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Abstract

Background: Proposed co-factors triggering the pathogenesis of multiple sclerosis (MS) are the Epstein Barr virus (EBV), and
the potentially neuropathogenic MSRV (MS-associated retrovirus) and syncytin-1, of the W family of human endogenous
retroviruses.

Methodology/Principal Findings: In search of links, the expression of HERV-W/MSRV/syncytin-1, with/without exposure to
EBV or to EBV glycoprotein350 (EBVgp350), was studied on peripheral blood mononuclear cells (PBMC) from healthy
volunteers and MS patients, and on astrocytes, by discriminatory env-specific RT-PCR assays, and by flow cytometry. Basal
expression of HERV-W/MSRV/syncytin-1 occurs in astrocytes and in monocytes, NK, and B, but not in T cells. This uneven
expression is amplified in untreated MS patients, and dramatically reduced during therapy. In astrocytes, EBVgp350
stimulates the expression of HERV-W/MSRV/syncytin-1, with requirement of the NF-kB pathway. In EBVgp350-treated PBMC,
MSRVenv and syncytin-1 transcription is activated in B cells and monocytes, but not in T cells, nor in the highly expressing
NK cells. The latter cells, but not the T cells, are activated by proinflammatory cytokines.

Conclusions/Significance: In vitro EBV activates the potentially immunopathogenic and neuropathogenic HERV-W/MSRV/
syncytin-1, in cells deriving from blood and brain. In vivo, pathogenic outcomes would depend on abnormal situations, as in
late EBV primary infection, that is often symptomatic, or/and in the presence of particular host genetic backgrounds. In the
blood, HERV-Wenv activation might induce immunopathogenic phenomena linked to its superantigenic properties. In the
brain, toxic mechanisms against oligodendrocytes could be established, inducing inflammation, demyelination and axonal
damage. Local stimulation by proinflammatory cytokines and other factors might activate further HERV-Ws, contributing to
the neuropathogenity. In MS pathogenesis, a possible model could include EBV as initial trigger of future MS, years later,
and HERV-W/MSRV/syncytin-1 as actual contributor to MS pathogenicity, in striking parallelism with disease behaviour.
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Introduction

Multiple sclerosis (MS) is a chronic neurological disease, which

usually begins in early adulthood. It causes repeated unpredictable

bouts of motor disorders, partial paralysis, sensory abnormalities

and visual impairment, with demyelination and gliosis, various

degrees of axonal pathology and episodic or progressive neuro-

logical disability. The aetiology is unknown and complex, but

results from an inflammatory process that, among other effects,

attacks and destroys oligodendrocytes, the cells that form the

myelin sheaths around axons in the brain and spinal cord [1]. The

immunopathogenic phenomena leading to MS are thought to be

triggered by an environmental (viral?) factor operating on a

predisposing genetic background.

The most consistent studies for a potential virus involvement in

MS exist for the Epstein Barr virus (EBV) [2–3], and for two

members of the W family of human endogenous retroviruses

(HERV-W), reviewed in [4–7]. The MSRV element (MS-

associated retrovirus) is the first known member of the HERV-

W family [8–]; it has been detected and purified from cells of MS

patients, as free virus-like particles, carrying RT activity and an

RNA genome with terminal repeats, gag, pol and env regions. The

other HERV-W member related to MS is, a replication-

incompetent element located on chromosome 7q21–22, that has

inactivating mutations in the gag and pol genes and is not able to

form virus like particles. The env product of ERVW-1 has been

named syncytin-1, since it is produced by placental trophoblasts

and causes their fusion to form the syncytial layer, during
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pregnancy [9]. The syncytin-1 protein can be found intracellularly

and on the plasma membrane, but has not been detected

extracellularly, nor its RNA sequence in virus-like particles.

MSRVenv and syncytin-1 proteins share several biological

features, and are potentially pathogenic: they have pro-inflamma-

tory and superantigenic properties, and have been shown to cause

neurotoxic effects in vitro and in humanized or transgenic animal

models [10–11]: they may cause neuroinflammation, neurode-

generation, alterations of the immune system and stress responses;

both have been suggested as co-factors triggering the immuno-

pathogenesis of MS. Expression of HERV-W/MSRV/syncytin-1

occurs in astrocytes of MS lesions of the brain [11–12], as well as

in endothelial and microglial cells [13]. In a mouse model,

oligodendrocytes (which produce the myelin sheath of the nerve)

were shown to be sensitive to syncytin-mediated release of redox

reactants from astrocytes [11].

Studies from our group found repeatedly retrovirus-like MSRV

particles and MSRV-specific mRNA sequences in MS patients,

and MRSV presence/load strikingly paralleled disease behaviour.

A large multicentre study of MS patients and controls from

different European areas showed that MSRV presence and load in

blood and spinal fluid was significantly associated to MS in all

ethnic groups [14]. We have found direct parallelisms between

MSRV positivity/load (in blood, spinal fluid, and brain samples)

and MS temporal and clinical stages, as well as active/remission

phases: MSRV positivity of spinal fluids increased with MS

duration [15] and its presence in early MS was related to worse

prognosis in the next ten years: starting from comparable

conditions, after three [16], six [17], and ten years [18], mean

disability, annual relapse rate, therapy requirement and progres-

sion to secondary-progressive MS were significantly higher in

patients starting with MSRV-positive spinal fluids. A longitudinal

evaluation of patients, during efficacious therapy with interferon

(IFN)b, revealed that viremia fell rapidly below detection limits;

notably, a patient, after initial clinical and virological benefit, had

MSRV rescue, preceding strong disease progression and therapy

failure [19]; it was proposed that evaluation of plasmatic MSRV

could be considered the first prognostic marker for the individual

patient, to monitor disease progression and therapy outcome. This

possibility is reinforced by the study of patients with optic neuritis,

a disease frequently prodromic to MS: MSRV positivity of patients

was found significantly higher than that of pathological controls,

and the conversion to full-blown MS in the next 20 months

occurred only among MSRV-positive patients [20].

In line with our findings, an independent 1-year follow up study

of MS patients observed significant decreases in anti-HERV-Wenv

and anti-HERV-Henv antibody reactivity as a consequence of

IFN-b therapy, closely linked to efficacy of therapy/low disease

activity [21].

As for EBV, the risk of MS is low in EBV-negative individuals,

and increases several folds following EBV infection, particularly if

the EBV infection occurs in late adolescence or adulthood, when

the infection is symptomatic. In facts, in 35 to 50 per cent of the

cases, this delayed EBV primary infection causes infectious

mononucleosis (IM), that has been associated with a two-to-four

fold increased risk of MS, [22–26]. There is also an increased risk

of MS among EBV-positive children [27]. A meta-analysis showed

an association between the appearance of anti-EBV antibodies

and the MS onset, 5–20 years later [2]; another one reported that

the relative risk of MS for a past history of IM is 2.17 [3].

There is convincing epidemiological evidence that late EBV

primary infection/seroconversion is a risk factor for MS develop-

ment, but the relationship between EBV and MS pathogenesis

remains elusive. Studies that detected EBV DNA in the brain

failed to prove the association between EBV and MS [2,28–31],

without consistent evidence of increased copies of the EBV

genome in the blood or serological evidence of reactivation [25].

Furthermore, it remains to be determined whether EBV would

continue to play a role after disease initiation [22,25].

