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Abstract

Caffeic acid phenethyl ester (CAPE) treatment suppressed proliferation, colony formation, and cell cycle progression in PC-3
human prostate cancer cells. CAPE decreased protein expression of cyclin D1, cyclin E, SKP2, c-Myc, Akt1, Akt2, Akt3, total
Akt, mTOR, Bcl-2, Rb, as well as phosphorylation of Rb, ERK1/2, Akt, mTOR, GSK3a, GSK3b, PDK1; but increased protein
expression of KLF6 and p21Cip1. Microarray analysis indicated that pathways involved in cellular movement, cell death,
proliferation, and cell cycle were affected by CAPE. Co-treatment of CAPE with chemotherapeutic drugs vinblastine,
paclitaxol, and estramustine indicated synergistic suppression effect. CAPE administration may serve as a potential adjuvant
therapy for prostate cancer.
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Introduction

Prostate cancer is one of the most common non-cutaneous

carcinoma of men in western countries. More than 80% of

patients died from prostate cancer developed bone metastases [1–

3]. In 1941, Charles Huggins discovered that deprivation of

androgen caused regression of hormone-responsive metastatic

prostate cancer [4]. Since then, androgen ablation therapy has

become the primary treatment for metastatic prostate cancer.

However, most prostate cancer patients receiving androgen

ablation therapy ultimately develop recurrent, castration-resistant

tumors within 12–33 months after treatment. The median overall

survival time is 1–2 years after tumor relapse [5,6]. Chemotherapy

is usually applied for treatment of metastatic hormone-refractory

prostate cancer [7].

Commonly used chemotherapy drugs for metastatic prostate

cancer include eoposide, paclitaxol, vinblastine, mitoxantrone, and

estramustine. Etoposide and mitoxantrone are type II topoisom-

erase inhibitor [7,8]. Estramustine is a derivative of estrogen with a

nitrogen mustard-carbamate ester moiety [7]. Vinblastine binds

tubulin and inhibits assembly of microtubules [7]. Paclitaxel

disrupts mitotic spindle assembly, chromosome segregation, and

cell division. Paclitaxel also stabilizes the microtubule polymer and

thus protects it from disassembly [7]. Treatment with these

chemotherapy drugs decreased prostate specific antigen (PSA) and

radiographic response as well as improved pain and urinary

symptoms in a sub-group of patients. However, they showed little

effect on prolonging survival. Undesired side effects of these

chemotherapeutic agents include toxic deaths, strokes, thrombosis,

neutropenia, edema, dyspnea, malaise, and fatigue [7]. Co-

treatment chemotherapy drugs with natural compounds with

anticancer activity may reduce the dosage of chemotherapy drugs

needed.

Caffeic acid phenethyl ester (CAPE), a bioactive component

extracted from honeybee hive propolis, is a strong antioxidant

[9,10]. CAPE treatment in breast, prostate, and leukemic cancer

cells causes inhibition of NF-kB activity [11,12], induction of Bax

[11,13], activation of c-Jun N-terminal kinase (JNK) [11] and p38

mitogen-activated protein kinase (p38 MAPK) [11]. CAPE

induces apoptosis via activation of caspase activity [11,13] and

down-regulation of Bcl-2, cIAP-1, cIAP-2, and XIAP [12,13] in

breast, prostate, and leukemic cancer cells. In addition, CAPE

induces cell cycle arrest through suppression of cyclin D1 [14,15],

cyclin E [14], and c-Myc expression [15], as well as increases

expression of the cyclin dependent kinase inhibitors p21cip1 [14],

p27Kip1 [14], and p16INK4A [14] in colon and glioma cancer cells.

These observations suggest that CAPE is a potential therapeutic

agent for cancers.

PC-3 is one of the most commonly used prostate cancer cell

lines established from bone-derived metastases. PC-3 cells do not

express androgen receptor (AR) [16]. Mitoxantrone, estramustine,

vinblastine, etoposide, and paclitaxel have been shown to induce

proliferation inhibition, apoptosis, and cell cycle arrest in PC-3

cells in vitro [17–21], as well as to retard PC-3 xenografts growth in

athymic nude mice [8,21,22]. Treatment with 88–176 mM of

CAPE induced apoptosis in PC-3 cells via inhibition of NF-kB,
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cIAP-1, cIAP-2, and XIAP [12]. However, the achievable

concentration of CAPE in human serum is around 5.0 mg/ml

(17 mM) [23]. We thus examined if low concentration (0–20 mM)

of CAPE can suppress the proliferation of PC-3 cells. We also

determined if co-treatment of chemotherapy drugs with CAPE

show synergistic inhibition effect on proliferation of PC-3 cells.

Results

CAPE treatment suppresses the proliferation and colony
formation of PC-3 cells

Trypan blue staining indicated that CAPE dose-dependently

inhibited proliferation of PC-3 cells with an EC50 around 20.4 mM

(Fig. 1A). Hoescht dye-based 96-well proliferation assay showed

that the growth inhibitory effect of CAPE happened within

24 hours following CAPE treatment at concentration as low as

2.5 mM (Fig. 1B). EC50 for growth inhibition of PC-3 cells was

51.4 mM, 30.7 mM, and 23.1 mM for 24, 48, and 72 h CAPE

treatment, respectively, indicating that the suppressive effect of

CAPE can be accumulated. Colony formation assay revealed that

treatment of 10 mM and 20 mM CAPE efficiently inhibited the

formation of PC-3 colonies in soft agar (Fig. 1C).

