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Abstract

Background: The Phenotype MicroArray (OmniLogH PM) system is able to simultaneously capture a large number of
phenotypes by recording an organism’s respiration over time on distinct substrates. This technique targets the object of
natural selection itself, the phenotype, whereas previously addressed ‘-omics’ techniques merely study components that
finally contribute to it. The recording of respiration over time, however, adds a longitudinal dimension to the data. To
optimally exploit this information, it must be extracted from the shapes of the recorded curves and displayed in analogy to
conventional growth curves.

Methodology: The free software environment R was explored for both visualizing and fitting of PM respiration curves.
Approaches using either a model fit (and commonly applied growth models) or a smoothing spline were evaluated. Their
reliability in inferring curve parameters and confidence intervals was compared to the native OmniLogH PM analysis
software. We consider the post-processing of the estimated parameters, the optimal classification of curve shapes and the
detection of significant differences between them, as well as practically relevant questions such as detecting the impact of
cultivation times and the minimum required number of experimental repeats.

Conclusions: We provide a comprehensive framework for data visualization and parameter estimation according to user
choices. A flexible graphical representation strategy for displaying the results is proposed, including 95% confidence
intervals for the estimated parameters. The spline approach is less prone to irregular curve shapes than fitting any of the
considered models or using the native PM software for calculating both point estimates and confidence intervals. These can
serve as a starting point for the automated post-processing of PM data, providing much more information than the strict
dichotomization into positive and negative reactions. Our results form the basis for a freely available R package for the
analysis of PM data.
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Introduction

The so called ‘-omics’ techniques yielded tremendous insights in

the biology of cellular organisms. They address different steps in

the information transfer from coding DNA (genomics) via RNA

(transcriptomics) to the proteins (proteomics and interactomics) to

finally yield the cellular metabolites (metabolomics and fluxomics)

[1–3]. Other ‘-omics’ techniques are MicroRNomics, probioge-

nomics, lipidomics and fluxomics [4–7]. Their unifying theme is

the study of the cellular totality of the organisms of interest to

obtain a systematic insight into basic biology [8–9] and to

reconstruct complex metabolic networks and flow-charts of fluxes

[10–13]. The data flood to be processed is enormous, depending

on the experimental setup.

A major biological feature, the phenotype, was until recently not

accessible with high-throughput techniques. This is unfortunate, as

it is the phenotype which is the object of selection and, hence, is

the level at which evolutionary directions are governed [14]. All

previously addressed ‘-omics’ techniques merely study components

which finally contribute to the phenotype [15].

In microbiology, a simple way to assess the phenotype is to

characterize an organism’s replication behavior under specific

conditions [16–17] by analyzing the shape of the growth curve

during the commonly known growth phases. The length of the lag

phase reveals how fast and well the organism acclimates to a

specific environmental condition, while the period of cell

replication, the log phase, and the stationary phase (when growth

comes to an end) indicate the particular way the growth is
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achieved [18]. Unfortunately, manually recording growth curves is

an extremely time- and cost-intensive work.

The Phenotype MicroArray (PM) system appears to close the

gap of capturing a large number of phenotypes in high-throughput

systems. In this approach, a physiological reaction producing

NADH engenders a redox potential and flow of electrons to

reduce a tetrazolium dye [19] such as tetrazolium violet, thereby

producing purple color. The more rapid this metabolic flow, i.e.

cellular respiration, the faster the formation of purple color [20–

21]. The OmniLogH PM system records the color change every

15 minutes in an automated setting under up to 2000 distinct

physiological challenges, such as the metabolism of single carbon

sources, metabolism under varying osmolyte concentrations, and

response to varying growth-inhibitory substances [20–21]. The

challenges can be further augmented by modifying environmental

conditions such as the temperature and the composition of the

gaseous phase.

In common ‘-omics’ techniques, the recorded value is a mostly

qualitative information on the difference between two experi-

ments, usually obtained from measurements at a single time point,

which is often an endpoint [22]. In contrast, the PM respiration

kinetics add a longitudinal dimension. This higher level of PM

data complexity contains additional valuable biological informa-

tion coded in the shape characteristics of the recorded curves in

analogy to conventional growth curves as introduced above [18].

These curve features can, in principle, unravel fundamental

differences or similarities in the respiration behavior of distinct

organisms, which cannot be identified by endpoint measurements

alone.

This wealth of data was till now hardly exploited, as the kinetics

were usually only qualitatively assessed [23–27]. The mere

classification into a positive or negative reaction to an environ-

mental challenge appeared to be sufficient, whereas the kinetic

information itself was neglected. Also, the application of PM in

functional genomics, as, e.g., for improving genome annotation

[28] and assessing gene function using knock-out techniques,

exploits only presence/absence calls [29]. Nevertheless, already

these early studies exhibited the complexity of the situation by, in

the light of current knowledge, completely unexpected or even

incomprehensible results [30]. Even though the need for a more

sophisticated strategy for data analysis was emphasized long ago

[31], only data recording could be accelerated until now. Although

first attempts to establish web-based data storage and analysis

infrastructures were already made [32], an efficient bioinformatic

evaluation tool that includes all steps of longitudinal-data analysis,

or even a methodical collection analogous to BIOCONDUCTOR

for conventional microarray data [33], is still unavailable.

The native OmniLogH PM software [34] displays the PM

measurements only according to the 8612-wells plate layout and

provides only limited functionality for the visual comparison of

kinetic curves, especially if more than two or even numerous

curves are compared. The PM software includes a parametric

analysis, which calculates parameters describing a curve’s kinetic

shape but disregards modeling or curve-fitting approaches and

does not provide confidence intervals (CIs), even though it is well

known that these can be used to examine statistically detectable

differences [35–36]. Third-party tools include data visualization

[37], but to the best of our knowledge are not publicly available.

Some simple but effective approaches to data analysis using

summary statistics of growth curves [38] or hypothesis-testing

frameworks [39] were also published, but these approaches reduce

the information content of each curve to one or a few single values

and use these to determine respiration differences on the various

substrates without considering the curve shapes.

The development of statistical methods for the analysis of

longitudinal data started with the pioneering work of Laird and

Ware [40] which discussed a general family of models including

growth models and repeated-measures models as special cases.

Studies on nonlinear and linear mixed-effects models, the

integration of splines, random coefficients and variance modeling

into a flexible analysis approach based on linear mixed models

followed this seminal work [41–46]. Highly elaborated tools for the

evaluation of longitudinal data are implemented in statistical

software such as the packages drc [47] and grofit [48] in R, PROC

MIXED in SAS [49], xtmixed in Stata [50], and MIXED in SPSS

[51]. Also, many mathematical models describing growth behavior

have been developed [17,52–53].

Most empirical equations such as the logistic law [54] or

Richards curves [55] fit well onto growth data via plain non-linear

regression if the growth follows the typical sigmoid shape, but

mathematical simplicity also plays a key role [53]. Hence, the

application of these models to even slightly non-typical growth

behaviors (e.g., the simple violation of the assumption of symmetry

around inflection) can lead to systematic errors [56] and

potentially to biologically unreasonable results (see below). To

overcome this problem, the best-fitting model can be detected

using the Akaike information criterion (AIC), which balances

between fit and model simplicity [57–58]. Unfortunately, general

guidelines for the selection of the types of models to test are

unavailable. Spline smoothers [42,45] are an alternative to

describe growth or respiration behavior, particularly if violations

of model assumptions are both common and also reveal

biologically important information.

Here we explored the free software environment R [59] for both

data visualization and fitting of growth curves for the comparative

analysis of PM data. R is one of the most widely used solutions for

statistical computing, featuring powerful interactive data explora-

tion as well as programming tools and numerous add-on packages.