Given the above findings, a link between EBV and HERV-W/

MSRV/syncytin-1 seemed possible. Therefore we performed in

vitro experiments on cells transcribing MSRV and syncytin-1, and

with HERV-Wenv protein on the plasmamembrane, i.e. periph-

eral blood mononuclear cells (PBMC) from MS patients and

MSRV-positive healthy donors (HD) and astrocytes, that were

exposed to EBV or to its major envelope glycoprotein 350 (EBV

gp350).

Results

In silico analysis of HERV-W sequences in human DNA
and RNA

Due to their repetitive nature, very few HERV elements have

been characterized. As other HERV families, the W family is

present in the human haploid genome in multiple copies, the

majority of them highly defective, but complete proviruses have

been also described, for a proposed total of ,140–250 copies with

internal sequences (more or less complete proviruses and

pseudogenes with stop-codons, deletions and truncations), plus

additional ,150–340 solitary HERV-W LTRs [4,32–33]. All the

known HERV-W sequences are closely related, and difficult to

distinguish each other [34–35]. For an updating of the HERV-

Wenv genes that have been detected, we performed an in silico

nucleotide BLAST search [36] in the current version of the human

genome, using as queries the MSRVenv and syncytin-1 sequences

(PV14 MSRV clone, GenBank accession number AF331500, and

ERVEW1env coding sequence NM_014590.3, respectively). From

the initial BLAST-identified regions, only the sequences covering

$80% of the genes were selected. As reported on Figure 1,

HERV-Wenv elements containing $80% of the env gene are

present on fourteen human chromosomes; full length HERV-Wenv

sequences are present on ten chromosomes (X, 3, 4, 5, 7, 12, 14,

15, 17, 18); on Table S1a and S1b of the Supporting Information

file more detailed data are reported.

At the RNA level, MSRVenv and syncytin-1 share .94%

identities [12]; at the protein level, no antibody specific for a

unique HERV-W has been identified so far [5]. The homology

between MSRVenv and syncytin-1 originated debates in the

attribution of possible pathogenic effects. A major difference is that

only MSRV has been detected as an extracellular virus, visualized

by electron microscopy, sedimenting at retrovirus buoyant density,

with RT activity and a polyA(+) RNA containing terminal repeats,

gag, pol and env sequences, while the syncytin-1 protein has been

found only intracellularly or on the plasma membrane [5]. Since

PCR and RT-PCR data from the literature have been obtained by

using primers unable to discriminate HERV-Wenv elements, we

developed discriminatory real-rime PCR assays, that could

selectively amplify either MSRVenv or syncytin-1 sequences.

Reliability of the assays with respect to specificity, sensitivity and

inter- and intra-assay variations were published [34].

On Table 1 an in silico analysis of the human DNA sequences

recognized by the above MSRVenv- and syncytin-1 specific

primers, and of their transcription/translation products are

reported. As shown in the upper part of Table 1, apart from the

virionic MSRVenv RNA sequences, the BLAST analysis showed

that the 166 bp fragment amplified with MSRVenv-specific

primers is present only in two full length HERV-Wenv genes,

located on chromosomes Xq22.3 and 5q11.2, and in two largely

HERV-Ws, EBV and Multiple Sclerosis
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defective env genes on chromosomes 8p22.1 and 10q23 (13% and

10% of the whole env gene, respectively). The latter two elements

are not transcribed, while the former two do. The element on

chromosome 5q11.2 cannot be translated, due to the presence of

multiple stop codons, while the one on chromosome Xq22.3, due

to a stop codon on position 115 originates two products, of 38 and

475 amino acids, respectively, instead of the 541 amino acids of

the complete env protein. The syncytin-1-specific primers, as

shown in the lower part of the Table 1, recognize a 100 bp

amplicon present on the chromosome 7q21.22 element only, that

has retained an uninterrupted open reading frame, and therefore

is fully transcribed and translated in the complete protein of 537

amino acids.

Basal expression of HERV-Wenv/MSRVenv/syncytin-1 by
astrocytes and blood cells in vitro and in vivo

Previously we have shown HERV-Wenv protein immuno-

staining in up to 50% of the astrocytes of active lesions in the brain

of MS patients [12]. Therefore U87-MG glioblastoma-astrocyto-

ma cells were analysed for transcription and translation of HERV-

W elements.

As shown in the upper Panels of Figure 2, both MSRVenv and

syncytin-1 mRNAs are detected in these cells, when reliable

discriminatory real time RT-PCR assays are used (Figure 2A).

When the cultures are in logarithmic phase of growth, more than

one third of the cells expose the HERV-Wenv protein on the

plasma membrane, as detected by flow cytometry (Figure 2B).

Since no antibody capable of discriminate between MSRVenv and

syncytin-1 is available, the immuno-staining could be due either to

MSRVenv or syncytin-1, or both. Moreover, when comparing the

expression of the env genes, it must be pointed out that the RT-

PCR data detect the specific transcripts of the whole cells, while

the flow cytometry data are referred to proteins present on the

outer cell surface, only; thus they are representative only of a

fraction of the total env protein products present in the cells (and

are not indicative of the released products/virus particles).

The transcription of MSRV and syncytin-1 and the release of

MSRV from PBMC in the blood and in culture has been shown

repeatedly by several Authors, including us (reviewed in [5,7]. To

clarify whether MSRV and syncytin-1 are expressed preferentially

by a particular cell subpopulation, PBMC from MSRV(+) HD

were separated in T, B, NK and monocyte subsets, by immuno-

specific adsorption to magnetic beads. Each subpopulation was

divided in two aliquots, to be processed for real time RT-PCR and

flow cytometry studies. Part of the monocytes was kept to

differentiate in macrophages (MDM). As shown in Figure 2C,

the mRNA amounts of MSRVenv and syncytin-1 of whole PBMC

derive from an uneven accumulation in the various cell subsets.

The T cells were totally negative, while high levels of transcripts

were found in NK and B cells; in monocytes the expression was

lower, but it increased by 3–4 folds with differentiation to MDM.

To monitor the presence of the HERV-Wenv protein on the

plasma membrane, two different approaches were used. PBMC

taken from MSRV(+) individuals were labelled with four different

antibodies, each of them identified by a different fluorochrome.

The flow cytometry of PBMC subsets is reported on Figure 2D.

When the cells were sorted for HERV-Wenv-specific fluorescence

only (upper histogram of Figure 2D), 34% of PBMC were shown

to have HERV-Wenv on the plasma membrane. When the cells

were sorted also for markers of PBMC subsets (lower histograms of

Figure 2D), it appeared that the HERV-Wenv(–) PBMC fraction

was mainly attributable to CD3+ T cells, according to the mRNA

data of Figure 2C (and Figure 2E, see below); the sorting of CD19+

B cells, CD56+/CD192/CD32 NK cells, and CD192/CD32/

CD562 monocytes showed a significant shift of the peak of

Figure 1. Chromosomal representation of multiple sites of integration in human DNA of HERV-Wenv loci covering $80% of the
HERV-Wenv gene. The in silico analysis of the current version of the human genome was performed by NCBI Basic Local Alignment Search Tool
(BLAST) program, using as queries the MSRVenv and syncytin-1 sequences (PV14 MSRV clone, GenBank accession number AF331500, and ERVW-1env
coding sequence NM_014590.3, respectively). From the initial BLAST-identified regions, only the sequences covering $80% of the HERV-Wenv gene
were selected as target and are reported. Red dashes: target:score $200; mauves dashes: target:score 80–200. Hits: number of loci; Hit GIs: Locus
number all matches; MT: mitochondrial chromosome.
doi:10.1371/journal.pone.0044991.g001
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HERV-Wenv-specific fluorescence, compared to that of the

unrelated antibody.