Since CAPE was previously reported as an NF-kB inhibitor

[10], we determined whether low dasage of CAPE can inhibit NF-

kB activity using a plasmid-based luciferase reporter assay.

Although CAPE treatment at 40 mM inhibited NF-kB activity,

treatment with CAPE at concentration lower than 40 mM had no

effect on NF-kB activity (Fig. 2A). This observation suggested that

other mechanisms are responsible for CAPE’s inhibitory effect at

low dosage.

CAPE treatment disturbs cell cycle progression
Propidium iodide (PI) staining flow cytometry analysis revealed

that treatment with 10–20 mM CAPE decreased the cell

population in G1 phase and increased cell population in sub-G1

phase within 24 h in PC-3 cells. This effect was more dramatic at

72 h following CAPE treatment (Fig. 2B–2D). However, annexin

V staining flow cytometry analysis indicated that 10–20 mM

CAPE did not induce apoptosis in PC-3 cells (data not shown).

Treatment with 20 mM CAPE for 72 h resulted in increase of cell

cycle inhibitory proteins p21Cip1 and decrease of S-phase kinase-

associated protein 2 (SKP2), phosphorylation of serine 807/811 on

retinoblastoma (Rb), cycin D1, cyclin E, c-Myc, and phosphor-

ylation of threonine 202/tyrosine 204 of extracellular signal-

regulated kinase 1/2 (ERK1/2) (Fig. 3). No change in p27Kip1,

total ERK1/2, or b-tubulin was observed. Compared to 24 h and

48 h treatment, 72 h treatment in general caused more change of

protein expression level except for cyclin D1. This may explain the

greater growth inhibition caused by CAPE at 72 h. Cyclin D1

increased after 24 h and 48 h treatment but decreased after 72 h

treatment.

CAPE treatment inhibits the abundance and activity of
proteins in AKT-signaling pathway

Akt plays important role in survival and proliferation of prostate

cancer cells [24]. We thus determined if CAPE treatment

Figure 1. CAPE suppresses proliferation and colony formation of PC-3 cells. Proliferation of PC-3 cell treated with increasing concentration
of CAPE was determined by Trypan blue staining after 72 h treatment (A) or measuring total DNA content per well using Hoechst 33258 fluorescence
by 96-well proliferation assay after 24, 48, and 72 h treatment (B). Relative cell numbers were normalized to the average cell number of the control
(no CAPE treatment) of each cell line in each individual experiment. Columns represent mean for 18 replicates; bars represent standard deviation.
Asterisk (*) represents cell number is statistically significantly different (p,0.05) compared to the control. Columns represent mean for 5 biological
replicates; bars represent standard deviation. (C) Anticancer effect of CAPE was determined by colony formation assay of PC-3 cells treated with 0, 10,
20 mM for 14 days. Image is a representative result of three biological replicates.
doi:10.1371/journal.pone.0031286.g001
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suppresses Akt signaling pathway. 72 h after 20 mM CAPE

treatment decreased the abundance of total Akt, Akt1, Akt2, and

Akt3 (Figure 4). CAPE treatment for 24–72 h significantly

decreased the phosphorylation of Akt on serine 473 and threonine

308,. CAPE did not change the total abundance of phosphoino-

sitide dependent kinase 1 (PDK1) (Fig. 4), however, phosphory-

lation of serine 241 on PDK1 was reduced by CAPE treatment.

CAPE treatment also caused decrease of total mammalian target

of rapamycin (mTOR) and slight reduction of phosphorylation on

serine 2448 and 2481 of mTOR. CAPE treatment did not change

the total abundance of GSK3a and GSK3b (Fig. 4). However,

phosphosphorylation of GSK3a S21 and GSK3b S9 was

increased after 24 h and 48 h of 20 mM CAPE treatment but

decreased at 72 h of 20 mM CAPE treatment (Fig. 4). Bcl-2 is an

anti-apoptosis factor downstream of Akt signaling. Overexpression

of Bcl-2 has previously been reported to confer drug resistance of

prostate cancers [5]. CAPE slightly decreased expression of Bcl-2.

CAPE treatment affects genes regulating proliferation,
survival, and death of PC-3 cells

