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Abstract

Background: Humans have a widely different diet from other primate species, and are dependent on its high nutritional
content. The molecular mechanisms responsible for adaptation to the human diet are currently unknown. Here, we
addressed this question by investigating whether the gene expression response observed in mice fed human and
chimpanzee diets involves the same regulatory mechanisms as expression differences between humans and chimpanzees.

Results: Using mouse and primate transcriptomic data, we identified the transcription factor EGR1 (early growth response 1)
as a putative regulator of diet-related differential gene expression between human and chimpanzee livers. Specifically, we
predict that EGR1 regulates the response to the high caloric content of human diets. However, we also show that close to
90% of the dietary response to the primate diet found in mice, is not observed in primates. This might be explained by
changes in tissue-specific gene expression between taxa.

Conclusion: Our results suggest that the gene expression response to the nutritionally rich human diet is partially mediated
by the transcription factor EGR1. While this EGR1-driven response is conserved between mice and primates, the bulk of the
mouse response to human and chimpanzee dietary differences is not observed in primates. This result highlights the rapid
evolution of diet-related expression regulation and underscores potential limitations of mouse models in dietary studies.
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Introduction

Dietary change has been proposed as one of the main driving

forces of human evolution, as well as one of the major causes of

modern-day common metabolic disorders (reviewed in [1–4]). In

the past several million years, the human diet has undergone

several major shifts, including reliance on tubers, increased

consumption of meat, the invention of food processing methods

like cooking, and, more recently, a switch to high-calorie diets

based on domesticated crops and animals. These changes may

underlie multiple evolutionary adaptations [5]. For example, it has

been suggested that switching to high-quality processed food has

resulted in reduced tooth and gut size during human evolution, as

well as greater encephalization [6–8]. The effects of dietary change

in human evolution can be further detected among current-day

populations with different traditional diets. A classic example is the

lactase persistence phenotype present at high frequencies in

populations with a long history of milk consumption [9–11].

Moreover, common metabolic disorders such as obesity and

diabetes might be explained by recent changes in dietary trends

incompatible with earlier dietary adaptations [4,12].

Regardless of local differences, all known human societies share

common dietary features that contrast with the fruit- and leaf-

based chimpanzee diets [13]. These features include higher

protein content, more calories, and cooking. Importantly, all

these features are critical for health in contemporary humans

[14,15], indicating the presence of irreversible genetic adaptations

to these new dietary conditions. Despite the suggested relevance of

the dietary changes to human evolution, diet-associated genetic

adaptations common to all humans are not yet known. Further-

more, the general impact of dietary differences on human and

chimpanzee phenotypic differences is not well understood [16]. A

major obstacle here is the lack of a consensus model for studying

the physiological and molecular effects of the dietary shifts

observed during human evolution.

Mouse models have been widely employed to study metabolic

disorders such as type 2 diabetes [17] and non-alcoholic fatty liver

disease [18], and are therefore good candidates for investigating

the effects of dietary change in human evolution. Accordingly,
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a recent study used mice to analyze differential effects of human

and chimpanzee diets on gene expression [19]. The results showed

that within two weeks, differences between human and chimpan-

zee diets resulted in conspicuous expression changes in the mouse

liver, but not in the brain. Furthermore, genes differentially

expressed due to diet differences in mouse liver also tended to be

differentially expressed between human and chimpanzee livers,

suggesting a role for diet differences in the two species’

transcriptome differences. However, the regulatory mechanisms

driving these diet-related expression patterns in rodents and in

primates were not examined. Likewise, the study did not address

the causes of expression differences detected only in mice fed

human and chimpanzee diets, but not detected in humans and

chimpanzees. Here we address these issues by investigating shared

and divergent gene expression regulation between mice and

primates with respect to dietary response, with a specific focus on

trans regulation by transcription factors.