The other approach to monitor the distribution of HERV-

Wenv(+) cells in PBMC is reported on Figure 2E: PBMC from

MSRV(+) donors were mixed to magnetic beads charged either

with anti-HERV-Wenv or with an unrelated isotype antibody.

The unprocessed PBMC and the cells retained by the immuno-

beads were sorted for T, B, NK and monocyte markers. The

unretained cells were also analysed (not shown). In the scanning of

PBMC adsorbed to anti-HERV-Wenv-beads, a remarkable

enrichment of the B and monocyte subsets was detected, that

accounted for ,80% of the HERV-Wenv-specific binding (,5-

and 6-fold enrichment of the B and monocyte subsets, respective-

ly), while T cells dropped to ,1/10th of the percentage of whole

PBMC, confirming the findings of Figure 2C and 2D. Sorting of

cells retained through unspecific binding revealed a profile

substantially similar to that of fresh PBMC, with a slight increase

of the monocyte subset, likely to be due to the phagocytic

properties of these cells.

Next, HERV-Wenv-specific immunostaining of PBMC from

five untreated MS patients and three patients under therapy was

compared to that of five MSRV(+) HD, with the same approach

used for data of Figure 2D. When the cells were sorted for HERV-

Wenv-specific fluorescence only, mean HERV-Wenv% immuno-

staining was 4.262.6, 15.567 and 1.560.8, for HD, untreated

and treated MS patients, respectively. Similar data were obtained

when the mean fluorescence intensity of the three groups was

calculated (not shown). Of note the .10-fold reduction of HERV-

Wenv positivity in the patients under therapy, a new finding, since

the published reports were referred to inhibition of MSRV release

in the plasma of IFN-treated patients only [19].

When the cells were sorted also for markers of PBMC subsets,

the T cells were found almost HERV-Wenv(2) in all three groups

(mean% immunostaining #1.5%, not shown). The values of

HERV-Wenv-specific fluorescence of CD19+ B cells, CD56+/

CD192/CD32 NK cells, and CD192/CD32/CD562 mono-

cytes are reported on Figure 2F. The untreated MS patients

showed HERV-Wenv protein positivity higher than that of HD in

all three cell subsets. Despite the low number of individuals, the

statistical significance was reached for B cells and monocytes

(P#0.003). Notably, in the patients under therapy, HERV-Wenv

positivity on the plasma membrane of all three subsets was highly

reduced, and the differences with the untreated patients were

statistically significant, in line with our proposal of MSRV

inhibition as biomarker of MS therapy [19].

EBV activates the expression of HERV-W/MSRVenv/
syncytin-1 by astrocytes

It has been reported that EBV can infect human astrocyte cell

lines and primary foetal astrocytes [37–38]. By RT-PCR (not

shown), we found that the U-87MG astrocytes cell line express the

CD21 gene, whose protein is the main cell receptor used by EBV.

Therefore, U-87MG cells were co-cultured with the EBV-

producer B95-8 cell line, through Transwell membranes. Cell

aliquots were harvested during time, to evaluate MSRVenv and

syncytin-1 transcription by real time RT-PCR. Significant

increases of MSRVenv and syncytin-1 transcription were detected

at 24 h, that declined thereafter (Figure 3A). No MSRVenv/

syncytin-1-specific amplification was detected in B95-8 cells,

neither basal expression nor after co-culturing (not shown).

To verify that HERV-W activation in the co-cultures was

specifically induced by EBV and not by factors released by the

B95-8 cells, U-87MG cells were treated with graded amounts of

EBVgp350, the major protein of EBV envelope and virus

receptor. The Figure 3B reports the data of MSRVenv/

syncytin-1-specific amplifications of a time-course experiment

with 10–100 ng/ml of EBVgp350. As shown, the stimulation of

MSRVenv and syncytin-1 occurs also with the EBVgp350 protein;

for both elements the highest effect was obtained with 10 ng/ml of

EBVgp350 and 24 h of treatment. The HERV-Wenv activation is

specifically due to EBVgp350, since it was abolished by pre-

treatment of EBVgp350 with anti-EBVgp350 antibody

(Figure 3C), but not by an unrelated one (not shown). A slight

effect was observed with the anti-EBVgp350 antibody alone; it

might be due to cross-reactivity due to similarity of epitopes on the

plasma membrane of the astrocytes, or to contaminants of the

antibody preparation.

It is known that the binding of EBVgp350 to CD21 induces the

activation of the NF-kB transcription factor [39]. To verify if NF-

kB plays a role on MSRVenv and syncytin-1 activation, we

silenced NF-kB by transient transfection of U87-MG cells with

silencer RNA (siRNA) specific for the NF-kB p65 subunit; then the

Table 1. Env genes integrated in the human genome that are recognized by MSRVenv- and syncytin-1-specific real-time PCR
assays.

Localization
HuDNA virionic RNA

Gene
length1

mRNA Start codons
(position)

Stop codons
(position)

Proteic
products*

Comments

MSRVenv primers:a

Unknown MSRVenv
(AF331500.1)u

1623 Yes 1 (1) no 541

Chromosome Xq22.3
(NT_011786.16)

1623 Yes 2 (1, 196) 1 (117) 38, 475 [88]

Chromosome 5q11.2.
(NT_006576.16)

1631 Yes no 30 no [70]

Chromosome 8p22.1
(NW_001839126.2)

212 no no 2 no

Chromosome 10q23
(NT_030059.13)

168 no no 2 no

Syncytin-1 primers: b

Chromosome 7q21–2 (NM_014590.3) 1611 Yes 1 (1) no 537
ERVW-1env

aBLAST program, using as query the MSRVenv amplicon; * amino acids; 1 nucleotides; u Accession number; b BLAST program, using as query the syncytin-1 amplicon.
doi:10.1371/journal.pone.0044991.t001

HERV-Ws, EBV and Multiple Sclerosis
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Figure 2. Basal expression of MSRVenv/ syncytin-1/HERV-Wenv in U87-MG astrocytes and PBMC subsets. A. Detection of MSRVenv
and syncytin-1 mRNAs of U87-MG cells, by real time RT-PCR (means of three experiments run in duplicate, calculated by the 22DCt method; bars
indicate standard deviation. B. Flow cytometry evaluation of the HERV-Wenv protein on U87-MG plasma membrane. Shaded histograms: HERV-Wenv-
specific staining; open histograms: isotype control. C. MSRVenv and Syncytin-1 mRNA expression on PBMC from MSRV(+) donors as such, and after
immunobeads separation in CD3+T, CD19+ B, CD56+/CD192/CD32 NK and CD192/CD3–/CD562 monocyte subsets, and subsequent monocyte
differentiation into MDM (bars indicate standard deviation). D. Flow cytometry evaluation of the HERV-Wenv protein on the membrane of PBMC from
a representative MSRV(+) donor in toto and after sorting of the CD3+T, CD19+ B, CD56+/CD192/CD32 NK and CD192/CD32/CD562 monocyte subsets.
Shaded histograms: HERV-Wenv-specific staining; open histograms: isotype control. E. Cell populations distribution of PBMC from a representative
MSRV(+) donor before, and after capture by magnetic beads charged with anti-HERV-Wenv or with an unrelated isotype antibody. The unprocessed
PBMC and the cells retained by the immunobeads were sorted for T, B, NK and monocyte markers. The unretained cells were also analysed (not
shown). F. Presence of surface HERV-Wenv protein in blood cells from five MSRV(+) HD, five untreated MS patients and three MS patients under