We further studied the comprehensive change of gene

expression in PC-3 cells treated with 20 mM CAPE for 24 h or

72 h by microarray. Genes with expression fold change .1.5 and

P,0.05 were considered as genes significantly affected by CAPE

treatment. CAPE affected expression of 69 unique genes after 24 h

treatment (Table S1). 53 genes were up-regulated and 16 genes

were down-regulated. Treatment with CAPE for 72 h altered

expression of 147 unique genes (Table S2). 122 genes were up-

regulated while 25 genes were down-regulated. 25 genes were

commonly changed in both 24 h and 72 h treatment (Figure 5,

Table S3). Among the 25 genes, 3 genes were down-regulated

(CYP1B1, SCG5, PADI4) and 22 genes were up-regulated (LY96,

LOC728285, TM4SF19, RGS2, PI3, AKR1C2, GDF15,

HIST1H2BD, CCL20, CXCL5, RND3, KRT34, HIST2H2AA3,

AKR1C4, KLF4, DUSP5, NOV, GK, CDKN1A, CXCL2,

DUSP1, and HIST1H4H) (Fig. 5). Analysis of all the 191 gene

probes affected by CAPE treatment either at 24 h or 72 h using

Ingenuity Pathway Analysis (IPA) revealed that CAPE treatment

affected genes involved in regulation of cell death, proliferation,

and survival. Among the genes being affected by CAPE treatment,

52 genes involved in cell proliferation regulation (p val-

ue = 9.82610211), 41 genes involved in cell growth regulation (p

value = 1.40610210), 68 genes involved in cell death regulation (p

value = 1.40610212), and 27 genes involved in cell survival

regulation (p = 3.4361026). Complete list of genes probes involved

in these signaling pathways were shown in Table S4.

We validated some of the genes affected by CAPE treatment

with quantitative real-time PCR (qRT-PCR). 17 out of 18 genes

(GDF15, HIST1H2BD, CCL20, CXCL5, RND3, KLF4,

DUSP5, NOV, CDKN1A, CXCL2, DUSP1, KLF6, TOP2A,

PPP1R15A, CAV2, S100P, and GADD45A) tested by qRT-PCR

showed similar alteration pattern following 24 h or 72 h CAPE

treatment as compared to gene microarray. The only exception is

TUBA1A. We did not observe any change of TUBA1A gene

under CAPE treatment by qRT-PCR (Fig. 6). Western blotting

assay indicated that protein level of KLF6 was increased by CAPE

treatment (Fig. 4).

Co-treatment of CAPE with chemotherapeutic drugs
suppressed proliferation of PC-3 cells

Finally, we investigated if co-treatment of CAPE at serum-

available dosage (0–20 mM) with commonly used chemotherapy

drugs (etoposide, paclitaxol, vinblastine, mitoxantrone, and

estramustin) can suppress growth of PC-3 cells more effectively

than treatment with chemotherapy drugs alone. EC50 of CAPE,

etoposide, paclitaxol, vinblastine, mitoxantrone, and estramustin

for inhibiting proliferation of PC-3 cells was 18.3 mM, 1.7 mM,

3.0 nM, 2.1 nM, 5.9 nM, and 13.0 mM. Treatment of 20 mM

CAPE suppressed growth of PC-3 cells more effectively than

treatment with 1.0 mM etoposide, 2.5 nM paclitaxol, 5 nM

Figure 2. CAPE inhibits cell cycle progression in PC-3 cells. (A) PC-3 cells transfected with a 4X NF-kB luciferase reporter plasmid for 24 hr
were treated with increasing concentrations of CAPE for additional 24 h. Relative luciferase activity was determined to compare the effect of CAPE on
NF-kB transcriptional activity. (B) PC-3 cells were treated with CAPE for 24, 48, or 72 h, harvested, and stained with propidium iodide dye for flow
cytometric analysis for cell cycle distribution. (*) represents statistically significant difference (p,0.05) between the two group of cells being
compared.
doi:10.1371/journal.pone.0031286.g002
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mitoxantrone, 2 nM vinblastine, or 10 mM estramustine (Figure 7).

When co-treatment with 20 mM CAPE, 0.5 mM etoposide, 1 nM

paclitaxol, 1 nM vinblastine, 2.5 nM mitoxantrone, and 8 mM

extramustine caused growth inhibition similar to the highest

dosage we tested (Figure 7). Synergistic effect means the

suppressive effect of two drugs being treated together is greater

than the sum of their separate suppressive effect at the same doses,

while antagonistic effects means the suppressive effect of two drugs

is less than the sum of the effect of the two chemicals taken

separately. According to the definition, co-treatment of CAPE

showed synergistic effect with vinblastine, estramustine, or

paclitaxol, and antagonistic effect with etoposide or mitoxantrone

(Figure 7).

According to our observation, p21Cip1 plays important role in

regulation of growth inhibition induced by CAPE treatment. To

confirm this, we knocked down p21Cip1 in PC-3 and determined if

these PC-3 cells become more resistant to CAPE treatment. As

expected, following 24 h of CAPE treatment, PC-3 cells with less

p21Cip1 protein expression were more resistant to growth

inhibition caused by CAPE treatment (Fig. 8).

Discussion

Our observation suggested that caffeic acid phenethyl ester

(CAPE) can inhibit proliferation and colony formation of PC-3

human prostate cancer cells at concentration 10–20 mM. These

observations suggested that the achievable concentration of CAPE

in human serum, (17 mM) [23], is possibly to cause growth

inhibition in prostate tumors in patients.

