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Abstract

Schemes designed to make farming landscapes less hostile to wildlife have been questioned because target taxa do not
always respond in the expected manner. Microbats are often overlooked in this process, yet persist in agricultural
landscapes and exert top-down control of crop pests. We investigated the relationship between microbats and measures
commonly incorporated into agri-environment schemes, to derive management recommendations for their ongoing
conservation. We used acoustic detectors to quantify bat species richness, activity, and feeding in 32 linear remnants and
adjacent fields across an agricultural region of New South Wales, Australia. Nocturnal arthropods were simultaneously
trapped using black-light traps. We recorded 91,969 bat calls, 17,277 of which could be attributed to one of the 13 taxa
recorded, and 491 calls contained feeding buzzes. The linear remnants supported higher bat activity than the fields, but
species richness and feeding activity did not significantly differ. We trapped a mean 87.6 g (617.6 g SE) of arthropods per
night, but found no differences in biomass between land uses. Wider linear remnants with intact native vegetation
supported more bat species, as did those adjacent to unsealed, as opposed to sealed roads. Fields of unimproved native
pastures, with more retained scattered trees and associated hollows and logs, supported the greatest bat species richness
and activity. We conclude that the juxtaposition of linear remnants of intact vegetation and scattered trees in fields, coupled
with less-intensive land uses such as unimproved pastures will benefit bat communities in agricultural landscapes, and
should be incorporated into agri-environment schemes. In contrast, sealed roads may act as a deterrent. The ‘‘wildlife
friendly farming’’ vs ‘‘land sparing’’ debate has so far primarily focussed on birds, but here we have found evidence that the
integration of both approaches could particularly benefit bats.
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Introduction

Agricultural intensification and associated habitat fragmentation

are key threatening processes for wildlife [1]. To mitigate negative

effects associated with these, Agri-Environment Schemes (AES)

have been established in many regions of the world, which offer

farmers financial incentives to plant and protect vegetation, use

fewer agrochemicals, or employ alternative grazing regimes [2].

Because all species do not necessarily benefit from such ‘wildlife-

friendly farming’ measures [3,4] some propose that investments

could be better spent establishing separate conservation reserves,

an approach known as ‘land-sparing’ [5,6]. However, most

existing work has focused on birds, and other, more cryptic

groups may respond differently to AES. For example, microbats

are highly mobile, are able to exploit patchily-distributed resources

and retained features in the landscape, and often constitute a large

component of the mammalian fauna in agricultural environments

[7]. They also exert top-down natural control of arthropod pests

that have considerable impacts on crop yield [8,9]. Depending on

reproductive condition, a single microbat consumes 40–100% of

its own body weight in insects per night [10].

To date, there is a lack of consensus as to how to best manage

for bats in agricultural environments. In Europe, AES which are

primarily designed to support birds, invertebrates, and plants [2]

bring varied benefits for microbats. For example, Wickramasinghe

et al. [11] recorded higher levels of bat activity and feeding on

organic compared to conventional farms, whereas Fuentes-

Montemayor et al. [12] concluded that AES-participating farms

supported lower activity of two Pipistrellus species and their

invertebrate prey. These conflicting results may be partly

attributed to the fact that bats often use complementary habitats

to fulfil life-history requirements. Whereas undisturbed remnants

with many old, hollow-bearing trees are favoured for roosting [7],

foraging activity is often higher near trees in open areas and along

edges [13,14] because vegetation clutter can inhibit flight for some

species [15]. ‘Roosting’ and ‘foraging’ habitats can therefore be

quite different and located several kilometres apart [7] despite

potential energetic costs of commuting [16,17]. Several AES target
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linear features such as hedgerows and field margins, which are

analogous to other features that transect agricultural landscapes

around the world, including living fences [18], treelines [19], and

road reserves [20]. Managed well, such linear features may reduce

the energetic cost of commuting for bats by providing suitable

roosts close to open foraging sites, or by functioning as corridors

for movement [21,22].

An Australian example of linear features are ‘stock routes’,

which form a network of roadside corridors of remnant vegetation.

These were originally established for the transport of livestock ‘on

the hoof’, and were placed in low-lying, fertile portions of the

landscape close to freshwater [23]. Because bats generally prefer to

forage and roost over fertile geologies or in close proximity to

water [24,25], and many stock routes support old trees [26], they

should constitute valuable bat habitat. Stock routes (‘‘linear

remnants’’ hereafter) also vary greatly in width, vegetation

condition, and intensity of surrounding land use, and therefore

provide an excellent opportunity to explore the kinds of

management measures that should be implemented in agricultural

landscapes for bat conservation. We aimed to establish (1) how

linear remnants and surrounding fields differed in habitat value for

bats; (2) what kinds of linear remnants were most important for bat

conservation; and (3) what kinds of ‘wildlife friendly’ measures

made fields better habitat for bats.

Materials and Methods

Study Region and Design
We studied a 15,000 km2 area of the ‘‘wheat-sheep belt’’ of New

South Wales, Australia (Fig. 1a). Land use is dominated by dry

cereal cultivation, as well as native and improved pastures for

livestock. Prior to European settlement the area was covered

predominantly by Eucalyptus woodlands, but it is now 84% cleared.

