in Earth-based controls. GFP expression was,

however, normal in animals fed a vector control, therein excluding

the possibility that lowered protein synthetic capacity in space [19]

may have influenced GFP levels under RNAi conditions. Thus,

assuming identical rates of protein degradation in RNAi and

vector control conditions, the observed reduction of GFP levels

can be attributed to actions of the RNAi machinery. Furthermore,

rbx-1 RNAi induced abnormal nuclear histone::GFP localisation

within the gonad in both spaceflight and ground controls.

Combined, these results indicate that not only is expression of

genes involved in RNAi normal but that the protein products of

these genes continue to function normally in spaceflight. Thus,

spaceflight does not induce negative regulatory post-transcription-

al or post-translational modifications that impair the efficiency of

RNAi.

Finally, the efficacy of RNAi in space is illustrated by the

inhibition of muscle-specific protein (a-actin) degradation by asp-4

and asp-6 RNAi treatment, despite virtual total loss of a-actin

levels in vector control animals. Thus, cathepsin RNAi adminis-

tered during spaceflight effectively silences lysosomal proteolytic

activity. Furthermore, it is apparent that spaceflight per se does not

have large negative effects on lysosomal proteases since degrada-

tion of a-actin occurred in the vector control condition. This is

also, to our knowledge, the first report that RNAi can be used to

block the degradation of muscle proteins on Earth and in space.

Because loss of muscle mass implies an increase in the degradation

of pre-existing proteins, this result indicates that RNAi may be

developed to combat conditions of muscle wasting both on Earth

and in space.

Figure 2. rbx-1 RNAi induces abnormal chromosomal GFP localisation in spaceflight and ground control (GC). Adult animals fed RNAi
vector control from L1 larvae for 4 d produced normal eggs in GC and spaceflight, and display normal embryonic chromosomal GFP localisation in GC
and spaceflight. RNAi against rbx-1 for 4 d caused abnormal embryo development in GC and spaceflight, and induced irregular embryonic nuclear
segregation and arrest of meiotic division in both GC and spaceflight. Scale bars represent 10 mm.
doi:10.1371/journal.pone.0020459.g002

RNAi Is Effective in Spaceflight
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Taken together, these results demonstrate that, despite reports

of impaired T cell function during spaceflight aboard the

International Space Station [11], [12], the RNAi immune

response is unaffected at the level of both mRNA expression and

protein function. Demonstration that this fundamental immuno-

logical process is preserved is especially important within the space

environment. Enhanced pathogenic virulence in space flown

bacteria and increased microbe growth rates [25] render it vital

that cells retain their ability to cope with increased exposure to

virulent microbes, and indicates that crew member health in

response to such stressors may be sustained on long-term

exploratory missions.

These experiments also show that RNAi works effectively in at

least two tissues; muscle and the gonad. Muscle is a key site for

many of the potentially negative consequences of spaceflight to

crew member health; for example muscle wasting and altered

metabolism towards increased glucose utilisation. The gonad is a

primary site for the effects of increased radiation-induced DNA

damage and subsequent heritability of genetic defects. Thus,

application of RNAi in these tissues may represent a viable

therapeutic possibility for future missions to overcome these

problems. It is also likely, in light of the lack of change in global

mRNA expression of the RNAi apparatus, that RNAi may be as

effective in other tissues, therein promoting the use of RNAi to

combat a large range of pathologies in space.

In conclusion, we report for the first time the efficacy of RNAi

during spaceflight within multiple tissues. However, whether this is

true outside of Low Earth Orbit where the effects of radiation are

increased is currently unknown, though C. elegans provides a

practical and cost-effective model organism for incorporation on

future unmanned deep space explorations in which to answer this,

and other, questions of biological importance. Nevertheless, RNAi

presents a potential therapeutic strategy for combating deleterious

spaceflight-induced adaptations, for maintained crew health and

mission performance. Indeed, we show that protein degradation; a

key element underlying muscle wasting, can be prevented by the

application of RNAi against proteolytic enzymes on Earth and in

space. As such, achieving long-duration explorations of deep space

may be made more feasible through the use of RNAi technology to

overcome the numerous threats posed to human health by

prolonged exposure to the space environment.