HERV-Ws, EBV and Multiple Sclerosis
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cells were treated with EBVgp350, and analysed by real time RT-

PCR (Figure 3D) and Western blot (Figure 3E). In conditions

where the NF-kB p65 subunit was silenced, as proven by the

absence of the specific band in Western blot, the stimulation of the

two retroelements by EBVgp350 was dramatically reduced. This

finding is in line with the report of a role for NF-kB in the

regulation of the syncytin-1 promoter by TNFa, and IFNc [40],

through a NF-kB-responsive element located within the enhancer

(cellular) domain of the promoter. The Figure 3 shows that

syncytin-1 is twice more responsive than MSRVenv to EBV. Since

the promoters of the two elements have identical viral moieties

[40], the difference should lie in the upstream regulatory cellular

region of the two promoters.

Modulation of MSRVenv and syncytin-1 by EBVgp350 in
PBMC

The most probable site of EBV/HERV-W interactions should

be the circulating cells. Thus PBMC from MSRV(+) HD, either as

such or separated in T, B, NK and monocyte subsets, of the same

type of experiments whose basal MSRVenv and syncytin-1

transcription is shown in Figure 2C, were treated overnight with

graded amounts of EBVgp350; the Figure 4A reports the data of

MSRVenv/syncytin-1 mRNA accumulation. Part of the mono-

cytes was left to differentiate in MDM, before treatment with

EBVgp350, and the data are reported in Figure 4B. As shown, the

amounts of both MSRVenv and syncytin-1 in whole PBMC cells

exposed to EBVgp350 were increased dose-dependently (up to

,10-fold for both genes, at the highest dose), and derive from

uneven mRNA levels in the various cell subsets. The T cells, that

are HERV-Wenv(2), were not induced by EBV to a de novo

transcription, nor effects were observed on NK cells, despite high

basal levels of expression for both genes. The B and monocyte

subsets, instead, were stimulated by EBVgp350. Of interest the

EBV effect on the monocytes, whose basal levels of transcripts

were lower than those of B cells, but that were more sensitive to

EBVgp350, reaching values of the same range of those of treated B

cells (MSRVenv), or higher (syncytin-1). The effect of EBVgp350

on syncytin-1 was higher than that on MSRVenv, suggesting that

also in blood cells the two promoters are regulated differently.

Monocyte differentiation into MDM increased by 3–4 folds

MSRVenv and syncytin-1 transcription (as shown also in

Figure 2C), and amplified the effects of EBVgp350. The

Figure 4B shows that MDM exposed to 100 ng/ml of EBVgp350

expressed mean levels of MSRVenv and syncytin-1 78 and 84

folds those of monocytes, respectively. The finding that the highest

effective therapy, evaluated by flow cytometry in PBMC in toto and after sorting of the CD3+T, CD19+ B, CD56+/CD192/CD32 NK and CD192/CD32/
CD562 monocyte subsets. Each dot represents an individual; horizontal bars represent the means. HERV-Wenv positivity of CD3+T cells was ,2% for
all samples (not shown).
doi:10.1371/journal.pone.0044991.g002

Figure 3. MSRVenv and syncytin-1 stimulation by EBV and EBVgp350 in U87-MG astrocytes. The levels of MSRVenv and syncytin-1
mRNAs were evaluated by real time RT-PCR as in Figure 2A, and are expressed as mean fold increases over controls (22DDCt method). A. Expression of
MSRVenv and syncytin-1 in astrocytes cultured alone or co-cultured with the EBV-producer B95-8 cells for 24–48 h. B. Effects of 10 (N) or 100 (¤) ng/
ml of EBVgp350 on MSRVenv and syncytin-1 mRNA accumulation during time. C. Suppression of EBVgp350 effects by its pre-incubation with anti-
EBVgp350 neutralizing antibody. D. Requirement of NF-kB. Expression of MSRVenv and syncytin-1 by U-87MG cells transfected or not with siRNA
against the NF-kB p65 subunit and left overnight with/without 10 ng/ml of EBVgp350. E. Western blot assay of protein extracts from aliquots of the
same cultures of Figure 3D. The relevant band was recognized by antibody against the NF-kB p65 subunit; the anti-Grb2 antibody was used to
control the loading of equal amounts of proteins.
doi:10.1371/journal.pone.0044991.g003

HERV-Ws, EBV and Multiple Sclerosis
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effect of EBV on HERV-W expression was seen on MDM might

be relevant for the possible contribute of HERV-W elements to

MS pathogenesis, since it has been reported that inflamed cells of

the blood-brain-barrier promote the differentiation and/or mat-

uration of migrating monocytes, and that this could shape auto-

aggressive immune processes occurring early in CNS inflamma-

tion [41]. Furthermore, since monocytes may constitute up to 8%

of circulating cells and can infiltrate inflamed tissues, including the

brain, this cell subset seems to be responsible for the bulk of

HERV-W expression, during EBV infection. On the other hand,

any episode that induces the production of proinflammatory

cytokines, as it occurs during MS exacerbations, will increase both

monocyte migration to the brain, their differentiation into

macrophages, and expression of potentially pathogenic HERV-

Wenv [50,69].

The lack of effect of EBVgp350 on T and NK cells could be due

to the absence of receptors for EBV on these cells. To verify if

other stimuli can modulate HERV-W expression in NK and T

cells, PBMC were exposed to either TNFa or IFNc proinflamma-

tory cytokines, or to phorbol-12-myristate-13-acetate (PMA). As

shown on Figure 4C, NK and B cells were stimulated similarly to

hyperexpress HERV-Wenv proteins, while no de novo HERV-

Wenv expression was observed in T cells. Thus HERV-W

elements can be activated also in NK cells, when the proper

stimuli are given; since also PMA is active, this suggests an

involvement of the protein kinase C signalling enzyme.

Discussion

Late EBV infection/seroconversion has been shown to be a risk

factor for the development of MS in the next 5–20 years [2], with

a maximum of a , ten-fold increase in MS risk for DRB1*15-

positive persons with a history of IM [22–26]. The mechanism by

which the late EBV infection is linked to MS risk is still unknown;

so far, no convincing data support unequivocally a direct etiologic

role of EBV or prove its preferential presence, expression or

reactivation in MS patients with respect to controls [2,29]. It is

highly debated whether EBV infects MS brain and contributes

directly to CNS immunopathology [42–43]. Some hypotheses

have been proposed as to how EBV infection could potentially

promote autoimmunity and nervous tissue damage in MS:

primary EBV infection might facilitate activation of auto-reactive

lymphocytes, through recognition of pathogen-derived molecules

by Toll-like receptors and other pattern recognition receptors [40].