Formal conservation reserves cover only 1.3% of the area and

occur mostly on ridgelines and unproductive areas [27]. Other

remnant vegetation occurs as small patches or individual scattered

trees in fields, or in the public land system as linear remnants.

Our study design incorporated 32 sites (Fig. 1b); nested within

each were two survey points in a linear remnant, and two in an

adjacent field (totalling 128 surveys points). The two remnant

survey points (‘Remnant 1’ and ‘Remnant 2’) were spaced at least

100 m apart, and the two field survey points were spaced

approximately 100 m (‘close’) and 400 m (‘far’) from the remnant

(Fig. 1c). Remnants ranged from narrow (38 m) to wide (570 m),

and the condition of the vegetation within them from ‘intact’ (little

evidence of anthropogenic disturbance) to ‘degraded’ (evidence of

considerable grazing pressure or clearing). Four of the 32

remnants in this study could be classified as ‘riparian’, in they

had a small stream or creek (,2 m wide) running through them

(see Appendix S1). Fields represented locally common land-uses;

12 cereal fields (wheat, barley or oats), 11 improved pastures

(exotic annual grasses or lucerne/clover), five unimproved native

pastures (largely perennial species), and four fields of canola

(Brassica sp.). Access to the privately-owned fields was granted by

all landholders prior to the surveys. All remnants and fields

contained at least two large trees (see below). Although the region

had been in drought in previous years, rainfall was higher than

average in 2010–2011, restricting access to some sites. Therefore,

we collected data from 114 of the 128 points only (59 remnants

and 54 fields).

Surveys
Bats. Bat surveys were conducted with approval of the animal

experimentation ethics committee of The Australian National

University, protocol no. F.ES.06.10. Microbat data were collected

twice in summer 2010–2011: (1) the ‘‘maternal survey period’’

from 22 Nov to 22 Dec 2010, when female bats usually have

dependent young, and (2) the ‘‘juvenile survey period’’ from 21 Jan

to 14 Feb 2011, when the young had become volant. We used

Anabat ultrasonic detectors (models SD I, and SD II with ZCAIM

storage units, Titley Electronics, Ballina) to conduct acoustic

surveys. Detectors were calibrated following Larson and Hayes

[28], and set in weatherproof boxes with a cut-out for

a microphone funnel. The boxes were then placed on wooden

platforms strapped to trees approximately 2 m above ground

(Fig. 1d). We surveyed four sites at a time, and in each placed one

detector at a remnant survey point and one at a field point for two

consecutive nights (total eight detectors per night). In this way, at

each site two of the points were surveyed for two nights in the

maternal survey period, and the other two points were surveyed

for two nights in the juvenile survey period. Detectors were set to

turn on at least one hour before sunset (1800 hrs), and off again

one hour after sunrise (0700 hrs).

Arthropods. We collected flying nocturnal arthropods at

each survey point using 12 volt, 8 watt black-light (ultraviolet) traps

(Australian Entomological Supplies Pty. Ltd., Coorabell, Fig. 1e).

Because these traps may deter Nyctophilus species [29], they were

set out for only one of the two consecutive detector nights. We did

not sample fields when livestock were present to prevent damage

to equipment. Traps were placed approximately 10 m from each

survey point on the opposite side of the tree to the detector, and

were fitted with light/dark relay switches (Ozitronics, Melbourne)

so they would switch on at dusk, and off again at dawn. Arthropod

samples were stored in methylated spirits, and following the field

season, were oven-dried at 60uC until desiccated. Dried samples

were weighed using a laboratory balance to an accuracy of

0.001 g, and this figure was recorded as the ‘‘dry biomass’’.

Habitat. Vegetation surveys were conducted within a one-

hectare circle at each of the survey points during the two-day

detector period. For all trees within this circle, we recorded the

species, the diameter at breast height (DBH), presence of hollows,

bark type, and stage of senescence (the last two measures were

recorded only for Eucalyptus species; following Rayner [30]; Table

S1 and Fig. S1). The number of Eucalyptus seedlings ,130 cm tall

was recorded to quantify tree regeneration, an important

component of landscape function [31]. Where tree cover was

extremely dense, the area around the survey point was reduced to

0.283 ha (30 m radius) or 0.126 ha (20 m radius), and these

estimates were later scaled up to represent one hectare. We

visually estimated the percent cover of shrub species, and

measured the length and diameter of every log (fallen timber

.1 m long and $10 cm in diameter). Two 50 m point-intercept

transects were run from either side of the base of the survey tree,

and at every metre we recorded the nature of the ground cover

(native vegetation, non-native vegetation, rock, bare ground, leaf

litter, water, cryptograms, cow dung). Finally, we recorded the

type of road running adjacent to each of the linear remnants

(multi-lane major highway, single-lane sealed road, or unsealed

but graded laneway).

Because we would be limited in the number of explanatory

variables we could include in our analysis, we carried out principle

components analysis (PCA) on five of these habitat measures (total

basal area of trees, number of trees with hollows, volume of logs,

percent ground cover that was native, and percent cover of shrubs,

see Appendix S3 and Fig. S2). This resulted in the creation of two

components, which, these explained 60% of variance in habitat

data (Fig. 2; Table S2). Habitat component 1 ranged from ‘Intact’

at the negative end of the scale (more trees, hollows, logs, shrubs,
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and native ground cover) to ‘Degraded’ at the positive end of the

scale (low values for these variables). For component 2, sites that

structurally resembled ‘shrub/grassland’ (more native ground

cover and shrubs) scored negatively, whereas those that resembled

‘grazed/cropped woodland’ (more trees, hollows and logs) scored

positively.