We first assessed the suitability of the lattice package [60] for (re-

)implementing and comparing previously published [37] and

alternative strategies for raw data visualization of 10,944 bacterial

respiration curves. Second, we examined which kinds of

divergences from typical sigmoid growth curves occur, which

kinds of artifacts might affect the reproducibility of the results and,

hence, which basic quality-control measures are necessary and can

be performed using the here presented software tools. Third,

following the model-fitting approach of [61] we assessed the grofit

package [48] for automatically conducting model fits as well as

model-free fits using spline smoothers. The reliability of both

approaches when inferring curve parameters (and their CIs) from

PM data was compared with the current implementation in the

native OmniLogH PM analysis software [34] and the specific

merits and deficiencies of either method were determined. Fourth,

we applied the tools to research questions relevant for establishing

settings for OmniLogH PM production runs, illustrating how the

experimenter can detect significance and magnitude of differences

between the considered curve parameters to ensure reproducibility

of the results in accordance with predefined quality standards [62].

Finally, as another example for the post-processing of the inferred

parameters, we classified the curves into characteristic shapes. In

contrast to the typical dichotomization of PM curves into

occurrence of respiration and lack thereof [27], we here inferred

curve archetypes [63] to explicitly address the question of how

many, and which, classes of curve shapes optimally represent the

data.

Our results enable us to propose software solutions for

exploiting multiple respiration kinetics from automated systems

such as PM. Since we consider mainly biologically focused users,

Exploring Phenotype MicroArray data
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we believe that the introduction and availability of convenient and

reliable data exploration techniques via freely available software

such as R will allow users of the PM technology to conduct in-

depth data analyzes that go significantly beyond the consideration

of mere endpoint measurements and presence/absence calls.

Materials and Methods

Organisms studied and PM measurements conducted
The first dataset comprised two strains of two species of bacteria

(Escherichia coli DSM 30083T, E. coli DSM 18039 = K12,

Pseudomonas aeruginosa DSM 1707 and P. aeruginosa 429SC). P.

aeruginosa DSM 1707 was grown on M1 agar (5 g/l peptone, 3 g/l

meat extract (Oxoid), 15 g/l agar); all other strains were grown on

LB medium (lysogeny broth; 10 g/l peptone, 5 g/l yeast extract,

10 g/l NaCl, 15 g/l agar) for nearly 24 h and subsequently

measured on GEN III MicroPlatesTM (AES Chemunex BLG

1030) in the PM modus over 91 h. Each strain was measured in

ten technical replicates. To ensure that all ten replicate plates were

inoculated with cells of identical physiological conditions, the

desired cell concentration was adjusted in a pool of ten vials of

GEN III inoculation medium A (AES Chemunex BLG 72401)

which was then simultaneously inoculated into ten GEN III plates.

The second dataset followed the same design, but was collected

two weeks later, thus representing a biological repetition. The two

datasets thus comprised a total of four strains 6 two biological

replicates 6 ten technical replicates 6 96 substrates, hence 7680

individual curves.

To additionally investigate the impact of the age of cultures on

the technical and biological reproducibility, the third dataset

focused on a single strain only, E. coli DSM 18039 = K12, which

was grown on solid LB medium for 16.75 h (t1), 18.00 h (t2), 19.33

(t3), 20.50 (t4), 21.92 (t5), 23.25 h (t6), 24.5 h (t7), 25.58 h (t8) or

40.33 h (t9), respectively, and subsequently measured on GEN III

MicroPlatesTM in the PM modus over 91 hours. For each growth

duration age four technical replicates were performed except for

t9, which was repeated only twice. Dataset 3 thus comprised one

strain 6eight growth durations 6 four technical replications 696

substrates plus (t9) one strain 6 one growth duration 6 two

technical replicates 6 96 substrates, hence 3072+192 = 3264

individual curves.

All raw measurements are included in Files S1, S2 and S3.

Visualization of PM raw data
As the functionality of the native OmniLogH PM software [34]

is specialized on only few functions (see above) we first used the

add-on package lattice [60] for R [59] to visualize the PM curves as

heat maps using the function levelplot(), equivalent to a re-

implementation of the approach of [37]. We then applied lattice

to explore alternative visualization strategies using trellis graphics,

which arrange graphics in a regular grid-like structure. Large and

complex structured datasets can be regularly subdivided according

to variables from the chosen experimental design, and in each

panel one subset can be graphed, finally providing coordinated,

high-dimensional views [64]. As curves are the most comprehen-

sive display of kinetics, we used the high-level function xyplot(),

which can plot curves in any requested sub-division, combination

and constellation. We examined which display method provided

the most natural way to assess data quality and data integrity. The

main potential artifacts, the range of potential curve shapes and

other issues potentially affecting measurement reproducibility were

identified during this step by visual inspection of all curves.

Plots of all respiration curves are included in File S4, S5 and S6.

Parameter estimation from respiration curves
For the description of functional dependencies of two measured

variables a mathematical function can be fitted onto the data. In

general, such a fit aims at minimizing the distances between the

raw data points and the values predicted by the function. The

choice of a type of function is usually motivated by some basic

assumption about the underlying system. The selection of a

function is an interpreting activity and a crucial step in the analysis

[65]. Alternatively, the dependency between two measured

variables can be described by smoothing splines. Those splines

can be thought of as a concatenation of cubic polynomial segments

that are joined together at their ends or knots [66]. Their unique

property as an empirical function is that they can represent any

variation in curve shape.

The parametric analysis method of the native OmniLogH PM

software [34] only crudely accesses possible differences in curve

shapes, because it uses only few data points from the curve for the

computation of curve kinetic parameter values (see p. 38 in

chapter 5 of the OmniLogH user guide [34]). The maximum

height (‘‘MaxHeight’’) is given as the 10th percentile highest value

among all values over all time points, and the minimum height

(‘‘MinHeight’’) is calculated as the 12th smallest value among the

first 48 reads over all time points. The length of the lag phase is

calculated from the raw data using the formula ‘‘MidTime -

(MidHeight – MinHeight)/Slope’’ [34], while ‘‘MidTime’’ is

described as the first time a value exceeds MidHeight. ‘‘Mid-

Height’’ is defined as the value midway between MinHeight and

MaxHeight. The Slope is calculated as ‘‘sum of rises over run

between 15% Time and MidTime 21 and rises over run between

MidTime +1 and 85% Time’’ divided by ‘‘85% Time minus 15%

Time’’ from the raw data [34]. Here, ‘‘x% Time’’ is defined as the

first time a value exceeds the value x% of the way between

MinHeight and MaxHeight. The calculation of the area under the

curve (AUC) is described as ‘‘the sum of all OmniLog values over

all time points (area under the curve)’’ [34], which treats the color

changes between time points as a step function. Also, native

OmniLogH PM software only provides point estimates but not CIs,

which are important for statistical evaluations [35–36]. Hence, the

software cannot be used to investigate whether two quantitatively

similar curves differ in a statistically detectable way.

In contrast, the basic part of R’s add-on package grofit [48]

provides a framework for parameter estimation using model fitting

and model-free spline fitting separately and also allows the

statistical assessment of the curves using CIs. The model-based

approach fits each predetermined model by a non-linear least-

squares regression. The Akaike Information Criterion is used to

select a best model. The spline-fitting approach is based on a cubic

smoothed spline and follows the framework implemented in the R

function smooth.spline(). We here applied the default smoothing

parameter. The package grofit [48] was originally built to derive

dose-response curves and calculate descriptive pharmacological or

toxicological values. For the here proposed application the

intermediate output, which contains estimates for curve-describing

parameters, is used. Those parameters are the length of the lag

phase l, the growth (here: increase in respiration) rate m
(corresponding to ‘‘slope’’) and the maximum cell growth (here:

respiration) A (corresponding to the maximum value recorded). As

an additional descriptive parameter of cell growth (here:

respiration), the area under the curve (AUC) is estimated via

numerical integration (see the second figure in [48] for details). In

the case of the model-based approach the other parameters are

directly estimated as parts of the model. The parameter extraction

from the fitted splines needs additional steps; here, A is calculated

as the maximum value of the fitted spline. The parameter m

Exploring Phenotype MicroArray data
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(growth rate) is calculated as the maximum slope of the spline, also

yielding the corresponding fitted value ym and the time point tm of

its occurrence. A tangent at this point has the form y(t) = m(t-l) and

thus yields the length of the lag-phase l via ym = m(tm-l) (Kschischo,

pers. comm.).