Cyclin-dependent kinase inhibitor p21Cip1 binds and inhibits

the kinase activities of Cdk2/cyclin A, Cdk2/cyclin E, Cdk4/

cyclin D, and Cdk6/cyclin D complexes [25]. p21Cip1 can interact

with proliferating cell nuclear antigen (PCNA), a DNA polymerase

accessory factor, and plays a regulatory role in S phase DNA

replication and DNA damage repair [26]. SKP2 is a member of

the F-box protein family. SKP2 constitutes one of the four subunits

of ubiquitin protein ligase complex called SCFs (SKP, cullin, F-

box containing complex), which functions in phosphorylation-

dependent ubiquitination. SKP2 is an essential element of the

cyclin A-Cdk2 S-phase kinase [27]. Reduction in phosphorylation

of Rb restricts cell proliferation by inhibiting E2F activity [28].

ERK1 and ERK2 are involved in the control of many

fundamental cellular processes including cell proliferation, surviv-

al, differentiation, apoptosis, motility and metabolism. ERK1/2

play important roles in canonical MAPK (Mitogen-Activated

Protein Kinase) signaling pathway and are critical regulators of the

growth and survival [29]. CAPE induced p21Cip1 and reduced

cyclin D, cyclin E, SKP2, and phosphorylation of Rb and ERK1/

2 (Fig. 3). CAPE may thus suppress the growth of PC-3 cells via

these proteins [30].

Akt is a serine/threonine protein kinase regulating inhibition of

apoptosis and stimulation of cell proliferation. Up-regulation of

PI3K/Akt activity is associated with poor clinical outcome of

prostate cancer [31]. There are three mammalian isoforms of this

enzyme, Akt1, Akt2, and Akt3 [32,33]. Protein abundance and

activity of Akt3 have previously been suggested to contribute to the

more aggressive clinical phenotype of androgen non-responsive

prostate and breast cancers [34]. Akt3 enzymatic activity was

approximately 20-60-fold higher in AR-negative PC-3 and DU-

145 cells compared to the AR-positive LNCaP prostate cancer

cells [34,35]. We observed that CAPE suppressed Akt signaling-

related proteins, including Akt1, Akt2, Akt3, total Akt, mTOR,

Bcl-2, pAkt Ser 473, pAKt Thr 308, pmTOR Ser 2448/2481,

pGSK3a Ser21, pGSK3b Ser9, and pPDK1 Ser241. CAPE was

recently reported to suppress phosphorylation of Akt in other

human cells, such as CD4+ T cells [36], coronary smooth muscle

cell [37], and A549 lung cancer cells [38]. Phosphatase and tensin

homolog (PTEN) protein acts as a phosphatase to dephosphorylate

phosphatidylinositol (3,4,5)-trisphosphate. PTEN negatively con-

trols the phosphoinositide 3-kinase/Akt signaling pathway [39].

PC-3 cells acquire a homozygous deletion of PTEN, thus Akt is

constantly active. There are two phosphorylation sites on Akt,

threonine 308 and serine 473. Phosphorylation of Thr308 on Akt

is activated by PDK1 [40]. Phosphorylation of serine 473 is

activated by mTOR kinase, its associated protein rector, and

SIN1/MIP1 [41,42]. CAPE phosphorylation of serine 241 on

PDK1 and attenuated the phosphorylation of serine 2448 and

2481 on mTOR (Fig. 4). Reduction of PDK1 and mTOR activity

may therefore contribute to the decrease of phsphorylation on Akt.

The activities of glycogen synthase kinase 3 alpha (GSK3a and

GSK3b are known to be inhibited by Akt-mediated phosphory-

lation at Ser21 and Ser9 respectively, limiting their ability to

Figure 3. CAPE affects cell cycle regulating proteins in PC-3
cells. Protein expression of c-Myc, cyclin D1, cyclin E, SKP2, phosho-Rb
(S807/811), p27Kip1, p21Cip1, ERK1/2, pERK1/2 Thr202/Tyr204, b-tubulin,
and b-actin in PC-3 cells treated with 20 mM CAPE for 24, 48, and 5, 10,
20 mM CAPE for 72 h were assayed by Western blotting.
doi:10.1371/journal.pone.0031286.g003

Anti-Cancer Mechanism of CAPE in PC-3 Cells
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phosphorylate cell cycle regulating proteins, such as cyclin D1 and

p21Cip1 [43,44]. Phosphosphorylation of GSK3a S21 and GSK3b
S9 was increased after 24 h and 48 h of 20 mM CAPE treatment

but decreased at 72 h of 20 mM CAPE treatment (Fig. 4).

Increased phosphorylation of GSK3a S21 and GSK3b S9 may

contribute to the increase of p21Cip1 at 24 h and 48 h after CAPE

treatment. GSK3b-dependent phosphorylation of cyclin D1

mediated nuclear export and rapid degradation within the

cytoplasm of cyclin D1 [45]. Reduction of GSK3bactivity due to

increase of phosphorylation (Fig. 4) resulted in less phosphoryla-

tion of cyclin D1 and therefore accumulation of cyclin D1 at 24 h

and 48 h (Fig. 3). Increase of GSK3bactivity due to decrease of

phosphorylation (Fig. 4) would therefore decrease the abundance

of cyclin D1 at 72 h (Fig. 3). Decreased phosphorylation of

GSK3a and GSK3b at 72 h was consistent with the decreased

phosphorylation of Akt. Suppression of Akt signaling by CAPE

may contribute to the inhibition of survival and growth in PC-3

cells.