Weather. At each site, rain gauges (Nylex Rain gauge 500,

Pakenham) were inserted into the ground at the fenceline in

between the remnant and field survey points, and were checked

daily to estimate overnight rainfall. An anemometer (Vortex

Hand-Held Anemometer Pro-1200, Inspeed, Sudbury) was taped

to the top of the fence to record the maximum overnight wind

speeds and we also checked these daily. Finally, we used iButton

thermochron loggers (model no. DS1921G, Maxim, Sunnyvale) to

record ambient temperature at each site. These were set to log

readings every five minutes, were tied into the finger of a latex

glove for weatherproofing, then also taped to the top of the fence.

Data was downloaded off the logger once a week.

Bat Call Analysis
Call files recorded during the acoustic surveys were analysed

using AnaScheme software, vers 1.0 [32,33]. AnaScheme reads

Figure 1. Study design. a) the study area within the state of New South Wales, Australia b) the position of the 32 study sites within the study area,
with the linear remnant network shown in white c) an example of the layout of four survey points nested within a study site d) a bat detector, in
a weatherproof box and with microphone funnel attached, on a platform strapped to a survey tree, and e) a black-light trap on the ground.
doi:10.1371/journal.pone.0048201.g001
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sound files recorded by Anabat detectors, and identifies bat pulses

using a regional identification key; ours was built by BL, based on

keys developed for Law and Chidel [14] and Hanspach et al. [34]

(see Appendix S2, contact BL for further information). It included

14 species (Table 1), and of these only Rhinolophus megaphyllus was

not recorded during the surveys. Calls of N. geoffroyi and N. gouldi

cannot be reliably distinguished, therefore the two species were

pooled as ‘‘Nyctophilus sp.’’. This was also the case for Vespadelus

darlingtoni (40–45 kHz) and V. regulus (40–45 kHz), which were

pooled as ‘‘Vespadelus darlingtoni/regulus’’. V. regulus is known to also

produce a higher-frequency (HF) call (54–55 kHz) around large

water courses in the field area (Law et al. 2002) so AnaScheme

identified these separately as ‘‘Vespadelus regulus HF’’. We set

AnaScheme so that if .50% of pulses could not be definitively

allocated to a single species because of low call quality, or because

multiple species were calling at once, the file was identified as an

‘‘Unknown sp.’’. All files identified as containing bat calls also were

separately filtered for feeding buzzes, using a filter developed by

BL. Any files flagged as containing feeding buzzes were then

manually and audibly checked.

Based on the above call analysis, we considered three bat

responses at each survey point for each night: (1) species richness,

the number of species identified each night, not including the

‘Unknown’ calls; (2) total activity, the number of files containing

bat calls, irrespective of identification; and (3) feeding buzzes, an

index of the number of files containing feeding activity,

irrespective of identification.

Data Analysis
Do linear remnants and fields differ in habitat value

for bats? All analyses were conducted using ‘R’, vers 2.13.1

(http://www.r-project.org/). We first compared the three bat

Figure 2. Mean dry biomass of arthropod samples collected per night in each of the land-use classes. Error bars represent 95%
confidence intervals, and sample sizes are listed below each of the plotting points.
doi:10.1371/journal.pone.0048201.g002
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responses (species richness, activity, and feeding buzzes) between

remnants and fields, by log-transforming the species richness and

activity data, and running equal-variance t-tests. The feeding buzz

data could not be transformed to fit a normal distribution, so we

used a non-parametric Wilcox rank-sum test instead. To test for

differences in bat species composition between land-use classes

(canola crop, cereal crop, exotic pasture, native pasture and

remnants), we used non-metric multidimensional scaling on the

activity matrix of species (excluding Chalinolobus picatus and

Saccolaimus flaviventris, rarely recorded) using the ‘metaMDS’

function in the ‘vegan’ package.

Fewer arthropod samples were collected than planned. High

rainfall meant that some samples were washed away (14 of 98

samples), and trap number two may have been faulty, as it

collected significantly smaller arthropod samples (18 samples, see

Fig. S3). In addition, some traps appeared to not have switched on

reliably, collecting few insects in some nights (,1.0 g dry biomass).

In total, 54 samples were considered reliable and could be

analysed (Fig. 3). Dry biomass from these samples was log-

transformed, and we ran a one-way ANOVA to test for differences

in arthropod biomass between land-use classes. For each of our bat

responses from both remnants and fields, we used Spearman rank

correlation to test whether the relationships with arthropod

biomass were significant.

What kinds of linear remnants are most important for
bat conservation? We used generalised linear mixed-effects

models (GLMMs) to model the responses of bats (species richness,

activity, feeding buzzes) in the linear remnants. Because bats are

highly mobile, we were interested in the scale at which variables

would impact on the responses. Therefore, we grouped our

predictor variables according to whether they occurred locally to

the trapping point, in the area directly adjacent (10 s to 100 s of

metres), or within the wider landscape context (100 s to 1000 s of

metres).