In addition to the point estimates for the parameters from both

model and spline, confidence limits can be calculated via

bootstrapping, with 95% being the default value [67]. Significant

differences can then be detected as non-overlapping CIs. In case of

no overlap, the differences between the opposite limits of the

considered CIs describe the smallest expectable mean difference.

We assessed in detail in how many (and which) cases a model fit

was impossible using one of the default models: (i) logistic growth,

(ii) Gompertz growth, (iii) modified Gompertz growth and (iv)

Richards growth [48]. Particular emphasis was laid on biologically

unreasonable parameter estimates as observed in preliminary

experiments (data not shown) such as negative values for l and

estimates for the A exceeding 400 OmniLogH units (due to

technical restrictions, the current version of the OmniLogH device

yields measurements at most 400 OmniLogH units in height;

Bochner, pers. comm.). To provide a rough estimate for the

proportion of positive and negative reactions, we applied a

(partially arbitrary) threshold of 100 OmniLogH units, i.e. larger

estimates of A indicated positive reactions, other values indicated

negative reactions (for a more advanced treatment see the

inference of archetypes below). We also determined the correla-

tions between all four parameters from the same curve fitting as

well as between those from model fitting and spline fitting applied

to the same raw data. Spearman’s correlation index and Kendall’s

t were compared, since the data are not necessarily normally

distributed and the relationships not necessarily linear.

The accuracy with which the parameters (estimated using the

three different approaches) fitted to the raw data was investigated

for all types of observed curve shapes (see above) and visualized

using a set of individual curves representative for each shape.

These exemplars could also be used to illustrate the difference in

parameter estimation between model and spline fit and thus for

the identification and explanation of the effect of difficult-to-fit

curve shapes on parameter estimates. Moreover, they were used to

determine the most useful way of displaying parameters estimated

together with their CIs. The proposed methods here intentionally

resign any multiplicity adjustment, because the analyses are

expected to detect all interesting phenomena while it would be

worse to miss some of them.

Detecting significant differences
Because there is no restriction on the type of sample to be

analyzed, the PM technique is capable of dealing with a rather

unlimited amount of distinct experimental questions. That is, not

only isolated strains or well-defined mutants are manageable, but

also mixed or environmental samples are feasible [68–69]. For

most of them predictions about their behavior are impossible, thus

the experimenter needs to compare repeated measurements to be

able to assess the range of variability in the specific sample, strain,

etc. Depending on the experimental design, the usual sources of

variations, namely variation between technical repetitions, be-

tween biological repetitions and between experimental repetitions

etc., occur and contribute to the total variation of each curve or set

of curves. To demonstrate the value of CIs for data evaluation, we

assessed scenarios where (i) curves differ significantly in general, (ii)

replications differ significantly in some parameters but not in

others, and (iii) differences between replications are not statistically

detectable, as indicated by the 95% CIs. Such exemplars were also

used to determine efficient ways to display these differences. As a

laboratory example, we calculate 95% CIs from the third dataset

to assess whether there was a significant impact of the age of the

bacterial inoculation culture on technical and biological repro-

ducibility. That is, the repetitions measured after distinct durations

of cultivation need to be compared against each other because, if

such a dependency was detected in a real-world dataset, the

experimenter would need to more strictly standardize cultivation

times prior to conducting PM measurements.

Since up to now the grofit package is not intended for fitting a

single model or spline on a set of several repetitions of a

longitudinal data set, we present two alternative approaches for

their comparison. First, we provide a graphical solution which

yields preliminary insights into the overall behavior of the

considered groups and is based on mean parameter estimators

and mean CIs calculated by averaging the corresponding values

estimated from the individual curves. Second, as a somewhat more

sophisticated approach, we provide a simultaneous multiple

comparison procedure of means [70]. It provides test decisions

using 95% CIs for the differences of parameter means according to

a user-defined set of comparisons.

Parameter estimates from all respiration curves including CI

limits are available in Files S7 and S8. The behavior of the

negative controls (well A01) was examined more closely,

particularly regarding the question whether it is valid to subtract

these values from the measurements from all other wells before

estimating curve parameters, a procedure which is sometimes

recommended [34]. Apparently, this strategy assumes a biologi-

cally sensible additivity between the negative control and

respiration reactions caused by the substrates. Our results are

presented in File S9.

Which, and how many, classes of curve shapes?
To explicitly infer the optimal number of distinct shape classes

for classifying the curves, we applied the R package archetypes [63]

to the parameter estimates from the spline fits from the 1st and 2nd

dataset. Archetypes are characteristic extreme types of combina-

tions of multivariate observations found by minimizing a convex

residual sum of squares (RSS) criterion; the implementation

ensures that the real measurements can be represented by convex

combinations of the archetypes. The algorithm alternates between

finding the best set of coefficients for the given archetypes and

finding the best archetypes for a given set of coefficients. The

overall RSS is reduced successively because in each step several

convex least-squares problems are solved. While the number of

archetypes is predefined in each run, the algorithm can be

restarted for a series of numbers of archetypes (we tested 1 to 10)

and, according to the ‘‘elbow criterion’’, the optimal number is the

one that resulted in the largest step towards a lower RSS

compared to subsequent improvements. We used the stepArche-

types() function with five random starts per given number of

archetypes. As some of the spline estimates for the parameter l
were outliers below zero (see below), its distribution was truncated

(made symmetrical) by setting all values lower than the maximum

times 21 to this value.

Results

Visualization of PM raw data
Using a subset of dataset 1 the visualization of PM curves as

heat maps via the lattice function levelplot() is shown in Fig. 1. The

user was free to define any ordering of the lines in the columns,

since the well position on the 8 6 12 GEN III MicroPlateTM is

given on the y-axis and identification was easily possible. This also

allowed the comparison of technical and/or biological replicates

Exploring Phenotype MicroArray data
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after an appropriate re-arrangement (data not shown). One

advantage of this visualization technique was that numerous

curves could be displayed in relatively small space, when vertical

lines representing the respiration curves were stacked (Fig. 1).

Further data quality assessment was feasible straightforwardly; for

instance, deviations from the expected monotonic increase of the

curve height could be identified and located (Fig. 1).

In Fig. 2 kinetic data are plotted according the original 8612

well layout as superimposed curves by using the function xyplot().

Here, the user was also free to rearrange distinct numbers of

curves in individual compositions of panels. Distinct organisms or

treatments could be color-coded (Fig. 2) or alternatively indicated

by distinct line types (not shown). Such a graphical display easily

enabled to monitor the general performance of an organism and to

simultaneously identify potential artifacts, such as individual

replications that deviate in curve height or shape, or other

irregularities such as deviations from the expected monotonic

increase of the curves, particularly when superimposing the curves

from distinct replicates of the same reaction in one panel.

We felt that data quality and integrity could be checked faster

and more comprehensively using the second, curve-based

visualization approach. The curve display gave a more intuitive

and straightforward overview of the data, while simultaneously

facilitating the development of an overall assessment of an

organism’s behavior in the experiment. Moreover, color codes

for results from distinct organisms, replications and experiments

enabled informative superimposed displays (Fig. 2), which would

be difficult when color is used to indicate signal strength (Fig. 1).