We noticed that genes affected by CAPE at 24 h and 72 h post

treatment was moderately correlated (r = 0.56, Fig. 5). There were

only 25 significantly affected genes in common between these two

time points. Since the growth inhibition and cell cycle perturbation

caused by CAPE treatment started within 24 h and the suppressive

effect accumulated over time, we hypothesized that the most

important target genes for anticancer activity of CAPE were these

25 common genes. Krüppel-like factor 4 (KLF4) transactivates the

p21Cip1 promoter and inhibits proliferation through activation of

p21Cip1 as well as direct suppression of cyclin D1 and cyclin B1 gene

expression [46–48]. Nov gene encodes protein CCN3 (Nov) which

inhibits cell proliferation via Notch/p21Cip1 pathway [49]. Elevation

of KLF4 and Nov genes may suppress PC-3 growth via p21Cip1.

Growth/differentiation factor-15(GDF-15) is a divergent TGFb
family member that has been implicated in inhibition of tumor

growth and increased tumor invasiveness [50]. A few genes are

cytokines involved in inflammation response, such as CCL20 [51],

CXCL2 [52], CXCL5 [53]. They were found up-regulated,

suggesting that CAPE induces inflammation response in PC-3 cells.

In addition, CAPE treatment increases RhoE/Rnd3. Up-regulation

of the small G-protein RhoE/Rnd3/Rho8 inhibits the proliferation

of prostate cancer cells by promoting apoptosis and inhibiting cell

cycle progression [54].

Besides the 25 commonly changed genes, some differentially

expressed genes specifically after 24 h or 72 h treatment also

regulate cell survival, proliferation, or cell death. CAPE treatment

increased KLF6, S100P, GADD45A, PPP1R15A, S100P, but

decreased TOP2A and CAV2. Kruppel-like factor 6 (KLF6) is a

zinc finger transcription factor and functions as tumor suppressor

gene in human prostate cancer [55]. KLF6 up-regulates p21Cip1 in a

p53-independent manner and significantly reduces cell proliferation

[55]. S100P protein regulates calcium signal transduction, cyto-

skeletal interaction, protein phosphorylation, transcriptional con-

trol, cell cycle progression, and differentiation. Elevation of S100P

in PC3 cells promoted cell growth, increased the percentage of S-

phase cells, decreased basal apoptosis rate, promoted anchorage

independent growth in soft agar, and confer resistance to

chemotherapy [56]. GADD45A protein responds to environmental

stresses by mediating activation of the p38/JNK pathway. The

Gadd45 protein has been described to form a complex with p21Cip1.

The p21Cip1-binding domain of GADD45A also encodes the Cdc2-

binding activity. GADD45A interacts with Cdc2, dissociates the

Figure 4. CAPE inhibits Akt signaling-related proteins in PC-3 cells. Protein expression of Akt, Akt1, Akt2, Akt3, total Akt, phospho-Akt S473,
phospho-Akt T308, mTOR, phospho-mTOR Ser2448 and Ser2481, GSK3a, GSK3b, phopho-GSK3a S21, phospho-GSK3b S9, PDK1, phospho-PDK1
Ser241, Bcl-2, KLF6, b-tubulin, and b-actin in PC-3 cells treated with 20 mM CAPE for 24, 48, and 5, 10, 20 mM CAPE for 72 h were assayed by Western
blotting.
doi:10.1371/journal.pone.0031286.g004

Anti-Cancer Mechanism of CAPE in PC-3 Cells
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Cdc2-cyclin B1 complex, alters cyclin B1 nuclear localization, and

thus inhibits the activity of Cdc2/cyclin B1 kinase [57–59].

PPP1R15A (Protein phosphatase 1 regulatory subunit 15A, also

known as GADD34) has been shown to induce growth arrest and

apoptosis. PPP1R15A up-regulation enhances p21Cip1 protein

expression and induces p21Cip1 promoter activity [60].

Vinblastine, paclitaxol, and CAPE affect gene expression of a-

tubulin and b-tubulin (Figure S1, S2), while etoposide, mitoxan-

trone, and CAPE affect gene expression of type II topoisomerase

(Figure S3). However, etoposide induces p21Cip1 via p53 and

down-regulation of c-Myc in cancer cells [61,62]. Mitoxantrone

induces p21Cip1 [63]. Vinblastine induces apoptosis via reduction

of p21Cip1 [64]. Paclitaxol induces an Akt-dependent phosphor-

ylation on p21Cip1 leading to an association of p21Cip1 with 14-3-3

and thus accumulation of the phosphorylated form of p21Cip1 in

cytoplasm which prevents the inhibitory effect of p21Cip1 [65]. No

study reports the relationship between p21Cip1 and estramustine.

Since CAPE treatment increases both mRNA and protein level of

p21Cip1(Fig. 3) and knockdown of p21Cip1 in PC-3 cells made cells

more resistant to CAPE treatment (Fig. 8), CAPE may suppress

growth and survival of PC-3 cells more similar to etoposide and

mitoxantrone, but less similar to vinblastine, paclitaxol, and

estramustine. Besides CDKN1A (p21Cip1 gene), CAPE treatment

also increased gene expression of KLF4, KLF6, Nov, GADD45A,

PPP1R15A. These genes all suppress proliferation via p21Cip1.