For ‘local’ effects, we used habitat components 1 and 2 from the

PCA, as well as the width of the linear remnant, and the type or

road running next to it (Table 2). The ‘adjacent’ variable used was

the land use in the adjoining field. ‘Landscape’ variables included

the distances of each survey point to the nearest natural water

body or farm dam with a surface area .1 ha (‘distance to water’,

see Appendix S1) and nearest conservation area (‘distance to

conservation area’; based on data supplied by NSW Office of

Environment and Heritage ‘‘Land Use: New South Wales’’).

Finally, ‘conditions’ variables accounted for weather, presence or

absence of a black-light trap, and the survey period. Skewed

explanatory variables were log-transformed prior to the analyses,

and continuous variables were standardised to have a mean of zero

and a standard deviation of one.

Combinations of these explanatory variable groups (local,

adjacent, landscape, and conditions) resulted in 15 alternative

models, and we also tested a 16th ‘null model’ made up of random

effects only, to determine if the explanatory variables predicted

any more than our study design alone (Table S3). The random

effect structure used in the models differed for each response, and

this was based on visual inspection of the influence of each random

effect (study site, survey point, and survey night) on responses, and

also statistical methods outlined in Zuur et al. [35]. We used ‘study

site’ as the random effect for the species richness data, because the

survey point did not appear to influence the data. However, for

feeding buzz data, the survey point did appear influential, and

hence we used ‘study site/survey point’ in this case. There was

evidence of overdispersion in the activity data, and to correct for

this we added the random effect ‘‘night’’ (‘study site/survey point/

night’). Each of the 16 alternative GLMMs were applied to each of

the three bat response variables (species richness, activity, and

feeding) assuming a Poisson distribution and using a log-link

function in the ‘glmer’ function in the ‘lme4’ package for R.

Table 1. Bat species recorded in the surveys.

Remnants (118) Fields (107) Total (225)

Species C A F C A F C A F

Unknown sp. 116 57,490 6 105 17,202 30 221 74,692 36

Vespadelus vulturnus 108 2,881 33 96 3267 72 204 6,148 105

Chalinolobus gouldii 86 1,507 31 73 2344 164 159 3,851 195

Mormopterus sp. 4 72 730 11 71 1477 42 143 2,207 53

Scotorepens greyii 51 1,879 7 42 320 7 93 2,199 14

Scotorepens balstoni 56 511 13 49 318 28 105 829 41

Mormopterus sp. 2 33 279 20 41 354 5 74 633 25

Tadarida australis 40 246 0 50 233 1 90 479 1

Vespadelus darlingtoni/regulus 43 144 2 41 235 9 84 379 11

Chalinolobus morio 44 109 1 31 132 0 75 241 1

Nyctophilus sp. 28 52 2 43 138 3 71 190 5

Vespadelus regulus (HF) 22 59 3 26 55 1 48 114 4

Chalinolobus picatus 3 3 0 3 3 0 6 6 0

Saccolaimus flaviventris 1 1 0 0 0 0 1 1 0

Rhinolophus megaphyllus 0 0 0 0 0 0 0 0 0

Total 65,891 129 26,078 362 91,969 491

Species are listed in descending order according to total activity across all sites. ‘‘C’’ is ‘‘Count’’, the number of survey points that each species was recorded at, with the
total listed in parenthesis in the header row. ‘‘A’’ represents ‘‘Activity’’, the number of calls recorded, and ‘‘F’’ represents ‘‘Feeding buzzes’’. An expanded version of this
list is supplied in Table S4.
doi:10.1371/journal.pone.0048201.t001
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For model selection we used an information-theoretic approach

as implemented in the ‘AICcmodavg’ package. For each response

we constructed 95% confidence tables, which list all models of the

potential 16 tested with summed corrected Akaike weights (‘cwi’,

which corrects for small sample sizes) $0.95. To pick a ‘final

model’ which best explained the patterns in our data, we

compared corrected Akaike’s Information Criteria (‘AICc’), log-

likelihood (‘Log(L)’) and cwi for each of the models in the table.

After choosing our final model, we judged which of the

explanatory variables were having a strong influence by the

magnitude of the coefficient estimate, visual inspection of plots,

and also whether the 95% confidence intervals included zero.

Figure 3. PCA biplot with loadings of the five vegetation measures on habitat components 1 and 2. Habitat component 1 separates sites
according to condition, ranging from ‘intact’ (more negative scores) to ‘degraded’ (more positive scores) Habitat component 2 related to site
structure: ‘shrub/grassland’ in the negative values to ‘grazed/cropped woodland’ in the positive values. Survey points are plotted according to the
land use class that they occur within.
doi:10.1371/journal.pone.0048201.g003

Table 2. Groups of explanatory variables used to construct the alternative generalised linear mixed models predicting bat species
richness, activity and feeding (see Table 3, Table S3).