A report by Serafini et al. [43] described rare brain structures

similar to ectopic B-cell follicles, identified as major sites of EBV

persistence, in autopsy samples of 9/13 patients with secondary

progressive MS (e.g. in the late stages of the disease, 12–35 years

from MS onset, thus presumably decades since primary EBV

infection). Based on this, a direct action of EBV within the brain

was postulated, with autoreactive and polyspecific T cells that

should be maintained in the presence of continuous antigen

exposure, due to EBV persistence [40]. Other studies could not

confirm the presence of ectopic B-cell follicles, and reported that

CNS EBV infection is rare in MS brain, indicating that EBV

infection is unlikely to contribute directly to multiple sclerosis

brain pathology in the vast majority of cases [42]. The report of a

recent workshop dedicated to EBV in the brain, signed also by the

group of Serafini [44], agreed that the presence of EBV-infected

cells in MS brains remains highly controversial and that

unequivocal proof of EBV infection in MS lesions is still lacking.

On the other hand, an association between MS and either one

or both the two potentially neuropathogenic MSRV and syncytin-

1 HERV-W elements has been repeatedly and independently

reported by several groups, including us. Extracellular, coat-

protected, MSRV RNA sequences have been found increased in

the blood and spinal fluids of MS patients of several cohorts of

Caucasians [12,14,15,45–49]. Several studies reported increased

expression of Syncytin-1 in MS patients [11,12,34,50–51]. MSRV

presence was associated to the conversion from optic neuritis to

full-blown MS [20]; MRSV presence/load strikingly paralleled

MS temporal and clinical stages [15] and was related to worse

prognosis in the next ten years [16–18]. Notably, MSRV viremia

became undetectable in MS patients under therapy with

interferonb [19], and was proposed as prognostic biomarker of

the disease and of therapy outcome.

Since the expression of potentially neuropathogenic MSRV/

syncytin-1 HERV-W elements parallels the behaviour of the MS

disease, and the role of EBV in MS induction is still unknown, a

link between EBV and HERV-W elements seemed possible. This

also in view of the fact that some herpesviruses can activate the

expression of retroelements: the herpes simplex-1 virus was shown

to transactivate HERV-W/MSRV elements [52–55], and the

expression of HERV-K18 is activated by EBV [56–59] and by

Figure 4. Expression of MSRVenv and syncytin-1 by PBMC subsets exposed to EBVgp350 or proinflammatory cytokines. A. Levels of
MSRVenv and syncytin-1 mRNAs of PBMC from MSRV(+) HD treated overnight with 1–100 ng/ml of EBVgp350, either as such or separated in T, B, NK
and monocyte subsets. B. Comparison of the MSRVenv and syncytin-1 mRNA levels of monocytes and MDM after overnight EBVgp350 treatment. A
and B: Data are the means of three experiments run in duplicate, calculated by the 22DDCt method; C. Expression of the HERV-Wenv protein on the
plasma membrane, evaluated by flow cytometry as present env-specific positivity of PBMC treated for 24 h with TNFa (1 ng/ml), IFNc (1000 IU/ml), or
PMA (50 NM); the bars indicate standard deviations.
doi:10.1371/journal.pone.0044991.g004
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human herpesvirus-6 [60–61]. To evaluate the possible interac-

tions between EBV and HERV-W/MSRV/syncytin-1, we

focused on cells related to MS pathogenesis and\or target of

EBV infection: (i) the astrocytes, that help demyelination, by

promoting inflammation, damage of oligodendrocytes and axons,

and glial scarring, but also allow remyelination by acting on

oligodendrocyte proliferation, and differentiation [62], and (ii)

PBMC subsets, that are the main site of EBV replication and

persistence, and play pivotal roles in MS in immune defence and

immunopathogenesis.

The in silico survey of the human genome reported in the present

paper shows that full length HERV-Wenv DNA sequences are

present on ten chromosomes, and that three additional ones have

elements containing $80% of the HERV-Wenv gene (Figure 1). As

for transcripts, data from GenBank indicate that only the ERVW-

1 locus on chromosome 7q21.22 is transcribed in a full length env

mRNA, that can be translated in a complete protein, the syncytin-

1. All the other HERV-Wenv genes present in the current version

of the human genome, either are not transcribed, or originate

HERV-Wenv fragments with stop codons and other gene

alterations [63–65].

The majority of HERV-Wenv studies used tools not discrimi-

nating the components of the HERV-W family [35]. At the RNA

level, MSRVenv and syncytin-1 share .94% identities [12]; at the

protein level, no antibody specific for a unique HERV-W are

available so far [5]. Therefore the origin of the HERV-Wenv,

whose expression has been found associated to MS is still debated.

It has been suggested that MSRV might be either an exogenous

HERV-W, or a nonubiquitous replication-competent member, or

a partly defective but nonubiquitous copy, seldom complemented

or recombined within the HERV-W family [4–5,66–70]. So far,

the real nature of MSRV remains to be elucidated. Whatever the

origin of MSRV is, a meta-analysis showed that ,9% of

Caucasian blood donors have circulating virionic MSRV/

HERV-W RNA [5].

The real-time RT-PCR assays employed in the present study

amplify selectively either MSRVenv or syncytin-1 sequences [34].

As shown on Table 1, the latter primers recognize only the

transcripts from the ERVW-1 element on the chromosome

7q21.22, while MSRVenv-specific primers, apart from the extra-

cellular MSRVenv gene, can amplify RNAs from the element on

chromosome Xq22.3 only; this element can originate an

incomplete protein, that is unglycosylated, does not form

oligomers, and is located intracellularly [64]; thus the present

version of the human genome (that presumably does not contain

sequences derived from MS patients) does not contain complete

HERV-Wenv elements, recognized by the MSRVenv-specific

primers, that can originate a full length MSRVenv protein.

Therefore the HERV-Wenv protein(s) on the plasma membrane

detected by the anti-HERV-Wenv antibody employed in the

present study could derive from the element present on the

chromosome 7q21.22 and/or from MSRV, only.

Firstly, we monitored the expression of MSRVenv and syncytin-

1 in astrocytes and PBMC, cells involved in MS pathogenesis,

and/or that could host the interactions among the above viruses.

As reported on Figure 2 A and B, in U87-MG astrocytes a basal

expression of both HERV-Wenv genes was detected at the mRNA

level; accordingly, the HERV-Wenv protein was detected on the

plasma membrane. This could be expected, since HERV-Wenv

expression by the astrocytes of active lesions in the brain of MS

patients has been reported [11,12,71].

The PBMC from both MS patients and healthy MSRV(+)

donors express MSRVenv and syncytin-1 mRNAs, and have the

HERV-Wenv protein on the outer surface of the plasma

membrane (Figure 2 C–F). The two elements, however, are not

uniformly expressed by all the PBMC, but derive from an uneven

expression in the various cell subsets. As shown in Figure 2E, when

PBMC were adsorbed to anti-HERV-Wenv-beads, ,80% of the

cells retained by the beads are B cells and monocytes. High levels

of expression of HERV-W/MSRVenv/syncytin-1 were found in

NK and B cells; in monocytes the expression was lower, but it

increased with differentiation to MDM. This is a novel finding for

endogenous retroviruses, but was shown for exogenous retrovirus-

es, such as HIV, whose expression in chronically infected

monocytes increases with differentiation to MDM [72]. The

expression of HERV-W in NK cells has not been reported

previously. These cells appear to express the highest levels of both

MSRVenv and syncytin-1 MSRVenv (see Figure 2C and basal

levels of Figure 4A). How HERV-W activation could influence the

dual role played by NK cells in MS, as inflammatory mediators of

damage and as immune regulatory cells suppressing harmful

inflammatory activity [73], remains to be elucidated. The T cells

were found totally negative for HERV-Wenv expression, both as

HERV-Wenv protein on the outer cell surface and as intracellular

MSRVenv and Syncytin-1 transcripts. This finding indicates that

the absence of the HERV-Wenv protein on the membrane of T

cells (Figures 2 and 4), that was reported by flow cytometry also by

Brudek et al. [51], is due to absence of env transcripts in the T cells,

that cannot be induced by none of the stimuli active on other cell

subsets (Figure 4).