Materials and Methods

Nematode and bacteria preparation
Two developmental stages of C. elegans were cultured for these

experiments; L1 and dauer larvae. To provide L1 larvae nematode

eggs were prepared using the alkaline bleach method with 0.5 N

KOH and 1.0% NaClO. After overnight incubation in M9 buffer

containing 5 mg/L cholesterol at 20uC, the hatched L1 larvae

were used for the space experiment. L1 larvae were prepared from

the strain AZ212 (ruIs32; unc-119 (ed3); [26]), whose integrated

array is pAZ132 (pie-1::GFP::histone H2B fusion and unc-119

subclone). AZ212 GFP signals are revealed in the nuclei of

oocytes and eggs. To provide dauer larvae animals were cultured

according to the protocol [27] with the exception that animals

were cultured on 86 peptone NGM agar plates. Dauer animals

were prepared from the strain PD55 (tra-3(e1107)IV; ccIs55V)

whose integrated transgene ccIs55 consists of 58- portions of wild-

type unc-54 (muscle myosin heavy-chain) gene, fused in to the lacZ

gene of E. coli, followed by a 38-terminal portion of the unc-54

gene. The unc-54::lacZ fusion encodes a 146-kDa polypeptide.

Double stranded RNA of gfp (gfp fragment of pGFP U17997

(Clonthech) digested with HindIII and EcoRI), rbx-1 [23], asp-4 [24]

and asp-6 (Ahringer library, clone V-5N20) genes were synthesized

in Escherichia coli HT115 (DE3) with Litmus 28 plasmid vector in

vivo system [23]. The vector control used was Escherichia coli HT115

(DE3). E. coli bacterial feeds were cultured in S basal medium to an

OD600 of approximately 3.5.

Experimental design
A full description of the experimental procedures and flight

hardware, including illustrations, employed on this experiment can

be found in [28]. We tested three experimental conditions in each

culture: ground control, 1G (control) centrifuge onboard the

International Space Station (ISS) and micro-gravity samples

onboard ISS. Briefly, for the microarray gene expression and

microRNA expression experiments N2 wild type L1 larvae were

used. For the gfp and rbx-1 RNAi experiments AZ212 L1 larvae

were used. For the asp-4 and asp-6 RNAi experiment PD55 dauer

larvae were used. All larvae were maintained in stasis within S

basal medium until initiation of the experiment. The experiment

was activated once onboard the ISS by reintroducing animals to

food. All experiments were carried out under temperature

controlled conditions in the Cell Biology Experiment Facility

(CBEF) within the KIBO module. Cultures for microarray analysis

were grown for 8 d. Cultures for microRNA expression analysis

Figure 3. Degradation of a-actin is prevented by asp-4 and asp-6
RNAi in spaceflight and ground control (GC). Dauer animals
treated for 4 d with RNAi vector control (VC) developed to adulthood.
In both GC and spaceflight conditions animals displayed major loss of
muscle specific a-actin following lysis in the absence of lysosomal
protease inhibitors. Treatment with asp-4 and asp-6 RNAi for 4 d in GC
and spaceflight resulted in a preservation of a-actin levels.
A, representative immunoblot; B, average non-normalised quantifica-
tion of three Western blots against a-actin. ** denotes significant
difference from both GC and spaceflight VC conditions (P,0.01).
doi:10.1371/journal.pone.0020459.g003

RNAi Is Effective in Spaceflight
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were grown for 4 d and 8 d. Cultures for RNAi treatment

experiments were grown for 4 d. Experiments were stopped by

first observing the animals by light microscopy and then by

freezing with subsequent storage at 280uC in MELFI. Microscopy

at the end of culturing confirmed that the 4 day cultures grew to

adulthood as the first generation for both the L1 and dauer

cultures, and that the 8 day cultures grew to a second generation of

adulthood.