For this reason, we used the visualization approach of Fig. 2 to

inspect the curves from all PM experiments. By this, we found

various combinations of negative reactions, where (nearly) no color

was formed in the wells, and positive reactions per organisms and/

or experiment, particularly between the distinct biological

replicates (see File S4, S5 and S6). It also turned out that a

surprisingly large number of curves from positive reactions

diverged from the typical sigmoid shape of growth curves

(Figs. 2, 3). In most sets of technical and/or biological replicates

which included such deviating curve shapes, these occurred in all

of the respective replicates (see Files S4 and S5).

Parameter estimation from respiration curves
We estimated the parameters length of the lag phase l,

respiration rate m (slope), maximum cell respiration A and the area

under the curve (AUC) using both the model fitting and model-

free spline fitting approach from the basic part of R’s add-on

package grofit [48]. While all parameter estimates are included in

Files S7 and S8, summary statistics from parameter estimation are

shown in Table 1.

Depending on the specific dataset, between 1.4% and 6.4% of

the curves could not be fitted by the modeling approach. Hence,

for some experimental groups no parameter estimation was

possible at all, resulting in one to twelve groups without parameter

estimation depending on the dataset. In contrast, the spline

resulted for all datasets, yielding parameter estimates for every

group (Table 1). As mentioned above, biologically reasonable

values for l can, in principle, not be negative or exceed the last

time point of measurement, whereas a reasonable A should be a

positive value not greater than 400. Slightly negative values and

those only slightly exceeding 400, however, can be judged as just

negligibly inaccurate estimations of 0 and 400, respectively. The

model-fitting approach resulted in negative estimates for l in

23.7% to 36.6% of the groups and in A estimates exceeding 400 in

0.4% to 1.4% of the groups (yielding at least one uninterpretable

parameter in between 25.4% and 39.5% of the groups).

In contrast, the spline fit yielded negative l in only 14.4% to

28.8% of the groups; hence around 10% fewer groups with

unreasonable l point estimators. Not a single group was found

with an estimate for A exceeding 400 (Table 1). Accordingly,

uninterpretable values for one parameter (l), if any, did not result

in uninterpretable values for others (A). For those spline estimates

with A.100 (approximately representing positive reactions), only

between 4.0% and 4.9% of the lambda values were negative, and

only slightly so (mean between 23.3 and 3.0 h). The vast majority

of negative l occurred for A,100 (approximately representing

negative reactions). In the cases of datasets 2 (mean 26.8) and 3

(mean 212.1), these values were also only slightly negative. Only

in the case of dataset 1, additionally a number of extremely low l
estimates were encountered (mean 2207.6). There was little

difference between model fitting and spline fitting regarding the

estimated proportion of negative reactions (Table 1).

Kendall and Spearman correlations between the parameters

describing the curves are listed in Table 2. In the model-fitting

framework the correlation between l and the other parameters

was quite low. Also, m was moderately correlated with A but more

strongly with AUC (0.732/0.712). The correlation between A and

AUC was a bit lower (0.700/0.522). Within the parameters from

the spline computation, l had even less influence on the remaining

parameters. Interestingly, here m was comparably strongly

correlated with both A and AUC, and the correlation between

A and AUC from the spline (0.854/0.963) was much higher than

for the model. That is, l was on average less strongly correlated

with the other parameters in the case of the spline, whereas all

other correlations were stronger. Accordingly, estimates for AUC

correlated most strongly between model and spline, followed by m,

A and finally l in decreasing order. In File S10, graphical

representations of the overall relative behavior of the parameter

estimates in all-against-all correlation plots for both the model and

the spline fit approach are provided.

In Fig. 3 eight examples for the distinct types of curve shapes

identified in our datasets (wells G11 and H11 for all four strains,

respectively, see Fig. 1) are used to explore the specific behavior of,

and the potential problems specifically associated with, model

fitting and spline fitting in comparison with the native OmniLogH
PM software.

On substrate H11 (Fig. 3, upper row) the respiration curves for

all strains indicated positive reactions, but their shapes were

substantially different. By using the curve parameters together with

their CIs, the differences were easily detectable and one could

intuitively comprehend the differences in curve shape. Spline

fitting yielded broader CIs for l and m. None of the parameter

estimates were biologically unreasonable.

On substrate G11 (Fig. 3, lower row), besides two common

curve shapes (blue and black) two deviating data situations are

shown (red and green curve), which were nevertheless common in

our measurements (see File S2). The red curve reveals a primary,

steep ascent followed by an interim plateau, before a second,

shallower ascent conducts to the final maximum height. This

behavior occurred in all ten repetitions of this experiment (see File

S2). The model-based estimate for m was lower than the spline-

based one, but both were higher than the OmniLogH estimate.

The green curve describes an intrinsically negative reaction (no

respiration curve), but instead a slight and linear increase in color

development. This probable noise was apparently sufficient as a

data basis on which model fit was possible, but some of the

resulting parameters, especially the negative length of the lag

phase l, were not biologically sensible. In contrast, the

corresponding spline fit yielded a positive value for l with a

broad CI. Again in contrast, the OmniLogH software yielded a
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value near zero for this parameter. The estimate for m was slightly

positive only from the spline fit, whereas the other two methods

yielded zero values. The other parameters were rather similarly

estimated by the different methods.

To further explore the causes of the respective differences and

characteristics of parameter estimation in certain data situations,

the best-fitting model and the spline fit for the red and green

curves from well G11 are shown in Fig. 4. In case of the red curve

(Fig. 4, left side), the modeling method found a Gompertz

exponential model to describe the data. However, the estimator

for the maximum height A from the model approach is much too

small, while both the OmniLogH and the spline estimates fit well to

the real maximum height of the curve (see Fig. 3, G11).

Apparently the model fit is influenced too much by the height of

the non-typical interim plateau. In contrast, the spline was able to

model the irregularity and hence to represent the curve’s behavior

more precisely.

The example corresponding to (almost) no respiration (Fig. 4,

right side) was somewhat more complicated. Ideally, non-

respiration would result in a horizontal line, and, hence, non-

convergence for modeling approaches. However, the linearly

increasing noise allowed a model to be fitted to the data which

apparently resulted in biologically unreasonable parameter

estimates via extrapolation; i.e., in the model the lag phase was

extended to prior the beginning of the measurement (at 0 h).

Other parameters such as the slope m resulted in better estimates.

In contrast, although it exhibited overfitting behavior, the spline

approach was able to follow the data more precisely, apparently

without the need to extrapolate. But whereas l was estimated with

a meaningful numerical result, m was strongly overestimated.

These estimation problems were also indicated by the particularly

broad CIs for these parameters if inferred from the spline.

Detecting significant differences
In Fig. 5 the curves from ten technical repetitions of the reaction

on substrate D12 (Minocycline) are compared with their curve

parameters and 95% CIs estimated using the spline approach.

These curves only differed regarding the beginning of the

respiration reaction.

We used the red-colored curve (D12/4) as an exemplar for

demonstrating the detection of significant differences via CIs,

which are indicated by vertical blue lines in the graphic. The two

curves D12/1 and D12/2 were different to a statistically

detectable degree regarding the length of the lag phase l with a

mean longer l of 4.6 h and 12 h, respectively. D12/5 and D12/6

exhibited significantly larger slopes m, differing in mean 15 and

14.5 units, respectively. Due to the very narrow CI for the

maximal respiration A, D12/6 was identified as statistically

detectable different with on average 3 OmniLogH units more

respiration. D12/3, D12/7 and D12/9 had a smaller A with mean

differences of 1, 2 and 1.7 units, respectively. Although all

differences were statistically detectable, the user had the additional

information of the effect sizes and thus was, in principle, able to

use background information to decide whether the detected

differences were biologically relevant. The integrals describing the

areas under the curves resulted in very small CIs and thus all

curves, except D12/3, were differing significantly.