Comparison of the HERV-Wenv expression of blood cells from

HD and MS patients, either naive or under effective therapy

(Figure 2F) showed that in the patients with active MS there is an

increase of 3–4-fold in the percentage of cells expressing the

HERV-Wenv protein on the membrane, for both whole PBMC

and B, NK, and monocyte subsets, indicating that HERV-Wenv

activation is similar in all the already HERV-W-positive PBMC

subsets, while the T cells remained negative. The specific

immunostaining sharply decreased in the patients under therapy.

This is a new finding, since our published report of inhibition of

MSRV release during effective anti-MS therapy was referred to

patients treated with interferonb [19]; in that case, the inhibition

of HERV-W/MSRV release could be explained in terms of

antiviral effects (related or not to the anti-MS action of interferon,

that was postulated to be due to its modulation of T and B cell

activity and effects on the blood-brain barrier). In the case of the

patients of Figure 1F, treated with glatiramer acetate, the anti-

HERV-W effect could be related to its induction of anti-

inflammatory cytokines [74], while that of azathioprine that

interferes with DNA synthesis could be related to its inhibition of

proliferation of cells, especially of T and B cells. In any case, our

findings confirm that efficacious anti-MS therapy is paralleled by

inhibition of HERV-W expression.

Following infection by EBV, U87-MG astrocytes increased the

transcription of both MSRVenv and syncytin-1 (Figure 3A). There

is no need of EBV entry or expression, since the effect was seen

also after exposure to the EBVgp350 major envelope protein. The

effect is abolished by silencing NF-kB (Figure 3C–D), a

transcription factor that is implicated in the production, by

activated astrocytes, of pro-inflammatory cytokines: this, in turn,

induces further release of cytokines, that contribute in vivo to

exacerbating the neurodegenerative process [75], and that in vitro

stimulate HERV-Wenv expression in astrocytes (unpublished data)

and PBMC (Figure 4C, and [69]. The HERV-Wenv proteins use,

as their cell surface receptors, the sodium-dependent neutral

amino acid transporter type 1 and 2 (ASCT-1 and ASCT-2),

involved in the cellular intake of amino acids [76]. Binding of

HERV-Wenv to ASCT-1 or -2 receptors might create critical
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reduction in the amino acid intake necessary for their normal

activity. Of note, reduced detection of these ASCT receptors at the

neuronal surface in schizophrenic cortex was reported [77] and

connected with receptor modulation or masking by HERV-Wenv

protein [6].

In the PBMC exposed to EBVgp350, MSRVenv and syncytin-1

are stimulated in B cells and monocytes, but not in T cells, nor in

the highly expressing NK cells. The latter cells, but not the T cells,

are activated by proinflammatory cytokines. Thus HERV-W

elements can be stimulated also in NK cells, when the proper

stimuli are given. Of particular interest, in our opinion, is the

monocyte/macrophage (M/M) cell compartment. These cells are

the most responsive to EBVgp350, reaching env levels higher than

those detected in B cells, particularly after cell differentiation into

macrophages. Since the monocytes can easily pass across the

endothelia, and through the blood-brain barrier, the HERV-W

expression (and release) by monocyte-macrophages can reasonably

account for the bulk of expression (and effects) of these elements.

One must remind the fundamental roles played by M/M, not only

in the clearance of virions or virally infected cells by phagocytosis,

in antigen processing, leading to the activation of the humoral

immune response and to generation of cytotoxic T-lymphocytes,

but also activation of the innate immunity, release of soluble

factors/cytokines, NK activation. Notably, neurotoxic mediators

released from M/M are thought to be involved also in the

pathogenesis of neuroAIDS, and accumulation of activated M/M

in the brain correlates with neurological injury: monocytes

infected with HIV have enhanced migratory capacity through

the blood–brain barrier; within the CNS, they differentiate and

mediate neuronal injury and dysfunction through the secretion of

viral proteins, inflammatory factors, excess glutamate, and other

neurotoxins [78–79]. Increased BBB permeability is a character-

istic hallmark of the CNS alterations observed in MS, suggesting a

causal relationship between inflammatory cell recruitment into the

CNS and the blood–brain barrier dysfunction [80], and HERV-

Wenv production by activated M/M could contribute to the

pathogenicity. To be noted, in this respect, that the HERV-Wenv

protein has been shown to activate innate immunity through

CD14/TLR4 and to promote Th1-like responses [81].

Conclusions

The present study demonstrates that basal expression of

MSRVenv and syncytin-1 is present in U87-MG astrocytes and

in PBMC from MS patients and some healthy donors; among

PBMC subsets, MSRVenv and syncytin-1 are expressed by NK, B

cells and monocytes, but not by T cells. It is shown for the first

time that EBV infection or cell exposure to the EBVgp350 protein

stimulates the expression of MSRVenv and syncytin-1, up to the

final protein product on the plasma membrane, and that this

activation involves the NF-kB pathway. Novel findings are also

HERV-Wenv expression by NK cells, and differential expression

and modulation of the HERV-Wenv protein in PBMC subsets

from MS patients (untreated and under therapy) and MSRV-

positive healthy donors. It is demonstrated that in vitro interactions

among the two proposed MS-cofactors, HERV-W and EBV,

occur in cells from blood and from brain. It is likely that it might

occur also in vivo. Therefore, in an individual, the possibility of the

activation of the immunopathogenic and neuropathogenic poten-

tial of HERV-W by superinfecting EBV is concrete, both in blood

and in brain. The original sin could lie in abnormal host reactions

to a late primary EBV infection, that often leads to IM; of note, a

mathematical model addressing the age-dependence of IM,

suggests that variation in host antibody responses and the

complexity of the pre-existing cross-reactive T-cell repertoire,

both of which depend on age, may play important roles in the

aetiology of IM [82]. During IM, an abnormal activation of

circulating cells occurs. Among other effects, EBV proteins might

deregulate also the expression of HERV-Ws, in B and M/M cells.

Activation of HERV-W elements- could induce an immune

cascade activated by HERV-Wenv protein; activated cells,

especially the M/M cells, could also go across the blood-brain

barrier. In the blood, the EBV/HERV-W interactions might

induce immunopathogenic phenomena linked to HERV-Wenv

superantigenic properties. In the brain, the EBV/HERV-W

interaction could establish also toxic mechanisms against the

oligodendrocytes, thus inducing inflammation, demyelination and

axonal damage. Local stimulation of astrocytes, by proinflamma-

tory cytokines and other factors might activate further expression

of HERV-Ws, contributing to the neuropathogenity, since

presence of MSRV in spinal fluids of MS patients is an early

event, predictor di worse progression [16–18].