Results

Transcription factors regulating human vs. chimpanzee
differences in liver
We quantified gene expression in the livers of humans,

chimpanzees, and outgroup species using two independent public

datasets (Methods). The first dataset was based on microarray

measurements from six humans, five chimpanzees, and five

orangutans [20,21]. Among 4,531 reliably detected genes, 969

(21%) were significantly differentially expressed between humans

and chimpanzees (permutation-based false discovery rate [FDR]

,10%). The second dataset was based on RNA-sequencing

(RNA-seq) measurements from 12 humans, 12 chimpanzees and

12 macaques [22]. Among 13,145 genes reliably detected in this

latter dataset, 4,551 (35%) were significantly differentially ex-

pressed between human and chimpanzee livers (permutation-

based FDR ,10%). Both detected and differentially expressed

genes showed significant overlap between the two datasets (4,161

and 446 genes, odds ratio = 13.31 and 3.01, one-sided Fisher’s

exact test, p,1610210, respectively). The amplitude and direction

of expression differences between human and chimpanzee livers

also showed good agreement between these two datasets (Pearson

correlation, r=0.82, p,1610210; Figure S1). We, therefore,

combined the two datasets based on 4,161 commonly detected

genes for further analyses. Principal components analysis (PCA) of

this combined dataset demonstrated a clear separation among

samples according to their species identity (Figure 1A), indicating

a large impact of species differences on total transcriptome

variation. In agreement with this observation, using an absolute

effect size cutoff (|effect size|.0.8) corresponding to a cumulative

two-dataset FDR ,5%, 1,792 genes (43.1%) showed consistent

differential expression between humans and chimpanzees in the

two datasets (Methods).

Previous analyses of genes differentially expressed between

human and chimpanzee livers have reported enrichment in

functions including metabolic functions and transcriptional

regulation [22,23]. Regulatory mechanisms responsible for these

human-chimpanzee expression differences, however, have not

been studied. Generally, gene expression differences between

species may be caused by: (i) DNA sequence differences in cis-

regulatory regions such as promoters and enhancers, which are

hard-wired [24], and (ii) differences in the concentration or activity

of trans-acting factors such as transcription factors (TF), micro-

RNAs, DNA methyltransferases, or chromatin modifiers, which

may or may not be hard-wired between species. More specifically,

trans regulation could itself be the result of evolutionary cis changes

(e.g. substitutions in a TF’s promoter that constitutively up-

regulate its expression), or may represent plastic responses to

environmental differences between species (e.g. activation of a TF

upon agonist binding) [25].

To test whether differences in TF expression might be linked to

gene expression differences between human and chimpanzee

livers, we examined correlations between each TF’s expression

and the expression of its predicted target genes. These potential

target genes were defined based on the presence of conserved

binding motifs, for a given TF, in their promoter region

(62,000 bp from the transcription start site [TSS]; Methods)

[26]. Here we assume that a change in a TF’s mRNA

concentration indicates changing activity, which should be

reflected in the expression levels of its targets. Thus, a TF

regulating its predicted targets should show either more positive or

more negative correlations with these targets, compared to its

correlations with other genes, which can be evaluated by the

Wilcoxon test (Methods) [27]. The null expectation, i.e. a TF

showing correlation with randomly selected targets, was gauged by

a permutation test.

Among 62 TFs expressed in the combined primate liver dataset,

and having annotated target genes, 23 showed expression

differences between humans and chimpanzees at |effect

size|.0.8. These had in total 981 potential targets also showing

a human-chimpanzee |effect size|.0.8. Asking if any of these TF

might show non-random correlations with their targets’ expres-

sion, we identified two (EGR1 and MEF2A) showing more positive

correlations with their own target genes than other TFs’ targets

genes (two-sided Wilcoxon test, p,0.01, Table S1). Finding two

such TFs is unexpected, as estimated by permuting TF-target

relationships (p=0.018; Methods). Thus, differential expression of

these two TFs may drive differential expression of their target

genes between human and chimpanzee livers.

As mentioned before, TF-mediated differential expression could

be associated with dietary differences among species. The human

diet is different from the diets of chimpanzees, orangutans, and

macaques with respect to multiple fundamental features, including

cooking and high calorie and protein contents [3,13]. If the

observed regulatory changes are related to dietary differences, we

would expect humans to show the most diverged expression

pattern among the four primate species. We indeed found that

expression of EGR1 is significantly elevated in the human liver

compared to all other three tested primate species (two-sided t-test

p,0.05; Figure 2A, left hand panel; Figure S2Bdddd). The

expression pattern of MEF2A could not be assigned to the human

lineage unambiguously: this gene was highly expressed in humans

compared to both chimpanzees and macaques, but not with

respect to orangutans (Figure S2A). Taken together, these results

suggest that up-regulation of EGR1 liver expression, either hard-

wired or plastic, took place on the human evolutionary lineage and

led to expression changes of its target genes.