The results from the time series approach in the third dataset

are shown in Fig. 6 for substrate C08 (L-Rhamnose). Curve 20, the

fourth repetition from time point 21.92 h (t5) was chosen as an

example and the corresponding CI limits highlighted. For both l
and m, all other CIs overlapped with that from curve 20, indicating

no detectable differences between the curves. Considering the

maximal respiration A and the integral AUC, several CIs did not

overlap with that from curve 20, but the effect size for the maximal

respiration is at most 4 OmniLogH units ( = 1.5%) for A and

978 units ( = 5%) for AUC. Again, the user was now free to decide

whether these differences should be regarded as biologically

relevant.

Regarding the comparison of group means, Fig. 7 shows both

the preliminary visualization using the mean CIs calculated over

the groups (upper part) and the CIs for the differences between the

means resulting from the simultaneous comparison procedure

(lower part). The mean CIs can be used analogously to the strategy

described above: overlapping CIs indicate no detectable difference

between the groups, while non-overlapping ones indicate such

differences.

The multiple-mean comparison testing procedure also provides

95% CIs, but for the differences between the group means (here:

the considered parameter estimators), thus yielding precise

information about the significance of the differences between the

groups regarding the considered parameter(s).

To examine whether it is valid to subtract the negative controls

(A01) from the measurements from all other wells before

estimating curve parameters, we compared the parameter values

for maximum height (A) from the A01 with that from selected

wells with a negative reaction. Our findings suggest that the

negative control might display a reproducible, strain-specific

growth-like behavior, and even though these curves are shallower

than unambiguously positive reactions, their maximum height can

well be larger than that of typical negative reactions on the same

plate. This makes it impossible to regard it as an approximation of

an error term to be subtracted from the measurements from each

other well. These findings are described in detail in File S9.

Which, and how many, classes of curve shapes?
Analysis of archetypes (Fig. 8) indicated that either four or five

archetypes are optimal. For five as predefined number, the

resulting curve archetypes (insert in Fig. 8) could be interpreted as

follows: non-reaction with negative l (an artifact, see above) (green

line); non-reaction without such an artifact (black line); curves with

a delayed start, i.e. reactions with a long lag phase l, a relatively

low m and, thus, a rather low AUC/A ratio (blue line); early

starting curves with a low l, a moderate m but nevertheless both

high A and AUC (violet line); and, finally, rapidly accelerating

curves with a moderate l but a high m, which reach an almost as

high A and AUC (red line). These rapid accelerators had

approximately the same A/AUC ratio as the early starters, but

occurred much more seldom in the datasets (Fig. 8).

Figure 1. Visualization of PM curves as heat maps via the function levelplot() as a re-implementation of the approach of Jacobsen et
al. (2007) in R. Each respiration curve is displayed as a thin horizontal line, in which the curve height as measured in OmniLogH units is represented
by color intensity (darker parts indicate higher values). The x-axes correspond to the measurement time in hours. The upper part shows an overview
of two plates. Here, the descriptions of the y axes (only visible if enlarged, but see below) list the names of the wells; the descriptions of the x axes list
the measurement time in hours. The boxes below represent magnified parts of the upper panel to illustrate the color changes in the case of
decreasing color intensities (regions surrounded by black ellipses) or technical problems such as short-term intermediate peaks (positions marked by
eight-pointed stars).
doi:10.1371/journal.pone.0034846.g001
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Discussion

Visualization of PM raw data
When facing huge and complicatedly structured datasets such as

the PM ones discussed here or that commonly occurring in other -

omics analyses, the only way to get a comprehensive insight into

the experimental results is a suitable graphical raw data

representation. Such exploratory graphics have to be comprehen-

sible in short time but also be highly informative [71]. The

convenience of an exploratory graphical representation depends

mainly on its flexibility. Hence, the graphics should be easily

adjustable to individual users’ requirements to enable them to

discover potentially all interesting and important features of the

data. In contrast to the severely limited options for comparing

different strains on the same substrate in a single pre-specified plot,

as provided by the OmniLogH PM software [34], the user needs to

compose the data unaffiliated.

In this study we explored an open-source solution for these

specifications and showed that curve kinetics offer a more powerful

data visualization than level plots [37]. By using the function

xyplot() from the lattice package [60] highly structured graphics can

easily be produced while retaining flexibility by systematically

decoupling the various elements of a display. Itemization by

substrate, tested strain or even repetition number was quite simple

and constraints regarding the number of displayed curves or the

position of the subpanel were not imposed at all. We thus

recommend this or equivalent visualization approaches for PM

data. A potential improvement compared to Fig. 2 is the inclusion

of the names of the substrates in addition to or instead of the mere

coordinates of the wells.

Parameter estimation from respiration curves
The information content of the longitudinal PM raw data is a

multiple of what an endpoint measurement could ever provide. A

suitable analysis strategy thus has to be able to summarize this

information and eliminate noise. These requirements can be met

by model-fitting and spline-fitting approaches aiming on both

dimension reduction and noise reduction [72–73]. With grofit, the

result is a set of four parameters sufficient for comprehensively

describing the curves’ shape. The main goals of a subsequent data

evaluation would be the determination of the influence of different

substrates, organisms investigated, or pretreatments, via the

comparative characterization of respiration over time.

Although the OmniLogH PM software [34] is, in principle, able

to provide a compilation of parameters, their computation is based

only on few data points, potentially leading to the neglect of

relevant data features. Here, we applied two alternative methods

for extracting the four curve parameters l, m, A and AUC. The

aim was to find a reliable estimation method that was able to deal

adequately with curves’ potential deviations from the common

sigmoid shape [42].

Our results indicate, however, that the parameter estimation

procedures perform best if applied to curves that follow the typical

sigmoidal shape. But the parameters A (maximum height) and

AUC (area under the curve) are less influenced by possibly

uncommon shapes than the lag phase (l) and the slope (m). When

comparing the two main approaches for curve description, it

turned out that the spline smoother is flexible enough to follow

even extreme curve shapes and is therefore superior for general

parameter estimation, while the model-fitting approach appeared

Figure 2. Visualization of PM curves as such via the function xyplot(). PM curves from a representative technical repetition from the first
dataset were arranged according to the original 8612 wells plate layout. The respective curves from all four strains are superimposed; the affiliation
to each strain is indicated by color as follows: black, E. coli DSM 18039; red, E. coli DSM 30038T; green, P. aeruginosa DSM 1707; blue, P. aeruginosa
429SC. The x-axes show the measurement times in hours, the y-axes the curve heights in OmniLogH units. In the caption of each panel the
corresponding coordinate of the well is shown. Details of the curves from wells G11 and H11 are examined in Figs. 3 and 4.
doi:10.1371/journal.pone.0034846.g002

Figure 3. Comparison of parameter and CI estimates from the same curves using three distinct approaches. Left, enlarged view of the
curves from wells G11 and H11 as depicted in Fig. 2. As in Fig. 2, the affiliation to each strain is indicated by color as follows: black, E. coli DSM 18039;
red, E. coli DSM 30038T; green, P. aeruginosa DSM 1707; blue, P. aeruginosa 429SC. Right, point estimates and 95% CIs for each of the four parameters
lag phase (l), slope (m), maximum (A) and area under the curve (AUC) estimated from the eight curves depicted on the left using either the model-
fitting (blue dots and CIs) or the spline approach (red dots and CIs). The gray stars are the respective point estimators inferred with the native
OmniLogH software (which does not provide CIs). The colored circular areas refer to the colors of the curves in the left part of the figure.
doi:10.1371/journal.pone.0034846.g003
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to be more constrained by the underlying model equations and

straightened the curves to much. While 14% to 28% of the

estimates for l were biologically unreasonable in a strict sense

(negative), most of these were only slightly negative and could

safely be regarded as minor mis-estimates for 0.0. Also, the

interpretability of the other parameters was not affected in these

cases, and extremely negative l can still be qualitatively

interpreted as indicative of overall negative reactions.