Therefore, although co-treatment with CAPE suppressed more

PC-3 cells than treatment with chemotherapy drug alone, CAPE

only showed synergistic suppressive effect with vinblastine,

paclitaxol, and estramustine (Fig. 7). CAPE treatment also

suppressed abundance and phosphorylation of Akt, as well as

upstream and downstream signaling proteins in Akt signaling. We

therefore believe that p21Cip1 induction and suppression of Akt

signaling both play important role in growth inhibition caused by

CAPE treatment in PC-3 cells. We summarize the Akt/p21Cip1

signaling pathway network being affected by CAPE treatment in

PC-3 in Figure 9.

In conclusion, our observations provided insight into the

molecular mechanism of CAPE’s anti-proliferative effect in PC-3

prostate cancer cells. Our data suggested that CAPE administra-

tion may be useful as a potential adjuvant therapy in combination

with chemotherapies for metastatic prostate cancer.

Materials and Methods

Chemicals
Caffeic aicd phenethyl ester, etoposide, paclitaxol, vinblastine,

estramustine, and mitoxantrone were purchased from Sigma (St.

Louis, MO, U.S.A.).

Figure 5. A scatter plot of log2 ratio (logR) for genes whose expression were significantly affected at either 24 h or 72 h post CAPE
treatment. Genes commonly affected at both time points are in red color, while those specifically affected at either time point are in black. IPA
analysis of the unique genes (n = 191) genes changed either in 24 h or 72 h CAPE treatment indicated that group of genes regulating several cell
functions, including cell proliferation (p-value 9.82610211, 52 genes), cell growth (p-value 1.40610210, 41 genes), cell death (p-value 1.40610212, 68
genes), and cell survival (p-value 1.4061026, 27 genes).
doi:10.1371/journal.pone.0031286.g005

Anti-Cancer Mechanism of CAPE in PC-3 Cells
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Cell Culture
PC-3 cells were generous gift from Dr. Shutsung Liao’s lab (The

University of Chicago) and were maintained in DMEM (Gibco/

Invitrogen, Carlsbad, CA, U.S.A.) supplemented with 10% fetal

bovine serum (FBS; Atlas Biologicals, Fort Collins, CO, U.S.A.),

penicillin (100 U/ml), and streptomycin (100 ug/ml).

Cell Proliferation Assay
Relative cell number was analyzed by measuring DNA content

of cell lysates with the fluorescent dye Hoechst 33258 (Sigma) as

described previously [66–69]. EC50 (concentration of drug to

cause 50% growth inhibition) of drugs on PC-3 cells was

determined by an Excel add-in program ED50V10.

Soft Agar Colony Formation Assay
8000 cells were suspended in 0.3% low melting agarose (Lonza,

Allendale, NJ, U.S.A.) with 10% fetal bovine serum in DMEM

medium and then layered on top of 3 ml of 0.5% low melting agarose

plus 10% fetal bovine serum in DMEM medium in 6 cm dishes. Cells

were allowed to grow at 37uC with 5% CO2 for 14 days. The plates

were stained with 0.005% crystal violet in 30% ethanol for 6 h.

Luciferase-reporter Assay
PC-3 cells were seeded at 1.96105 cells/well in a 12-well

plate in DMEM containing 10% FBS. 24 h after plating, PC-3

cells were transfected with pRL-TK-Renilla luciferase plasmid

(normalization vector; 8 ng/well), 4X NF-kB (reporter gene

vector; 800 ng/well) using the PolyJetTM in vitro DNA

transfection reagent (SignaGen Laboratories, Rockville, MD).

24 h after transfection, cells were treated with increasing

concentrations of CAPE. After an additional 24 hr, cells were

lysed in 100 mL passive lysis buffer (Promega, Madison, WI,

U.S.A.) and luciferase activity was measured using a Dual-

Luciferase kit (Promega) in a 20/20n luminometer Turner

Biosystems.

Flow Cytometric Analysis
Cells were seeded in 6 cm dishes in 4.5 mL of media and

CAPE was added 24 h after plating. After indicated time (24,

48, 72 hours) of culture in the presence of various concentra-

tions of CAPE, cells were removed with trypsin and fixed in

70% ethanol in PBS overnight at 220uC. Fixed cells were

washed with PBS, treated with 0.1 mg/mL RNase A in PBS for

Figure 6. Validation of gene microarray result with qRT-PCR. Gene expression level of GDF15, HIST1H2BD, CCL20, CXCL5, RND3, KLF4, DUSP5,
NOV, CDKN1A, CXCL2, DUSP1, KLF6, TOP2A, PPP1R15A, CAV2, S100P, GADD45A, and TUBA1A in PC treated with 0 or 20 mM CAPE for 24 h or 72 h
was determined by qRT-PCR.
doi:10.1371/journal.pone.0031286.g006
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Figure 7. Combined treatment of CAPE with chemotherapy drugs shows synergistic and antagonistic inhibition on proliferation of
PC-3 cells. Proliferation of PC-3 cells treated with increasing dosage (0, 5, 10, 20 mM) of CAPE in combination with increasing concentration of
etoposide (A), paclitaxol (B), vinblastine (C), mitoxantrone (D), and estramustine (E) for 72 h was determined by 96-well proliferation assay. The right
part of the figure show the ratio of expected cell number/observed cell number. For example, treatment of 5 mM of CAPE or 1 nM vinblastine
decreases cell number of PC-3 to 80.9% and 88.7%, respectively, compared to the control (no treatment). The expected cell number of treatment
combining 5 mM of CAPE and 1 nM vinblastine is 0.809*0.887 = 71.8%. The observed cell number is 48.8% compared to the control. So the ratio is
0.718/0.488 = 1.5. Ratio larger than one represents synergy of growth inhibition, while ratio smaller than one represents antagonistic effect.
doi:10.1371/journal.pone.0031286.g007
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30 min, and then suspended in 50 mg/mL propidium iodide in