Transcription factors regulating human vs. chimpanzee
diet differences in mouse
If TF-driven regulatory effects observed between human and

chimpanzee livers are caused by dietary differences, they might

also be detected in mice fed human and chimpanzee diets [19]. To

address this, we first determined regulatory effects induced by

human and chimpanzee diet differences in mice, and then

compared them to those identified in the primate species analysis.

The mouse dataset consisted of liver transcriptome data from three

groups of six genetically homogeneous male mice, fed a German

cafeteria diet, a McDonald’s fast-food diet, or a chimpanzee diet

(uncooked fruit and vegetables fed to chimpanzees in the Leipzig

Transcriptional Regulation of Dietary Response
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zoo), for 2 weeks (Figure 1B). Despite considerable differences in

their nutritional content, the cafeteria and fast-food diets showed

little difference in their effects on liver gene expression [19]. We

thus combined the cafeteria and fast-food diet-fed mice in a single

‘human-diet’ group as in the original study. Following the

methodology used for the primate dataset, 6,147 genes were

detected in this dataset, 1,316 (21.4%) of which were significantly

differentially expressed between mice fed human diets and

chimpanzee diets (permutation based FDR ,10%). At the |effect

size|.0.8 cutoff, 2,311 (37.6%) genes showed expression differ-

ence between mice fed the two diets.

Comparing the mouse data with the primate data, we found

that genes significantly differentially expressed in mice in response

to human and chimpanzee diets overlapped significantly with

genes differentially expressed between human and chimpanzee

livers (one-sided Fisher’s exact test, p=0.018). Furthermore,

metabolism-related biological processes, including those related

to glucose metabolism, showed enrichment among diet-related

genes in a Gene Ontology-based analysis (global p,0.05,

permutation based FDR ,10%; Table S2, Table S3, Table S4;

Methods). Both results are in accord with the original report [19].

We then identified TFs potentially responsible for gene

expression changes induced by human and chimpanzee diets in

mice. Among 65 TFs expressed in mice livers, 20 were differently

expressed (|effect-size|.0.8) in response to human and chimpan-

zee diets. These had in total 1,378 potential target genes with an

|effect-size|.0.8. Employing the same procedure as applied for

the primate dataset, we found that five transcription factors,

EGR1, YY1, NFIC, ATF6 and RFX1, showed non-random

correlations with their predicted target genes’ expression, com-

pared to non-target genes (two-sided Wilcoxon test, p,0.01,

Table S1). On average, no TF would be expected to show such

correlations by chance, as estimated by permuting TF-target

relationships (p,0.001). Notably, three of the identified TFs have

been associated with nutrition and metabolism-associated path-

ways: EGR1 expression responds to glucose in blood [28] and to

insulin in liver cell lines [29], YY1 (yin-yang 1) is differentially

expressed in the liver between diabetic and non-diabetic rats [30],

and ATF6 (activating transcription factor 6) regulates gluconeo-

genesis in mice liver [31], supporting the idea that the regulatory

effects identified here represent reactions to nutritional change.

EGR1 is a candidate regulator of diet-related human vs.
chimpanzee differences
Remarkably, the single TF showing a human-specific regulatory

effect among primates, EGR1, is among the five TFs potentially

regulating diet-induced changes in the mouse model. The

probability of a TF to randomly show consistent expression

differences in primate and mouse datasets is low (one-sided

Fisher’s exact test, p=0.028; Methods). More importantly, genes

up-regulated by EGR1 in humans also tended to be up-regulated

in mice fed a human diet, and vice versa (Figure 2A, right hand

panel). Specifically, the 23 EGR1 target genes present in both

primate and mouse datasets showed consistent correlations with

EGR1 expression in mouse and primate livers (Spearman rho

=0.46, p=0.028, Figure 2B). Such an extent of TF-target

correlation agreement between primate and mouse datasets was

not seen for the other two TFs tested in both datasets (YY1 and

NFIC; Figure 2Cieiwk.hereieiwk.hereieiwk.hereieiwk.here). Thus,

the EGR1-driven differential expression between humans and

chimpanzees could be reproduced in mice fed human and

chimpanzee diets, suggesting that expression differences between

humans and chimpanzees in the liver are partly caused by dietary

differences and are regulated through evolutionarily conserved

trans mechanisms.