The high amount of negative estimates for l suggests that there

is still space for algorithmic improvement. In this study, the default

parameters for the smoothing spline and the number of knots were

used, since the evaluation of best-performing parameters was

beyond the scope of this study. However, the selection of these two

kinds of parameters is the critical step in this method [42]. Also,

other spline families and generalized additive model frameworks

would exhibit interesting features for curve fitting by imposing

monotonicity constraints on smooth effects and on ordinal,

categorical variables [74]. We cannot exclude that as yet

unimplemented models would outperform the ones considered

here or even the spline fit, but in the current situation we regard

the use of splines as the best recommendation that can be provided

to users interested in fitting PM curves with R.

Compared to both model and spline methods, the slope

estimates from the OmniLogH PM software [34] tend to be lower

if the underlying curve is not perfectly sigmoid-shaped or the

respiration reaction is finished long before the measurement is

Table 1. Reliability in parameter estimation.

Value Dataset 1 Dataset 2 Dataset 3

curves # total 3840 3840 3264

# without fittable models 244 (6.35%) 64 (1.66%) 44 (1.35%)

# without fittable splines 0 (0%) 0 (0%) 0 (0%)

experimental groups # total 768 768 864

# without fittable models 12 (1.56%) 1 (0.13%) 2 (0.23%)

# without fittable splines 0 (0%) 0 (0%) 0 (0%)

# model parameter l,0 281 (36.59%) 229 (29.82%) 205 (23.73%)

# spline parameter l,0 221 (28.78%) 154 (20.05%) 124 (14.35%)

# model parameter A.400 10 (1.3%) 3 (0.39%) 12 (1.39%)

# spline parameter A.400 0 (0%) 0 (0%) 0 (0%)

# model parameter A,100 282 (36.72%) 245 (31.9%) 162 (18.75%)

# spline parameter A,100 291 (37.89%) 236 (30.73%) 146 (16.9%)

spline fits # A,100 1464 1196 583

# A,100 and l,0 884 (60.38%) 733 (61.29%) 485 (83.19%)

mean l if A,100 and l,0 2207.662871.0 26.868.1 212.1612.4

# A.100 2376 2664 2681

# A.100 and l,0 106 (4.46%) 106 (3.98%) 130 (4.85%)

mean l if A.100 and l,0 23.364.4 23.364.3 23.063.5

Summary statistics from parameter estimation from the three dataset exemplars using both the model fitting and model-free spline fitting approach from the basic part
of R’s add-on package grofit (Kahm et al. 2010). Results with parameters ë,0 and A.400 indicate biologically unreasonable estimates; parameter estimates 0,A,100
approximately indicate negative reactions.
doi:10.1371/journal.pone.0034846.t001

Table 2. Within-method and between-method interdependence of parameter estimates.

Model Spline

l m A AUC l m A AUC

Model l 0.428 0.367 0.294 0.641 0.360 0.371 0.295

m 0.248 0.536 0.732 0.296 0.846 0.717 0.734

A 0.362 0.320 0.7 0.324 0.538 0.748 0.700

AUC 0.372 0.712 0.522 0.205 0.721 0.843 0.998

Spline l 0.571 0.131 0.225 0.211 0.299 0.285 0.203

m 0.940 0.837 0.272 0.620 0.025 0.723 0.736

A 0.437 0.658 0.571 0.963 0.051 0.584 0.854

AUC 0.372 0.713 0.523 0.999 0.046 0.621 0.963

All-against-all correlations measured using Kendall’s t (above the diagonal) and Spearman’s correlation index (below the diagonal) describe how the different curve
parameters estimated using either model fitting or spline fit are associated with each other and with the corresponding parameters from the alternative fitting
approach.
doi:10.1371/journal.pone.0034846.t002
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stopped (G11 in Fig. 3, red and black curve, respectively). Since

the OmniLogH PM software assumes that any reaction is

symmetric around the inflection point, the slope is underestimated

in the case of a secondary increase, which extends the distance

between the time of inflection and the one of the maximum height.

In contrast, the AUC estimates by the OmniLogH PM software

[34] are slightly larger than those by the spline and model

approaches, particularly for steep curves (Fig. 3). As the native PM

software represents the curves as series of rectangles, this deviation

is most likely an overestimation and is expected to increase if more

steep curves are encountered. Based on these results we favour the

spline-based approach to parameter estimation over the native PM

software not only because it provides CIs but also because its point

estimates are less prone to bias due to the described irregularities

in curve shapes.

However, the spline-based approach exhibits overfitting behav-

ior in the case of certain curves that strongly deviate from a

sigmoidal curve shape. This appears to occur especially when

almost no reaction takes place, as shown in Fig. 4 (left panel).

Although the default smoothing parameters obviously allow for

very flexibly bent curves resulting in that overfitting behavior, only

the parameters l and m are affected and result in broad CIs, while

A and AUC are hardly affected. One way out could be the

selection of more suitable smoothing parameters. Alternatively, the

Figure 4. Visualization of parametric fitting and model-free spline fitting for the two special cases from G11, the strains marked red
(here left) and green (here right), respectively. The raw colour intensities (black circles), measured over time (x-axis, hours) were fitted by both
a parametric model (thick blue line) and a model-free spline (thick red line). The thin dashed lines indicate the maximum slope of each approach (thin
dashed black line corresponds to the model fitting approach, the thin dashed red line to the spline, respectively). In the left panel the irregularity is
better customized by the spline fit, whereas the model straightens it with the consequence of underestimating the maximum height (A). In case of
(almost) no respiration (right panel), the fitted model apparently yielded biologically reasonable parameter estimates for m but not for l. In contrast,
the spline approach exhibited overfitting and yielded overestimated m and also overestimated, but biologically meaningful l. Note the particularly
broad CIs for these parameter estimates in Fig. 3.
doi:10.1371/journal.pone.0034846.g004

Figure 5. Comparison of curve-parameter point estimates and their 95% CIs for each of the four parameters lag phase (l), slope (m),
maximum (A) and area under the curve (AUC), estimated for ten technical repetitions of respiration on well D12. Left, a plot of the raw
respiration data illustrates their courses individually for each of the ten repetitions. The red curve (D12/4) was used as an exemplar for demonstrating
the detection of significant differences via CIs. In the right panel, point estimates and 95% CIs for each of the four parameters from the spline
approach are given for each replication. The blue lines highlight the position of the upper and lower limit of CIs from D12/4’s parameters. A non-
overlap of the CIs of different curves indicates a difference of a statistically detectable amount, and the distance between two intervals provides
information about the expected minimum difference.
doi:10.1371/journal.pone.0034846.g005
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methods for the extraction of the parameters from the spline could

be revised. Especially the estimation of m and l, which is currently

based on a a single value from the fitted spline, offers potential for

improvement.

It is well known that phenomena such as autocorrelation (which

is usual for growth curves) and non-homoscedasticity of the

residuals violate the underlying assumptions of model- and spline-

fitting [42,43]. When dealing with high-throughput datasets such

as the PM ones, however, the detailed assessment of a potential

violation of the assumptions made when fitting each curve is not

practicable. Moreover, while for instance the spline might overfit

the data in such situations, it is here only used for smoothing each

curve before extracting the four abstract parameters of interest. It

is thus unlikely that potential violations of the underlying

assumptions of the fit adversely affect the unbiasedness of the

parameter estimates. This might explain why the spline appears

more robust than the other methods if applied to PM data. While

the assumptions of ad hoc approaches such as those implemented in

[34] are, in general, less explicit, it is nevertheless apparent that

they are frequently violated, too (Figs. 3, 4).