Microarray and microRNA assay
Flight samples were thawed on ice with M9 buffer containing

0.05% gelatine, and approximately 103 adult hermaphrodites were

collected in each experimental condition by picking under stereo

microscopy or by sedimentation on ice. Total RNA was isolated

with TRIzol Reagent (Invitrogen). Global gene expression and

entire microRNA expression were analyzed using the Agilent

Caenorhabditis elegans Oligo Microarray 22K (Agilent) and FilgenH
Array miRNA Caenorhabditis elegans 232 probes (Filgen), respec-

tively. Biological triplicates were used for the global gene

expression array experiments, and these were each analysed over

six microarrays. All global gene expression and microRNA data

are MAIME compliant and deposited in the gene expression

omnibus (GEO) database (accession numbers GSE27338 and

GSE27288 for global gene expression and microRNA data,

respectively). In the microRNA expression analysis, we compared

the expression data between two groups: micro-gravity samples

(4 d and 8 d) and controls (4 d and 8 d ground control and 1 G

centrifuge onboard ISS). All statistical analyses were carried out by

one-way ANOVA with significance set at P,0.05.

Fluorescent light microscopy
Flight samples were thawed on ice with M9 buffer containing

0.05% gelatine, and developed adult hermaphrodites plus eggs laid

were picked onto HTC Super Cured H slides (Thermo Scientific).

GFP visualization was performed under constant excitation light

and the same exposure period for fluorescence with a fluorescent

microscope (BX51; Olympus) and a CCD camera (DP70;

Olympus).

Immunoblotting
Upon return to Earth, developed dauer animals were thawed on

ice in the presence of a protease inhibitor cocktail (Complete Mini

protease inhibitor tablet; Roche Diagnostics, Mannheim, Ger-

many) in 15 ml tubes. Samples were then pelleted by centrifuga-

tion at 13,0006g for 10 min at 4uC and the supernatant removed

to leave ,1 ml. Samples were then transferred to 1.5 ml tubes and

spun at 13,0006g for 3 min. The supernatant was then removed

to leave 400 ml, the pellet homogenised and 200 ml 36Laemmli

buffer added. Samples were then boiled for 5 min and stored at

220uC until analysis. Samples were thawed on ice, vortexed

thoroughly and centrifuged at 13,0006g for 3 min at 4uC to pellet

any residual E. coli bacteria. Samples (5 ml) were loaded onto a

precast 26-well 12% sodium dodecyl sulfate polyacrylamide

electrophoresis gel (Criterion XT Bis-Tris; Bio-Rad, Hemel

Hempstead, UK) and ran at 200 V for 1 h. After equilibration

in transfer buffer for 15 min, the gel was transferred on ice at

100 V for 45 min to a methanol pre-wetted 0.2 mm Immobilon

PVDF membrane (Millipore, Billerica, MA). Next, the membrane

was blocked in 5% (w/v) BSA in TBS-T (Tris Buffered Saline and

0.1% Tween-20) for 1 h at room temperature and then incubated

overnight at 4uC in primary b-actin antibody (New England

Biolabs, UK) at a 1:3000 dilution in 5% (w/v) BSA in TBS-T. The

following morning the membrane was washed (365 min) in TBS-

T and then incubated in anti-rabbit secondary antibody (New

England Biolabs, UK) at a 1:2000 dilution in 5% BSA / TBS-T

for 1 h at room temperature. After further washes (365 min) in

TBS-T the membrane was developed using Immunstar ECL

reagent (Bio-Rad, Richmond, CA) for 5 min and the protein

bands visualised on a Chemidoc XRS system (Bio-Rad, Hercules,

CA). The membrane was subsequently washed (rapidly62, then

365 min) in TBS-T before stripping antibody-bound proteins in

neat reagent (Thermo Scientific, Rockford, IL) for 15 min. The

membrane was then re-probed with primary a-actin antibody

(Sigma-Aldrich, St. Louis, MO) at a 1:3000 dilution in 5% (w/v)

BSA in TBS-T overnight at 4uC. The next day washes, secondary

incubation and visualisation were performed as above. This

method was repeated another two times with different primary

antibodies against a-actin (Invitrogen, Paisley, UK; DSHB, Iowa,

US) for a total of three Western blots. Peak density from the three

runs was statistically analysed by two-way repeated measures

ANOVA with the level of significance set at P,0.01.
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