One conspicuous difference between human and chimpanzee

diets, including those used in the mouse experiment, is the former’s

high calorie content [13]. To investigate whether the potential

EGR1-regulated dietary response may be associated with caloric

differences, we analyzed this gene’s expression in another dietary

manipulation experiment that examined the effects of a high-

calorie diet on the mouse liver [32]. This dataset consisted of two

groups of 5 individuals fed standard or high-calorie diets for

6 months. We found that EGR1 was expressed significantly higher

in mice fed a high-calorie diet than in those fed the standard diet

(one-sided t-test, p=0.007, Figure 2A, right hand panel). Further,

EGR1-target correlations agreed well with the high-calorie and the

human/chimpanzee diet-fed mouse experiments (Spearman rho

=0.34, p=0.009; Figure 2D). Parallel regulatory effects of EGR1

Figure 1. Liver gene expression variance among primate species and mice fed human and chimpanzee diets. The first two principal
components of liver gene expression (A) in four primate species (the combined primate dataset, including the RNA-sequencing and microarrays
datasets) and (B) in mice fed human ‘cafeteria’, human ‘fast-food’, or chimpanzee diets. The analysis was performed by singular value decomposition,
using the ‘‘prcomp’’ function in the R ‘‘stats’’ package [60]); each gene’s expression level was scaled to unit variance before analysis, to yield a z-score.
The proportion of variance explained by each principal component is shown in parentheses.
doi:10.1371/journal.pone.0043915.g001
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in response to a high-calorie diet and in response to human versus

chimpanzee diets in the mouse liver implies a role for EGR1 in

coordinating the response to the high caloric content of human

diets.

Computational evaluation of EGR1-target relationships
The 14-bp GC-rich motif recognized by EGR1 (TRANSFAC

ID: V$KROX_Q6 [26]; Figure S3) has been derived from 23

EGR1-bound sequences identified in gel shift and DNase I

Figure 2. EGR1’s response to human-chimpanzee dietary differences. (A) Standard normalized expression of EGR1 (black) and its target
genes (gray) showing species/diet effects (|effect size|.0.8) and positive correlation with the EGR1 expression profile (N = 7 genes in the primate
dataset and the mouse primate diet dataset, and N= 10 in the high calorie diet dataset). The seven target genes in the primate dataset and the
mouse primate diet dataset were chosen based on positive correlation with EGR1 in both datasets, while the 10 target genes in the mouse high-
calorie diet dataset were chosen based on positive correlation with EGR1 in this dataset as well as in the mouse primate diet dataset. Results are
expressed as mean6 SEM for EGR1 and mean6 SEM of mean expressions for target genes. Asterisks indicate significance based on two-sided t-tests,
***: p,0.001; **: p,0.01, *: p,0.05. The seven targets in the primate dataset show similar trends as EGR1 but significant expression difference only
between humans and chimpanzees. (B) Scatter plot of correlation coefficients between EGR1 and its 23 tested targets, showing species effects in the
primate dataset and diet effects in the mouse human-chimpanzee diet dataset. The x- and y-axes show the correlation coefficient between EGR1 and
each target in the primate dataset and the mouse human-chimpanzee diet dataset, respectively. The Spearman correlation coefficient between these
coefficients (correlation of correlations, CoC) was 0.46 (p= 0.028). (C) Volcano plot of CoCs for 18 TFs tested in either the primate dataset or the mouse
human-chimpanzee diet dataset (i.e. showing species/diet effects, |effect size|.0.8, in both datasets). The x-axis is the CoC between each TF and its
targets shared by the two datasets. The y-axis is log-10 transformed p-value of correlation test. The black triangle represents EGR1, which shows
regulatory effects in both the mouse and the primate datasets. The gray triangles represent the two tested TFs showing regulatory effects in only one
dataset (YY1 and NFIC, both from the mouse human-chimpanzee diet dataset). The hollow gray triangles represent the 15 TFs showing no regulatory
effect in either dataset (but showing either diet or species effects). (D) Scatter plot of correlation coefficients between EGR1 and its tested targets,
shared by the mouse human-chimpanzee diet dataset and the high-calorie diet dataset. The x- and y-axes show the correlation coefficient between
EGR1 and each target in the high-calorie experiment and the primate diet dataset, respectively. The coefficient of Spearman CoC was 0.34 (p-value
= 0.0087). The hollow triangles represent targets showing species effects in the primate dataset.
doi:10.1371/journal.pone.0043915.g002
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footprinting experiments compiled by TRANSFAC (Table S5).