Variable group name Variables in remnant models Variables in field models

1. Local habitat ‘‘LOC’’ Remnant width Distance from the remnant

Road type Land use in the field

Habitat component 1 Habitat component 1

Habitat component 2 Habitat component 2

2. Adjacent habitat ‘‘ADJ’’ Land use in adjacent field Width of the adjacent remnant

Adjacent road type

3. Landscape context ‘‘LSCP’’ Distance to conservation area Distance to conservation area

Distance to water body Distance to water body

4. Survey conditions ‘‘COND’’ Presence/absence of rain Presence/absence of rain

Maximum wind speed Maximum wind speed

Maximum temperature Maximum temperature

Presence/absence of light trap Presence/absence of light trap

Survey period Survey period

doi:10.1371/journal.pone.0048201.t002
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What kinds of ‘wildlife friendly’ measures make fields
better habitat for bats? Analysis for this question closely

followed that described above – we again used GLMMs to predict

the three bat responses, this time using the data collected in fields.

Our 16 candidate models were the same as for the remnants,

however some of the variables switched between groups to reflect

the change of survey location. The ‘local’ variable group consisted

of land use, the distance of the survey point from the remnant, and

habitat components 1 and 2, and the ‘adjacent’ group contained

the width of the adjacent remnant, and road type. The ‘landscape’

and ‘conditions’ groups remained the same (Table 2). The random

effect structure for a given response and model selection was the

same as described for the remnant analysis.

Results

Across 228 detector nights and 2,475 survey hours, we recorded

1,193,152 sound files. Of these, 91,969 (7.7%) were confirmed as

bat calls (403 passes/night), and 17,277 (19% of bat calls) could be

identified. The majority of the calls (81%) were classified as

‘Unidentified’ because the key was conservative, and was designed

to not mis-identify any calls for the sake of the species richness

measures (as outlined in Appendix S2). Although the filter

matched 3,031 files as containing feeding buzzes, only 491 files

were confirmed as buzzes when manually checked (2.8% of bat

calls). A total of 13 taxa were recorded (Table 1), and of these,

V. vulturnus and C. gouldii were the most common, present at 98%

and 91% of the survey points respectively. The two species listed as

threatened were the least common, namely C. picatus (n = 6), and

S. flaviventris (n = 1, Table S4). The species inventory appears to be

reasonably complete, as confirmed by both trapping surveys in the

study area and rarefaction analysis (Fig. S4).

Do Linear Remnants and Fields Differ in Habitat Value for
Bats?
There were no significant differences between remnants and

fields with regards to bat species richness (p = 0.434, t = 0.7842,

df = 223, remnant mean= 5.02, field mean= 5.38) or the number

of feeding buzzes recorded (p = 0.178, W=6893, remnant

mean= 1.1, field mean= 3.4). ). However, total bat activity in

the remnants was double that of the fields (p = 0.044, t =22.0283,

df = 223, remnant mean= 609.84, field mean= 257.74). No clear

differences in community composition were apparent between

land use classes (Fig. S5). Arthropod biomass also did not

significantly differ between land use classes (p = 0.603, df = 4,

F= 0.688, Fig. 3). There were significant correlations between bat

species richness, and also bat activity and arthropod biomass in

both fields and remnants, but no such relationship was evident for

feeding buzzes (Fig. 4).

What Kinds of Linear Remnants are most Important for
Bat Conservation?
The ‘adjacent’ variable group was ranked as the best predictor

of bat species richness in the linear remnants (relative importance

0.95, Tables 3 and 4), but coefficient estimates for land use

categories were of a low magnitude and the 95% confidence

intervals included zero (Table 5), indicating they were not having

a very strong effect. Because the ‘local’ variable group (relative

importance 0.39, Table 4) also appeared to have a strong effect on

species richness data, we selected the second-highest ranked model

(‘local’ + ‘adjacent’; Table 3) for plotting and interpretation. Wider

linear remnants were the most species rich, as were those that ran

next to unsealed laneways and had a more intact vegetation

structure (Table 5, Fig. 5a).

For both bat activity and feeding in the remnants, the ‘adjacent’

and ‘conditions’ variable groups constituted the highest-ranked

models (Table 3), however, once again land use did not appear to

have a very strong effect (Table 5). Both activity and feeding levels

were higher in the juvenile survey period (Fig. 5b and 5c), though

temperature was a better predictor of activity data, and wind speed

of feeding data. The large number of models included in the 95%

confidence table for feeding in remnants (Table 3), which includes

Model 16 (the ‘null model’), indicated that there was a very high

degree of uncertainty in predicting bat feeding behaviour.

What Kinds of ‘Wildlife Friendly’ Measures Make Fields
Better Habitat for Bats?
The highest-ranked model for bat species richness in fields

included the ‘local’ variable group only, with a relative importance

of 0.95 (Tables 3 and 4). Fields containing native, unimproved

pastures supported the most species-rich communities of bats

compared with other land use categories (exotic pasture, canola, or

cereal crop, Fig. 5d), and a positive effect of habitat component 2

indicated that bat species richness increased with a greater number

of trees, number of hollows and log volume (Fig. 2, 5d). A large

number of variables strongly predicted for bat activity in the fields

– the ‘local’, ‘adjacent’, and ‘conditions’ groups were all included

in the highest-ranked model (Table 3). Again, there was a positive

effect of native pastures, as well as those with higher values of

habitat component 2 (‘grazed/cropped woodlands’, Table 6,

Fig. 5e). In concordance with our findings from the remnants, we

recorded marginally higher bat activity in fields next to unsealed

laneways (Fig. 5f). Finally, only ‘‘conditions’’ affected the number

of feeding buzzes recorded in fields, as the model of this variable

group alone was very highly weighted (cwi=0.83, Table 3). The

presence of a light trap in particular led to higher levels of feeding

activity (Table 6).