Detecting significant differences
To enable the user to extract all necessary information, we

provided a feasible graphical solution displaying the point

estimator together with its CI limits. The function xyplot() from

the package lattice [60] already provides the here presented

outputs; only little adaption of the input data is necessary (but see

below). The straightforward assembly of different curves’ charac-

teristics in a single overview facilitates the interpretation and

comparison of user-defined data subsets arranged according to

technical and/or biological repetitions or other aspects of the

experimental design.

With two exemplars (Figure 5 and 6) we familiarized the reader

with the application of CIs to PM data for detecting (in-)significant

differences. The demonstrated tool yielded valuable information

about the range of variability of each point estimator on the

corresponding scale. Thus, the user was enabled to recognize

statistically detectable differences which he could further interpret

regarding the specific biological relevance in each individual

question. With the example in Fig. 6 we demonstrated a further

important approach. If, conversely, the experimenter wants to

Figure 6. Comparison of point estimates and their 95% CIs for each of the four parameters lag phase (l), slope (m), maximum (A)
and area under the curve (AUC), estimated for four technical replicates of respiration on well C08, in which the cells were
additionally subjected to distinct pretreatments (cultivation times). The upper panels show the plot of the respiration curves of E. coli DSM
18039 = K12 on well C08 when grown on solid LB medium for 16.75 h (t1), 18 h (t2), 19.33 (t3), 20.5 (t4), 21.92 (t5), 23.25 h (t6), 24.5 h (t7), 25.58 h (t8) or
40.33 h (t9), respectively, and subsequently measured on GEN III microplatesTM in the PM modus over 91 h. The lower panels shows point estimates
and 95% CIs for each of the four parameters from the spline approach. The blue lines highlight the position of the upper and lower limits of the CIs
from repetition no. 4 at t5. A non-overlap of the CIs of different curves indicates a difference of a statistically detectable amount, and the distance
between two intervals provides information about the expected minimum difference.
doi:10.1371/journal.pone.0034846.g006
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corroborate that a difference between the curves is not detectable

(by defining a threshold a priori as the maximum allowed difference

between the respective parameter estimates), the CIs provide a

comprehensible solution (by allowing one to assess whether the

expected mean difference is significantly larger than the threshold).

This allows one to assess whether reproducibility is given or

whether the experimental procedure needs improvement, which is

important for industrial applications or for research questions

aiming at the identification of strains according to their metabolic

features. For instance, Fig. 6 shows that the dependency on the

time of growth is negligible for this specific combination of

organism and well and, hence, the protocol needs not be further

standardized regarding the duration of growth.

It may often be of interest not to compare single curves but

distinct groups of curves. In Fig. 7 an example for the comparison

of experimental group means, which is the method of choice in

data evaluation for most biological questions, was shown. Starting

with the preliminary method of calculating mean CIs and their

graphical representations, the user is encouraged to uncover

interesting data features based on impartial calculations. But this

approach can only yield preliminary information as it is not a valid

testing procedure.

Using the more sophisticated simultaneous calculation of

differences of user-defined means in combination with the

visualization of their CIs, the experimenter is empowered to

investigate the data set more specifically regarding the biological

Figure 7. Visualization of group-wise representations of the four curve parameters lag phase (l), slope (m), maximum (A) and area
under the curve (AUC). The upper panels show the results from the preliminary calculation, a simple calculation of group means of confidence
limits and point estimators. The groups, here the distinct pretreatments (cultivation times t1 to t9), are given on the y-axis. For orientation, the blue
lines highlight the position of upper and lower limit of CIs from repetition no. 4 at t5, in analogy to Fig. 6. In the lower panels the 95% CIs for the
differences of group means are represented. The set of user-defined comparisons was calculated for the point estimators of each of the four
parameters lag phase (l), slope (m), maximum (A) and area under the curve (AUC). Since these are CIs for the differences between the means, a non-
overlap with zero indicates a statistically detectable difference between the considered group means of the examined curve parameters.
doi:10.1371/journal.pone.0034846.g007
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hypotheses. The advantages of simultaneous CIs for drawing

testing decisions are that the significance, relevance, and direction

(increase or decrease) of the effect of interest, as well as the

uncertainty concerning the estimates, can be interpreted in a scale

close to that of the measured variable, which is often easier than

interpreting p values in the scale of probability [75].

Since the width of a CI is a critical measure in the interpretation

of testing decisions, a common spline fit for a bundle of repetitions

in combination with the above mentioned improvements of spline

fitting itself would be of interest for further method developments.

On the other hand, the estimation methods for the curve

descriptive parameters should be regarded as an interesting point

for improvement. As mentioned above, m and l are sensitive to

uncommon curve shapes, at least partly because of their estimation

procedure.

Beyond the here proposed strategies for testing local hypotheses,

global-hypothesis frameworks, as they are known, e.g., from the

already well explored gene-expression microarray analyses, should

be considered. For example, comparisons between complete plates

measured from distinct strains or treatments could be managed by

a difference-of-means approach. To get the results from the

distinct wells comparable to each other, they would need to be

normalized by, e.g., dividing by the well-specific means calculated

over all plates. The thus normalized parameter estimates could

regarded as one sample per plate or groups of plates and

accordingly compared against each other.

Which, and how many shape classes of curve shapes?
The conducted archetype analysis [63] indicated that assuming

only two classes of curve shapes is suboptimal, even if one corrects

for the fact that at minimum two classes are necessary to represent

the non-reactions alone due to the negative estimates for l. Two to

four archetypes were necessary for optimally representing the

positive reactions, apparently because of fundamental differences

in curve shape with a rather straightforward interpretation (Fig. 8).

Since the number of necessary archetypes depends on the

analyzed dataset, it is currently hard to recommend a predefined

number of classes or even a rule of thumb. Larger datasets with

even more distinct curve shapes might require more archetypes

according to the RSS criterion, whereas biological background

information might indicate even distinct numbers of categories.

Anyway, the application of archetypes presented here already

shows that a biologically meaningful post-processing of PM

measurements via the parameter estimates is possible. Of course,

other classification algorithms could also be applied such as k-

means partitioning or even hierarchical clustering [76]. Even if

only the discrimination between positive and negative reactions

was of interest, automatically classifying the observed curve shapes

by assigning them to predefined clusters of curves or ‘‘typical’’

curves would be necessary for high-throughput processing of the

Phenotype MicroArray data.

Figure 8. Results from an archetype analysis of the four parameters estimated from the PM curves obtained from the 1st and the
2nd dataset using the smoothing splines. The outer figure is a scree plot in which the residual sums of squares (RSS, y-axis) are plotted against
the corresponding predefined numbers of archetypes (x-axis). Apparently either four or five archetypes are optimal according to the ‘‘elbow
criterion’’. The insert (upper right) is a parallel coordinates plot showing the original measurements (gray lines) as well as the optimal archetypes
(green, black, blue, violet and red lines) obtained if five archetypes are requested. On the x-axis, the names of the curve parameters are indicated. The
minima and maxima of the four y-axes are also indicated. For an interpretation of the archetypes, see the main text.
doi:10.1371/journal.pone.0034846.g008
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Conclusions and outlook
With the here presented approach to OmniLogH PM data

analysis highly structured graphics can easily be produced while

retaining the flexibility of systematically decoupling the various

elements of a display. Itemization by substrate, tested strain or

even repetition number is quite simple and no constraints about

the number of displayed curves or the position of the subpanel are

imposed at all.

The smoothing-spline method for dimension and noise

reduction appears to prevalently result in more meaningful

parameter estimates than parametric model fitting when applied

to PM data. Via curve-fitting the user can extract more

information from the same experimental data than with any of

the previously established techniques, particularly those reducing

the data to binary states (positive vs. negative reactions). The

inferred parameters can be used to classify the curves, and with

our dataset more than just the categories positive/negative were

optimal, even though the resulting archetypes could be easily

interpreted. Dimension reduction of the curves followed by

automated classification and identification seems to be of high

future potential, particularly if combined with CIs, for the

computational high-throughput processing of the raw data. This

kind of data treatment will most probably also enhance the

usefulness of high-throughput phenotyping for data modeling in

microbial pathway genomics [77].