Our findings reinforce the hypothesis of a possible involvement

of these viruses in MS pathogenesis, with the possibility for MSRV

of a direct role of effector of pathogenicity, and for EBV of an

initial trigger of future MS, years later, since the possibility of the

activation of the immuno- and neuro-pathogenic potential of

HERV-W by superinfecting EBV is concrete, both in blood and in

brain.

During the revision of the paper, a multicentric study has been

published [89] on the association of MSRVenv antigenemia with

MS, that independently confirmed our findings on increased

positivity/expression levels of PBMC MSRV RNA and of MSRV

DNA copy number in MS patients, and expression of MSRVenv

protein within brain MS lesions; the HERV-W Env protein

detection in MS sera confirmed our data on the association of

circulating HERV-W/MSRVenv with MS.

Materials and Methods

Ethics Statement
The study was approved by the Sassari AOU Ethics Commit-

tee. The patients and the volunteers gave written informed

consent.

Cells
U-87MG: human glioblastoma-astrocytoma, epithelial-like cells,

grown in Dulbecco’s modified Eagle’s medium 10% foetal calf

serum (FCS, Life Technologies, Inc., Carlsbad, CA). B95-8:

marmoset B lymphoblastoid cells, chronically infected and

producing EBV. PBMC were isolated from heparinized peripheral

blood of MSRV(+) donors (HD, and MS patients) by layering on

Ficoll/Hipaque [19]. The PBMC and the B95-8 were maintained

in RPMI-1640 medium 10% FCS (Invitrogen, San Giuliano

Milanese, IT). Cell viability was assessed with the Trypan blue

exclusion method.

Blood samples
HD: Five already studied MSRV(+) volunteers of our cohort

[34], three females, two males (mean age 43615.0 years). MS

patients: eight patients (six females, two males; mean age

39613.0 years) attending the Department of Neurosciences,

University of Sassari, with a diagnosis of relapsing remitting MS

according to international guidelines [83]. Three patients were

untreated and three were under (effective) therapy (one was

treated with 2.6 mg/kg/day of azathioprine and two were treated

with 20 mg/day of glatiramer acetate). Table 2 reports the

anamnestic, clinical and therapy data of the patients.
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Separation of PBMC subpopulations
The PBMCs were fractionated using the Magnetic Cell Sorting

kits (MACS, Miltenyi Biotec, Auburn, CA): NK cells were

obtained by negative selection (NK Cell Isolation Kit, Miltenyi

Biotec); to obtain B, T and monocytes, PBMC were treated with

anti-CD4/anti-CD8 (for T cells) and anti-CD14 monoclonal

antibody (for monocytes), respectively (BD Biosciences Becton

Dickinson, San Jose, CA) and mixed with microbeads (anti-mouse

Ig microbeads, MACS, Miltenyi Biotec), according to the

manufacturer’s protocols (.95% purity was achieved). The same

method was used to select from PBMC the HERV-Wenv(+) cells,

using a polyclonal rabbit anti-HERV-Wenv (Allele Biotec, San

Diego, CA) and the anti-rabbit Ig microbeads (MACS, Miltenyi

Biotec). MDM were obtained by incubating monocytes for 6 days

in RPMI 20% FCS.

Co-culture studies
The U87-MG cells were plated on TranswellH Receiver plates

(CostarH Snapwell membranes, Corning Inc., Lowell, MA);

exponentially growing B95-8 cells were added on the TranswellH
Reservoir plates 0.4 mm pore size. After incubation for 1–2 days,

cells were collected and processed for mRNA studies.

Treatment with EBVgp350
Semi-confluent U-87MG astrocytes, PBMC and PBMC sub-

populations were treated overnight with 10–100 ng/ml of

recombinant EBVgp350 protein, then were harvested and

processed for further studies. Fully purified EBVgp350 was kindly

provided by A.J. Morgan, University of Bristol, UK, and its

endotoxin content was ,25 pg/ml. [84].

EBVgp350 neutralization assay
The cells were treated for 24 h either with 10 ng/ml of

EBVgp350 (protein as such, or pre-incubated for 2 h at room

temperature with anti-EBVgp350 antibody (Santa Cruz Biotech-

nology, Inc., Santa Cruz, CA) or with anti-mouse IgG (Abcam,

Cambridge, UK) as an unrelated antibody, or with medium. The

cells were then harvested and processed for quantification of the

transcripts of interest, as below.

Treatment with cytokines and PMA
The PBMC were exposed overnight to either human recom-

binant TNFa, IFNc, or PMA, at the doses of 1 ng/ml, 1000 IU/

ml, and 50 nM, respectively (Sigma-Aldrich, St. Louis, MO), then

were harvested and processed for RT-PCR and flow cytometry.

RNA extraction and Real-time PCR
RNAs were extracted from 50.000 cells, by mRNA DynabeadsH

kit (Dynal Biotech, Oslo, NO) and retrotranscribed; selective

amplification of MSRVenv and syncytin-1 sequences was obtained

by utilizing the corresponding primer pairs, as published in [34].

The comparison of the relative amounts of the two sequences in

RNAs was carried out by the 22DCt and 22DDCt Methods, based

on the different amplification of the gene of interest with respect to

the glyceraldehyde-3-phosphate dehydrogenase housekeeping

gene [85].

siRNA interference
Transient knockdown of the NF-kB p65 subunit was performed

with p65-specific siRNA. using the transfection reagents of Santa

Cruz Biotechnology as published [40]. Briefly, 24 h after seeding,

semiconfluent U87-MG cells were rinsed once with Optimem

(Invitrogen, Carlsbad, CA); transfection was performed with

50 pmols of siRNA, at the final concentration of 0,125 mg/ml

(Santa Cruz Biotechnology, Inc.) by the method of Surabhi and

Gaynor [86] in foetal serum-free medium for transfection (Santa

Cruz Biotechnology, Inc.). After 6 h was added 1 ml of medium

with double concentration of foetal calf serum and antibiotics.

After 12 h, 10 ng/ml of EBVgp350 were added, and cultures

incubated overnight, then collected and processed for mRNA and

Western blot studies.

Western Blot analysis
The expression of the NF-kB p65 subunit was detected in cell

lysates by immunoblotting using monoclonal antibodies against

the NF-kB p65 subunit (Santa Cruz Biotechnology, Inc.) at a

1:1000 dilution. The growth factor receptor-binding protein 2

(Grb2) was included as a loading control, and detected using a

mouse anti-Grb2 antibody (Sigma Aldrich, St. Louis, MO) at a

dilution of 1:15,000. Secondary antibodies used were HRP-

conjugated anti-mouse IgG at a 1:10,000 (Santa Cruz Biotech-

nology Inc.), according to [40].

Flow cytometry
The detection of HERV-Wenv protein on the plasma mem-

brane was performed using anti-HERV-Wenv rabbit polyclonal

antibody (Allele Biotec) and secondary fluorescein isothiocyanate-

conjugated goat anti-rabbit IgG (Sigma-Aldrich). The isotype

control was a pre-immune rabbit serum (Santa Cruz Biotechnol-

ogy, Inc). To determine the phenotype of cell subpopulations,

PBMC were stained with allophycocyanin-conjugated anti-CD3,

phycoerythrin-conjugated anti-CD19, and peridinin-chlorophyll-

conjugated anti-CD56 antibodies (BD Biosciences). As isotype

control, an anti-rabbit IgG antibody was used (Santa Cruz

Biotechnology, Inc). The analysis was performed as detailed

elsewhere [87]. Cells were analysed on a FACS Calibur flow

cytometer using Cells Quest software (Becton-Dickinson). The

area of positivity was determined using an isotype-matched

antibody; a total of at least 56104 events for each sample were

acquired.