Discussion

Do Linear Remnants and Fields Differ in Habitat Value for
Bats?
Surprisingly, the only detectable difference between linear

remnants and fields was higher bat activity in remnants, and was

not due to a greater availability of prey (Fig. 3). An alternative

explanation could be that there were more active roosts in the

remnants; if we assume that bats prefer to roost in trees .70 cm in

diameter with hollows (based on [36,37]), remnants in our study

supported on average 6.53 (60.67 SE) potential roost trees per

hectare, compared with 2.22 (60.35 SE) in fields. This figure for

fields within the study region is also likely to be an over-estimation,

because we only conducted surveys in fields with scattered trees,

and these individual trees are uncommonly used as roosts [37,38].

Perhaps even more surprisingly, we did not detect differences in

community composition between land uses (Fig. S5). This may be

because the woodland communities that naturally occur in this

region are quite open and thus do not preclude foraging by open-

area species, and clutter-tolerant species are not necessarily limited

to foraging in cluttered areas [39]. Analyses relating to the

requirements of individual species will be necessary to determine

more subtle effects of land use on the occupancy of remnants and

fields by different bat fauna.

What Kinds of Linear Remnants are most Important for
Bat Conservation?
Our surveys indicated that wider remnants composed of intact,

structurally complex vegetation form the best habitat for diverse
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bat communities (Fig. 5a, Table 5), which is very much in line with

conventional conservation wisdom [40]. Remnants next to sealed

roads supported lower bat species richness than those next to

unsealed laneways. However, there was not a great difference

between single-lane roads and multi-lane highways (Fig. 5a), which

might suggest that it is not the level of traffic itself that is deterring

bats, but rather the nature of the bitumen surface. Potential causes

of lower richness with the sealed road surface need to be explored

further. In their study of the BAB3 motorway in Germany, Kerth

and Melber [41] found that a ‘clutter-tolerant’ bat species was

more vulnerable to the effects of the road than an open-area

adapted bat species, so it would be valuable to determine the role

that ecomorphology plays in these circumstances.

What Kinds of ‘Wildlife Friendly’ Measures Make Fields
Better Habitat for Bats?
Scattered trees in fields, and the structures associated with them

such as logs and hollows, were found to be important in

maintaining high bat activity, most likely because they provide

a source of forage and shelter from predators [42,43]. The

importance of this finding needs to be reinforced to land

managers, because scattered trees are being lost from farming

landscapes globally [44]. This is especially the case in cropping

environments, where trees compete for water and nutrients and

are an obstacle for large equipment [45]. However, these fields are

also the most likely to benefit from bat predation services on pests.

In spite of uncertainty regarding the value of more ‘wildlife

friendly’ land uses to bats [12], we found a clear positive effect of

unimproved native pastures on both bat species richness and

activity in fields. This cannot be explained by prey availability

alone (Fig. 3), and although lower pesticide inputs in native

pastures should benefit arthropod diversity, higher nutrient loads

in more intensively managed areas can also lead to outbreaks in

a small number of herbivorous insect species [46]. Given this, the

habitat native pastures provide by forming a ‘softer’ matrix is also

likely to be playing a role.

Figure 4. The relationship between bat responses and arthropod biomass, in both remnants and fields. Parameters from the Spearman-
rank correlation analysis of each relationship are listed on the plots, and a smooth curve has been fitted for visualisation.
doi:10.1371/journal.pone.0048201.g004

Table 3. 95% confidence tables resulting from analyses of bat responses in remnants and fields.

Response Model no. LOC ADJ LSCP COND AICc cwi Log(L)

Remnants – species richness 2 X 176.94 0.39 282.06

4* X X 177.13 0.35 276.19

9 X X 179.46 0.11 277.36

5 X X 180.89 0.05 281.72

11 X X X 181.48 0.04 271.75

Remnants - activity 9* X X 747.01 0.84 2359.86

12 X X X 750.60 0.14 2359.04

Remnants - feeding 9* X X 220.34 0.39 297.79

15 X 221.79 0.19 2102.22

11 X X X 223.31 0.09 292.67

8 X X 224.45 0.05 297.42

4 X X 224.55 0.05 299.90

12 X X X 224.61 0.05 297.37

1 X 224.81 0.04 2103.73

2 X 225.12 0.04 2106.15

10 X X 225.55 0.03 2101.72

16 (NULL) 225.65 0.03 2109.72

14 X X X X 227.19 0.01 291.75

Fields - species richness 1* X 143.42 0.50 262.93

8 X X 144.05 0.36 256.94

6 X X 147.55 0.06 262.55

13 X X X 149.26 0.03 256.80

Fields – activity 11* X X X 599.60 0.72 2279.11

8 X X 602.06 0.21 2284.59

14 X X X X 604.82 0.05 2278.72

Fields - feeding 15* X 276.05 0.83 2129.24

10 X X 279.95 0.12 2128.75

Table lists the variable groups included in the models, corrected Akaike’s Information Criteria (AICc), corrected Akaike Weights (cwi), and log-likelihood (Log(L)). Variable
groups are described in Table 2, and model numbers are as defined in Table S3. Models denoted with asterices were used for plotting, and are further described in
Tables 5 and 6.
doi:10.1371/journal.pone.0048201.t003
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How can Agricultural Landscapes Best be Managed for
Bat Conservation?
Plausible management goals in agricultural landscapes are to

maximise bat richness in remnants (for the sake of conservation)

and bat activity in fields (for pest control purposes). For these goals,

based on our findings, the retention of natural structures such as

trees and an understorey not strongly modified by grazing impacts

or cropping is important. Our results imply that conservation

actions are likely to be more successful if conducted in areas close

to unsealed, rather than sealed roads. Unfortunately, it is less clear

how to manage for bat feeding specifically, because responses were

not as strong and mostly related to conditions during surveys.