PBS. Cell cycle profiles and distributions were determined by

flow cytometric analysis of cells using a BD Facscan flow

cytometer (BD Biosciences, San Jose, CA, U.S.A.) as previously

described [69].

Gene Microarray Analysis
Total RNAs were isolated from PC-3 cells treated with 20 mM

CAPE or control vehicle for 24 or 72 hours using RNeasy mini kit

(Qiagen, Valencia, CA, U.S.A.). The quantity of total RNA was

determined by NanoDrop 2000 (Thermo Fisher Scientific,

Waltham, MA, U.S.A.). The quality of total RNA samples were

examined by Bioanalyzer 2100 (Agilent, Santa Clara, CA, U.S.A.)

to avoid seriously degraded RNA. RNA samples with RNA

integrity numbers (RIN) of ,7 were excluded from this study.

Complementary RNA targets were synthesized, amplified, labeled,

and purified using the TargetAmp Nano-G Bioti-aRNA Labeling

kit (Epicentre, Madison, WI, U.S.A.) according to the manufac-

turer’s instruction [70]. Hybridization of labeled probe to Illumina

BeadChips Human HT-12v3 was conducted according to

protocol recommended by Illumina (San Diego, CA, U.S.A.).

Each HT-12 chip has totally 48,804 unique 50-mer oligonucle-

otides probes with 15-fold feature redundancy in average [70].

Beadchips were scanned on the Illumina BeadArray 500GX

reader and image processed by Illumina BeadScan software.

Illumina BeadStudio software was used for preliminary data

analysis [70]. All data is MIAME compliant and that the raw data

has been deposited to the MIAMEExpress database (http://www.

ebi.ac.uk/miamexpress/) (MIAMEExpress array databse acces-

sion number: E-MTAB-773).

Western Blotting Analysis
Proteins were separated on 6–12% SDS-PAGE gels and

expression levels were determined by Western blotting using

following antibodies: Total Akt, Akt2, b-actin and PDK1 were

from Novus (Littleton, CO, U.S.A.). Cyclin D1, Cyclin E, p-Akt

(Ser 473), p-Akt (Thr 308), p-ERK1/2, GSK3a, GSK3b, p-

GSK3a, p-GSK3b, mTOR, p-mTOR(Ser2481), p-

PDK1(Ser241), Rb, and p-Rb(Ser807/811) were from Cell

Signaling (Danvers, MA, U.S.A.). c-Myc was purchased from

Epitomics (Burlingame, CA, U.S.A.). p21Cip1, p27Kip1 and SKP2

were purchased from Santa Cruz (Santa Cruz, CA, U.S.A.).

KLF6 was from Abnova (Taipei, Taiwan). Akt1, Akt3, Bcl-2,

ERK1/2, p-mTOR(Ser2448) and b-tubulin were from Millpore

(Billerica, MA, U.S.A.). Anti-rabbit and anti-mouse IgG second-

ary antibodies were from Santa Cruz. b-actin was used as loading

control.

Quantitative real-time PCR
PC3 cells seeded in 10 cm dish were treated with 0 or 20 mM