HERV-Wenv mining
The National Centre for Biotechnology Information (NCBI)

BLASTN and BLASTX programs were used [36] for mining

HERV-Wenv sequences from the GenBank human genome

database, using the following queries: MSRVenv sequence (PV14

Table 2. Clinical and therapy features of MS patients.

Patient Age Sex
MS
years

MS
phase EDSS Treatment Response

MSu1 26 F ,1 RR #3 none n.a.*

MSu2 59 F ,1 RR #3 none n.a.

MSu3 19 F ,1 RR #3 none n.a.

MSu4 60 M 32 RR 6 none n.a.

MSu5 30 M 3 RR #3 none n.a.

MSt1 32 F 5 RR #3 azathioprine yes

MSt2 45 F 2 RR #3 glatiramer
acetate

yes

MSt3 22 F 1 RR #3 glatiramer
acetate

yes

*: n.a.: not applicable.
doi:10.1371/journal.pone.0044991.t002
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MSRV clone, GenBank accession number AF331500), Syncytin-1

(ERVEW1env coding sequence, accession number NM_014590.3),

MSRVenv-specific 166 bp and syncytin-1-specific 100 bp ampli-

cons generated with the corresponding discriminatory primers

described in [34].

Statistical analyses
The significance of the results was evaluated by means of the

Epi InfoTM 7 database and statistics software program, (CDC/

WHO, Atlanta, GA, USA). P values of less than 0.05 were

determined to be significant.

Supporting Information

Table S1 Chromosomal location of MSRVenv-type and

Syncytin-1-type HERV-Wenv genes. Table S1a: HERV-Wenv

genes in human DNA, (.80 of total env, as detected by the PV14

MSRVenv sequence (AF331500). In silico nucleotide BLAST

search [36] in the current version of the human genome, using as

query the MSRVenv sequence (PV14 MSRV clone, GenBank

accession number AF331500). From the initial BLAST-identified

regions, the sequences covering .80% of the genes were selected.

(DOC). Table S1b: HERV-Wenv genes in human DNA, (.80 of

total env, as detected by the ERVEW1 coding sequence

(NM_014590.3). In silico nucleotide BLAST search as for Table

S1a, using as query the syncytin-1 sequence (ERVEW1env coding

sequence, GenBank accession number NM_014590.3).

(DOC)
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20. Sotgiu S, Arru G, Söderström M, Mameli G, Serra C, et al. (2006) MSRV and

optic neuritis. Mult Scler 12:357–359.

21. Petersen T, Møller-Larsen A, Thiel S, Brudek T, Hansen TK, et al. (2009)

Effects of interferon-beta therapy on innate and adaptive immune responses to

the human endogenous retroviruses HERV-H and HERV-W, cytokine

production, and the lectin complement activation pathway in multiple sclerosis.

J Neuroimmunol 215:108–116.

22. Ascherio A, Munger KL (2010) Epstein-Barr virus infection and multiple

sclerosis: a review. J Neuroimmune Pharmacol 3:271–277.

23. Munger K, Levin L, O’Reilly E, Falk K, Ascherio A (2011) Anti-Epstein-Barr

virus antibodies as serological markers of multiple sclerosis: a prospective study

among United States military personnel. Mult Scler 17:1185–1193.

24. Goldacre MJ, Wotton CJ, Seagroatt V, Yeates D (2004) Multiple sclerosis after

infectious mononucleosis: record linkage study. J Epidemiol Community Health

58:1032–1035.

25. Lucas RM, Hughes AM, Lay ML, Ponsonby AL, Dwyer DE, et al. (2011)

Epstein-Barr virus and multiple sclerosis. J Neurol Neurosurg Psychiatry

82:1142–1148.

26. Nielsen TR, Rostgaard K, Askling J, Steffensen R, Oturai A, et al. (2009) Effects

of infectious mononucleosis and HLA-DRB1*15 in multiple sclerosis. Mult Scler

15:431–436.

27. Banwell B, Krupp L, Kennedy J, Tellier R, Tenembaum S, et al. (2007) Clinical

features and viral serologies in children with multiple sclerosis: a multinational

observational study. Lancet Neurol 9:773–781.
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33. Li F, Nellåker C, Yolken RH, Karlsson H (2011) A systematic evaluation of

expression of HERV-W elements; influence of genomic context, viral structure

and orientation. BMC Genomics 12:22.

34. Mameli G, Poddighe L, Astone V, Delogu G, Arru G, et al. (2009) Novel reliable

real-time PCR for differential detection of MSRVenv and syncytin-1 in RNA

and DNA from patients with multiple sclerosis. J Virol Methods 161:98–106.

35. Garson JA, Huggett JF, Bustin SA, Pfaffl MW, Benes V, et al. (2009) Unreliable

real-time PCR analysis of human endogenous retrovirus-W (HERV-W) RNA

expression and DNA copy number in multiple sclerosis. AIDS Res Hum

Retroviruses 25:377–378.

HERV-Ws, EBV and Multiple Sclerosis

PLOS ONE | www.plosone.org 11 September 2012 | Volume 7 | Issue 9 | e44991



36. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local

alignment search tool. J Mol Biol 215:403–410.

37. Menet A, Speth C, Larcher C, Prodinger WM, Schwendinger MG, et al. (1999)

Epstein-Barr virus infection of human astrocyte cell lines. J Virol 73:7722–7733.

38. Gasque P, Chan P, Mauger C, Schouft MT, Singhrao S, et al. (1996)

Identification and characterization of complement C3 receptors on human

astrocytes. J Immunol 156:2247–2255.

39. Sugano N, Chen W, Roberts ML, Cooper NR (1997) Epstein-Barr virus binding

to CD21 activates the initial viral promoter via NF-kappaB induction. J Exp

Med 186:731–737.

40. Mameli G, Astone V, Khalili K, Serra C, Sawaya BE, et al. (2007b) Regulation

of the syncytin-1 promoter in human astrocytes by multiple sclerosis-related

cytokines. Virology 362:120–130.
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55. Nellåker C, Yao Y, Jones-Brando L, Mallet F, Yolken RH, et al. (2006)

Transactivation of elements in the human endogenous retrovirus W family by

viral infection. Retrovirology 3:44.

56. Sutkowski N, Conrad B, Thorley-Lawson DA, Huber BT (2001) Epstein-Barr

virus transactivates the human endogenous retrovirus HERV-K18 that encodes

a superantigen. Immunity 15:579–589.

57. Sutkowski N, Chen G, Calderon G, Huber BT (2004) Epstein-Barr virus latent

membrane protein LMP-2A is sufficient for transactivation of the human

endogenous retrovirus HERV-K18 superantigen. J Virol 78:7852–7860.

58. Hsiao FC, Lin M, Tai A, Chen G, Huber BT (2006) Cutting edge: Epstein-Barr

virus transactivates the HERV-K18 superantigen by docking to the human

complement receptor 2 (CD21) on primary B cells. J Immunol 4:2056–2060.

59. Hsiao FC, Tai AK, Deglon A, Sutkowski N, Longnecker R, et al. (2009) EBV

LMP-2A employs a novel mechanism to transactivate the HERV-K18

superantigen through its ITAM. Virology 1:261–266.
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