However, other studies in agricultural and urban areas have found

higher rates of feeding over more fertile geologies [25,47],

suggesting that conserving remnant vegetation in productive parts

of the landscape is important for bats. The juvenile survey period

also saw a considerable increase in activity, so structures that allow

for successful breeding close to fields, such as linear remnants and

large retained trees within them, need to be maintained.

Contrary to our expectations, the bats in our study did not

respond to the proximity of water or protected areas. Given the

mobility of bats, all of our survey points may have been within easy

commuting distance from water or roosts, or these may have been

accessed in the linear remnants themselves. We may also not have

found an effect of distance to water because of the high rainfall

during the survey period, which resulted in free-standing water

being present across much of the landscape (Appendix S1, Fig. S6).

However, in drier years streams in remnants and dams in fields are

likely to form important resources for bats [11,48].

It should be noted that a considerable proportion of the

landholders we spoke with indicated they were not aware that bats

used their fields for either roosting or foraging. This further

strengthens the case for better communicating the persistence of

Table 4. Relative importance of each variable group in each
of the analyses.

Response variable LOC ADJ LSCP COND

Remnants - species richness 0.39 0.95 0.05 0.15

Remnants - activity 0.00 0.95 0.14 0.95

Remnants - feeding 0.24 0.63 0.09 0.81

Fields - species richness 0.95 0.00 0.09 0.39

Fields - activity 0.99 0.85 0.05 0.99

Fields - feeding 0.00 0.00 0.12 0.95

Relative importance was calculated by summing the corrected Akaike Weights
(cwi) of every model in the 95% confidence tables that included the variable
group of interest (Table 3).
doi:10.1371/journal.pone.0048201.t004

Figure 5. Influential predictor variables for bat responses. a) bat species richness in remnants, b) bat activity in remnants, c) bat feeding in
remnants, d) bat species richness in fields, e) and f) bat activity in fields. More positive values of habitat component 2 indicate that a site has
a structure which closer resembles a grazed or cropped woodland (mote trees, hollows and logs), as opposed to a shrub/grassland. Model
parameters are listed in Tables 5 and 6). Semi-transparent polygons depict 95% confidence intervals.
doi:10.1371/journal.pone.0048201.g005
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Table 5. Model parameters predicting bat species richness, activity and feeding in remnants, showing the coefficient, standard
error (SE), and lower and upper 95% confidence intervals (CI upp and CI low respectively) for each variable in the final model.

RICHNESS ACTIVITY FEEDING

Var. group Term Estimate SE CI low CI upp Estimate SE CI low CI upp Estimate SE CI low CI upp

Intercept 1.732 0.238 1.256 2.208 4.374 0.600 3.174 5.574 21.670 0.796 23.262 20.078

Local habitat ‘‘LOC’’ Remnant width 0.169 0.075 0.019 0.319

Road - Major 20.263 0.214 20.691 0.165

Road - Sealed 20.338 0.156 20.65 20.026

Hab. comp. 1 20.090 0.063 20.216 0.036

Hab. comp. 2 20.008 0.068 20.144 0.128

Adjacent habitat
‘‘ADJ’’

Land use - Cereal
crop

20.058 0.203 20.464 0.348 0.305 0.644 20.983 1.593 20.045 0.844 21.733 1.643

Land use - Exotic
pasture

20.088 0.197 20.482 0.306 0.490 0.645 20.8 1.78 20.059 0.845 21.749 1.631

Land use - Native
Pasture

20.061 0.247 20.555 0.433 0.309 0.757 21.205 1.823 0.583 0.974 21.365 2.531

Survey conditions
‘‘COND’’

Wind speed 20.216 0.143 20.502 0.07 20.381 0.139 20.659 20.103

Temperature 0.320 0.156 0.008 0.632 20.223 0.184 20.591 0.145

Rain - Present 20.151 0.291 20.733 0.431 0.412 0.312 20.212 1.036

Light trap –
Present

20.292 0.207 20.706 0.122 20.228 0.208 20.644 0.188

Survey period -
juvenile

0.859 0.311 0.237 1.481 1.370 0.451 0.468 2.272

doi:10.1371/journal.pone.0048201.t005

Table 6. Model parameters predicting bat species richness, activity and feeding in fields, showing the coefficient, standard error
(SE), and lower and upper 95% confidence intervals (CI upp and CI low respectively) for each variable in the final model.