CAPE for 24 h or 72 h. Total RNA was isolated with RNeasy Mini

Kit (Qiagen, Venlo, Hilden, Germany). cDNA was synthesized

from total RNA using RevertAid H Minus First Strand cDNA

Synthesis Kit (Fermentas, Waltham, Massachusetts, U.S.A.). Real-

time PCR was performed on an ABI PRISM 7000 system (Applied

Biosystems, Foster City, California, U.S.A.) using Maxima SYBR

Green/ROX qPCR Master Mix (Fermentas). The sequences of

primers are as following: CAV2 primers, 59-agctgtctgcacatctggatt-

39(forward) and 59-tcgtacacaatggagcaatga-39(reverse); CCL20 prim-

ers, 59- gaatcagaagcagcaagcaac-39(forward) and 59-cgtgtgaagccca-

caataaat -39(reverse); CDKN1A primers, 59-caaaaactaggcggttgaatg-

39(forward) and 59-aaaaggagaacacgggatgag-39(reverse); CXCL2

primers, 59-cttattggtggctgttcctga-39(forward) and 59-tcaaacacatta-

ggcgcaatc -39(reverse); CXCL5 primers, 59- atctgcaagtgttcgccatag-

39(forward) and 59-caaatttccttcccgttcttc-39(reverse); DUSP1 prim-

ers, 59-accatctgccttgcttacctt-39(forward) and 59-tgaagctgaagttggga-

gaga-39(reverse); DUSP5 primers, 59-ttgggtccaatgaggtagttg-39

(forward) and 59-ccaaagtccaaggtcagtgaa-39(reverse); GADD45A

primers, 59-gcagatggaaagaggtgaaaa-39(forward) and 59-agttttccttcct-

gcatggtt-39(reverse); GDF15 primers, 59-ctacaatcccatggtgctcat-

39(forward) and 59-agtggcagtctttggctaaca-39(reverse); HIST1H2BD

primers, 59-ggaagtctcatctgcctgaaa-39(forward) and 59-ttagttccttcc-

cctcggtaa-39(reverse); KLF4 primers, 59-aagaacagatggggtctgtga-

39(forward) and 59-ccttggcattttgtaagtcca-39(reverse); KLF6 primers,

59-taacggctgcaggaaagttta-39(forward) and 59-ccttcccatgagcatctgtaa-

39(reverse); NOV primers, 59- ctctattggctccctttttgg -39(forward) and

59-ttgaagagctgcatgtttcct-39(reverse); PPP1R15A primers, 59-tgat-

gatgatggcatgtatgg-39(forward) and 59-ttatcagaaggctgggagaca-39(re-

verse); RND3 primers, 59-aagcggaacaaatcacagaga-39(forward) and

59-tcttcgctttgtcctttcgta-39(reverse); S100P primers, 59-gaaggcagg-

actcaaatgatg-39(forward) and 59-cctaggggaataattgccaac-39(re-

verse); TOP2A primers, 59-tgtcccagctctcatatttgg-39(forward)

and 59-catttcgaccacctgtcactt-39(reverse); TUBA1A primers,

59-cttccaccctgagcaacttatc-39(forward) and 59-atctccttgccaatggt-

gtagt-39(reverse).

siRNA knockdown of p21Cip1

Human p21Cip1(CDKN1A) antisense and randomly scrambled

sequence control were purchased from Thermo (Waltham,

Massachusetts, U.S.A.). The transfection procedure was per-

formed using lipofectamine RNAiMAX (Invitrogen, Carlsbad,

CA, U.S.A.) according to the manufacturer’s recommended

protocal. 20 nM RNA were used for both scramble and p21Cip1

knockdown.

Figure 8. Growth response to CAPE treatment of PC-3 and PC-3
p21Cip1 siRNA cells. Protein levels of wild type PC-3, PC-3 cells
transfect with scramble control (20 nM), and PC-3 cells transfected with
p21Cip1 siRNA (20 nM) were determined by Western blotting assay.
Proliferation of these PC-3 cells treated with 20 mM CAPE for 24 h was
determined by 96-well plate proliferation assay as described in Material
and Methods.
doi:10.1371/journal.pone.0031286.g008
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Data Analysis
Data are presented as the mean +/2 SD of at least three

independent experiments. Student’s t test (two-tailed, unpaired)

was used to evaluate the statistical significance of results from

proliferation assay experiments.

Supporting Information

Figure S1 A network enriched by IPA analysis with drug
targets (TUBA) of docetaxel and vinblastine (colored in
orange) indicated. The union of differentially expressed genes

(DEGs) at 24 h and 72 h post CAPE treatment was input to IPA.

Upregulated genes are colored in red, and downregulated genes in

green. Values of log ratio of expression change were also shown in

the bottom of DEGs.

(JPG)

Figure S2 A network enriched by IPA analysis with drug
targets (beta tublin) of docetaxel and vinblastine (col-
ored in orange) indicated. The input of IPA analysis and its

display is the same as in Figure S1.

(JPG)

Figure S3 A canonical pathway (G2/M DNA damage
checkpoint regulation) enriched by IPA analysis with

drug targets (Topo II) of etoposide and mitoxantrone
(colored in orange) indicated. The input of IPA analysis and

its display is the same as in Figure S1.

(JPG)

Table S1 List of differentially expressed genes at 24 h
post CAPE treatment. Differentially expressed gene at 24 h

post CAPE treatment was shown and value of these genes at 72 h

post CAPE treatment was also shown for comparison.

(XLS)

Table S2 List of differentially expressed genes at 72 h
post CAPE treatment. Differentially expressed gene at 72 h

post CAPE treatment was shown and value of these genes at 24 h

post CAPE treatment was also shown for comparison.

(XLS)

Table S3 List of differentially expressed genes com-
monly appeared at 24 h and 72 h post CAPE treatment.
Expression of genes commonly changed at both 24 h and 72 h

post CAPE treatment was shown.

(XLS)

Table S4 IPA gene function ontology analysis of genes
whose expression are significantly changed by CAPE
treatment. IPA gene function ontology analysis was shown of

Figure 9. Putative model of anticancer effect of CAPE in PC-3 human prostate cancer cells. Protein abundance or activity being
stimulated by CAPE treatment are labeled with red upward arrows, while those being suppressed by CAPE treatment are labeled with blue
downward arrows.
doi:10.1371/journal.pone.0031286.g009
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genes whose expression are significantly changed by CAPE

treatment for 24 h and 72 h.

(XLS)
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