In conjunction with the proposed parameter estimation using

models or preferably splines, the experimenter is free to define

limits within which statistically detectable differences are not

considered biologically relevant, which makes this method easily

adaptable and more powerful than conventional mean comparison

procedures [35,78]. The proposed method intentionally resigns

any multiplicity adjustment, because the analyses are intended to

find preferably all interesting phenomena.

Although the strategy introduced here depends on CIs

calculated on the basis of single curves, the approach could be

easily extended to include the calculation of mean curves and

corresponding intervals [47], or to summarize the parameters

from associated curves and perform CI computations and

comparisons of multiple means with the resulting values [78].

Considering the very low sample size in hitherto published PM

experiments, the chance to apply the hereby acquired information

in sample size calculation should be emphasized. Usually one aim

of statistical analyzes is to find a detectable difference regarding an

a priori chosen alpha [78]. Since statistical testing provides

primarily this detection of statistical significance, researchers

frequently interpret only this information, irrespective of the size

of detected mean differences, i.e. the effect size [36,62]. However,

for the majority of experimental investigations, especially in

physiology [79–81], often a minimum effect size is known for an

effect to be biologically relevant. Our approach can extract

information from preliminary experiments that can be used to

compute the specific sample size required for the detection of

biologically relevant differences with a sufficiently high confidence

level in subsequent experiments. Thus, experimenters are enabled

to improve their experimental design for satisfying their specific

constraints and requirements more thoroughly.

As demonstrated here, for a comprehensive comparison of the

curves several parameters have to be considered to come to a

meaningful decision. This is connected to fundamental ideas from

multivariate data analysis [82], where several features of one

object are recorded and analyzed together. One alternative to

avoid the application of such more sophisticated methods could be

the combination of several parameters into one, as proposed by

Wang et al. [83], who multiplied slope and area under the curve.

As shown here, the curve parameters (among them AUC and m)

can be strongly correlated. We explored the results for the product

of AUC and m using simulated datasets constructed by (i) using the

empirical values for both parameters estimated in the course of the

study and (ii) generating all possible combinations (irrespective of

whether they occurred in the real data). In these data, wee found

very similar numerical values for the cases ‘‘high AUC 6 low m’’

and ‘‘low AUC 6 high m’’ although they would originate from

totally different curve shapes (data not shown). We would thus

caution against using simple ratios or products for the combination

of parameters, even though we cannot exclude that more complex

algorithms were more successful. The AUC is expected to be

affected by all other parameters and could well be used for

summarizing the curves, but some information loss is expected to

always occur if the four parameters are to be represented by a

single one.

Even though the analysis of the biological causes for the

respiration behaviors of the here tested strains is beyond the scope

of the study, a few remarks on the study design and implemen-

tation of controls should be placed. On the GEN III plates the A01

well is defined as the control well, containing no substrate. By

construction no reaction should occur on this well unless some

kind of artifact was involved. The vendor’s recommendation is,

understandably, to adjust the experimental procedure until this

point is met [34]. However, further the user is instructed to

subtract the, hopefully low, A01 curve from all other curves before

proceeding with data analysis. Considering the fact that growth

curves are seldom strictly additive or multiplicative in a

biologically meaningful sense [84], this approach raises several

concerns regarding the impact on the shapes of the resulting

curves and the character of thereby introduced biases. From our

point of view, the experimental conditions should be first tried to

be customized until there is no detectable positive reaction in A01

anymore [23]. We strongly encourage users to use the raw data for

further analysis without subtraction of A01 from all other curves.

We believe that the curve from A01 and its parameters are of

higher benefit when used as thresholds for the dichotomization of

experimental outcomes. The only exception would be a scenario

in which the values in the negative control could be regarded as

some kind of background noise which actually behaves additively

with respect to the signal from the curves, if any. Our observations

disagree with this scenario, however, as many intrinsically negative

reactions in other wells were shallower (i.e., showed lower values of

A) than those in A01 (see Files S4 to S6). Surprisingly, the shapes

of the curves were strain-specific, and for Escherichia coli DSM

30083T, if pooled over all replicates, the values of A in well A01

turned out to be significantly larger than those in, e.g., well D03

(see File S9).

In our assessments of the PM technique we observed a series of

other experimental sources of errors. One of them is a false-

positive color development due to some chemical conversion of the

redox dye, actually not caused by respiration (data not shown).

Especially pentose sugars such as L-arabinose or xylose might be

susceptible to these reactions (B. Bochner, pers. comm.). Thus, we

recommend to measure one plate inoculated with only the

inoculation fluid but no cell material and to check if such false-

positive reactions occur. Wells with such reactions should be

excluded from further analysis, since their color development

cannot safely be attributed to a physiological reaction.

To conclude, we believe to have demonstrated that tools

provided in the free statistical software environment R can be

successfully applied to PM data. These tools allow the user to

visualize the kinetics in several meaningful respects, to conduct

parameter estimation and, hence, dimension and noise reduction
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with the measurements and to detect statistically significant

differences between the curves. All of these techniques can be

conducted after selecting and rearranging the data in a sensible way

depending on the respective scientific questions of interest. The

outcome can even be used to improve the experimental setup itself

as, e.g., by determining the necessary minimum number of

replications. Additional work is necessary, however, to optimize

details of the parameter estimation procedure (see above), and

particularly to integrate all mentioned tools together with data input

and output, and addition of metadata, in an easy-to-use R package.

We recently released the first version of such a package, ‘opm’, by

making it available at the comprehensive R archive network CRAN

(http://cran.r-project.org/web/packages/opm/index.html).

The application of more sophisticated spline estimation methods

might solve the remaining difficulties. One main issue is the selection

of a suitable degree of smoothness. Approaches such as cross-

validation [42], generalized cross-validation [85] and the application

of information criteria like AIC or BIC [42] into the fitting procedure

could be assessed. In this context a common spline fit over several

(technical and/or biological) repetitions provides an interesting

starting point for an improvement of the testing framework, as it

would automatically take the various sources of variation into account.

Alternatively or additionally the methods for parameter

extraction from the spline could be critically revised. A more

sophisticated estimation method for the length of the maximum

slope m and the lag-phase l, possibly making use of information

from the second spline derivative, would probably be able to deal

with the so far frequently suboptimal spline fits for these

parameters in the case of intrinsically negative reactions.

With the here established strategies for data processing and

analysis, the results from Phenotype Microarray experiments are

commuted in a framework similar to that for the thoroughly

acquainted gene-expression microarray analysis. Thus, the next

steps leading to functional data analysis would be to test the

applicability of statistical analysis tools such as global multiple

testing procedures [86], pathway analyses or model-building

procedures [87].
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Switzerland, July 4–6, 2007. Published by the IEEE Computer Society.

38. Hackett CA, Griffiths BS (1997) Statistical analysis of the time-course of Biolog

substrate utilization. Journal of Microbiological Methods 30: 63–69.

39. Sturino J, Zorych I, Mallick B, Pokusaeva K, Chang YY, et al. (2010) Statistical

methods for comparative phenomics using high-throughput phenotype micro-
arrays. The International Journal of Biostatistics 6: 29.

40. Laird NM, Ware JH (1982) Random effects models for longitudinal data.

Biometrics 38: 963–974.

41. Laird NM, Donnelly C, Ware JH (1992) Review Paper: Longitudinal studies
with continuous response. Statistical Methods in Medical Research 1: 225–247.

42. Eilers PHC, Marx BD (1996) Flexible smoothing with b-splines and penalties.

Statistical Science 11: 89–121.
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