RICHNESS ACTIVITY FEEDING

Var. group Term Estimate SE CI low CI upp Estimate SE CI low CI upp Estimate SE CI low CI upp

Intercept 1.546 0.146 1.254 1.838 3.693 0.470 2.753 4.633 20.821 0.432 21.685 0.043

Local habitat ‘‘LOC’’ Land use - Cereal
crop

0.075 0.160 20.245 0.395 1.002 0.401 0.2 1.804

Land use - Exotic
pasture

0.026 0.170 20.314 0.366 0.694 0.422 20.15 1.538

Land use - Native
Pasture

0.518 0.260 20.002 1.038 1.712 0.687 0.338 3.086

Hab. comp. 1 20.105 0.064 20.233 0.023 20.214 0.156 20.526 0.098

Hab. comp. 2 0.256 0.064 0.128 0.384 0.706 0.149 0.408 1.004

Distance into field 0.053 0.047 20.041 0.147 20.010 0.108 20.226 0.206

Adjacent habitat
‘‘ADJ’’

Road - Major 20.932 0.450 21.832 20.032

Road - Sealed 21.198 0.347 21.892 20.504

Remnant width 0.124 0.142 20.16 0.408

Survey conditions
‘‘COND’’

Wind speed 20.063 0.107 20.277 0.151 20.230 0.122 20.474 0.014

Temperature 20.085 0.127 20.339 0.169 0.205 0.179 20.153 0.563

Rain - Present 20.287 0.236 20.759 0.185 0.089 0.158 20.227 0.405

Light trap –
Present

0.180 0.196 20.212 0.572 0.611 0.148 0.315 0.907

Survey period -
juvenile

1.575 0.230 1.115 2.035 20.476 0.377 21.23 0.278

The ‘landscape’ variable group was not included in any of the final models, so is not listed here.
doi:10.1371/journal.pone.0048201.t006
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these cryptic taxa in agricultural landscapes, especially given the

positive indirect impact bats are likely to have on crop yield

through pest predation [8,48]. Furthermore, the two types of areas

surveyed in this study (linear remnants and fields) have historically

been managed as separate entities by separate actors, yet variables

relating to areas adjacent to the survey points were strong

predictors of bat responses in many of our models (Table 3). A

more integrated approach to landscape planning and manage-

ment, which takes into account not only the individual features or

fields but also the surrounding landscape [49], is therefore

required.

This study has revealed some key features that can be

manipulated to conserve bats in agricultural landscapes, which

should be further incorporated into AES. In particular, linear

elements can support high bat activity if managed appropriately.

Moreover, by harbouring bat communities and having high edge

to area ratios, linear elements have the potential to provide pest

predation ecosystem services to a greater number of fields than

more remote or isolated reserves alone. Finally, there appears to

be no clear-cut answer as to whether ‘‘wildlife friendly farming’’

(the integration of wildlife-friendly features into fields) or ‘‘land

sparing’’ (the protection of designated areas) is preferable for bats.

So far most arguments for ‘‘land sparing’’ have focused on birds

[5,6]. However in our study system, we found evidence that the

integration of both approaches could be useful because both

conditions in fields and linear remnants influenced bat commu-

nities.

Supporting Information

Figure S1 The eight stages of Eucalyptus senescence,
taken from Rayner (2008). (1) Immature tree, branches

upright, (2) mature, adult tree, branches spread and intact with

healthy crown, (3) mature tree with signs of senescence, some large

broken branches, crown thinning (,50%), (4) live adult tree,

largely bare, but small patches of canopy or areas of regrowth, (5)

dead stag with majority of branches (.50%) intact, (6) dead stag

with ,50% branches remaining, (7) upright, dead stag with no

major branches remaining, and (8) broken or cut stump.

(TIF)

Figure S2 Differences in the mean levels of the two
habitat components between the different land use
classes. a) habitat component 1, and b) habitat component 2.

Land use class contrasts are shown on the y-axes.

(TIF)

Figure S3 Mean dry biomass of nocturnal arthropod
samples collected in each of the black-light traps. Error
bars represent 95% confidence intervals, and sample sizes are

listed below each of the plotting points.

(TIF)

Figure S4 Rarefaction curve, showing the accumulation
of species with each additional acoustic survey.
(TIF)

Figure S5 Arrangement of survey points of different
land-use classes on three axes, from non-metric multi-
dimensional scaling (NMDS). Stress = 0.17. A subsequent

Analysis of Similarities test (ANOSIM), run using the ‘anosim’

function in the ‘vegan’ package in R, indicated that there was

significant greater between- than within- group variation, though

these differences were minor (R= 0.06657, p = 0.0136).

(TIF)

Figure S6 Free-standing water and pools present in
many of the remnant and field sites.

(TIF)

Table S1 Descriptions of the seven types of bark encountered in

field surveys of Eucalyptus trees, with example species.

(DOC)

Table S2 Loadings of variables on habitat components 1 and 2,

from the principle components analysis of vegetation measures

taken from a 1 ha area around each survey point.

(DOC)

Table S3 Combination of variable groups used in the 16

alternative generalised linear mixed models, used to predict bat

species richness, activity and feeding.

(DOC)

Table S4 Expanded list of species recorded in each of the land

use classes.

(DOC)

Appendix S1 The importance of water and riparian
areas.

(DOC)

Appendix S2 Bat call analysis in AnaScheme.

(DOC)

Appendix S3 Data exploration and potential correlation
of fixed effects.

(DOC)
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