More recently, EGR1 ChIP-chip and ChIP-seq experiments

studying blood cell differentiation have supported the authenticity

of the EGR1 binding motif described in the TRANSFAC database

[33,34].

Conserved sequences matching the V$KROX_Q6 motif, i.e.

the predicted binding sites, occur in total 27 times in the promoters

of the 23 predicted targets showing correlated effects between the

mouse diet and primate datasets (where the promoter is defined as

62,000 bp from the TSS). To test the authenticity of these

Figure 3. Mouse-specific responses to human-chimpanzee dietary differences. (A) Venn diagram showing the numbers of human-mouse
orthologous genes differentially expressed between mice fed human and chimpanzee diets in liver (left), and genes differentially expressed between
human and chimpanzee livers (right). Top panel: genes showing differential expression at a stringent cutoff, FDR ,10% in each of the two primate
datasets and the primate diet dataset; lower panel: genes showing diet/species effects at a loose cutoff, |effect size|.0.8. Numbers outside the circles
indicate orthologous genes showing no species or diet effects. Only genes detected in both primate and mice datasets are represented. Note that
upon relaxing the differential expression cutoff, the number of genes showing species effects increases by,5 times, while those showing diet effects
increases by ,2. This is caused by differences in the distribution of effect size and statistical power between the two datasets (Figure S5). In the
mouse dataset, small effects are more easily detected as statistically significant, likely due to lower within-group variance. (B) Median transcriptional
liver-specificity among different groups of genes. Liver-specificity is calculated as the difference between liver expression and mean gene expression
level across various tissues, in units of standard deviation (i.e. a z-score). Shown are four groups of genes that were differentially expressed only
between mice fed human and chimpanzee diets, only between human and chimpanzee, in both primates and mice, or in neither. Black diamonds
show median liver-specificity in mouse; white diamonds show liver-specificity in human (using data specific to each species). The range of whiskers is
M61.586IQR/n0.5, where M, IQR and n are the median, interquantile range, and number of observations. Asterisks indicate significance based on two-
sided Wilcoxon test. ***: p,0.001. n.s.: p.0.1. (C) The difference between mouse- and human liver-specificity distributions, across the same gene sets
as in panel B. The mouse and human distributions were each converted into Gaussian kernel densities (estimated using the ‘‘density’’ function in R);
the y-axis shows the difference between these densities. The x-axis shows liver-specificity as in panel B. For example, positive x- and y-axis values
indicate that the mouse shows an excess of genes showing high liver-specificity, compared to human. Black solid line: Genes differentially expressed
only in mouse; double-dashed gray line: only between human and chimpanzee; gray dotted line: in both mouse and primates; gray solid line: in
neither. While genes differentially expressed in neither dataset have higher mouse liver-specificities relative to human, this is significantly more
pronounced among mouse-specific differentially expressed genes (one-sided Wilcoxon test, p= 0.0077; Methods), and is not seen for the primate-
specific differentially expressed genes.
doi:10.1371/journal.pone.0043915.g003
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predicted EGR1 binding sites, we conducted four additional

analyses. First, we confirmed that these 27 sites are located

significantly closer to the TSS rather than being randomly

distributed throughout the promoter sequence (one-sided Kolmo-

gorov-Smirnov test p=2.061025). The median distance to the

TSS was found to be 392 bp (Figure S4). Second, we asked

whether the motifs might randomly occur due to the promoters’

dinucleotide content and overall conservation. To address this, we

applied the binding site prediction algorithm on randomly shuffled

sequences of the promoter regions of the 23 predicted targets,

while keeping the average conservation of each nucleotide type

and the dinucleotide content fixed for each target gene (Methods).

The results showed that on average only one gene would pass the

original criteria for being predicted as EGR1 target by chance

(FDR =4%). Third, we investigated whether the predicted

binding sites overlap with DNase I-hypersensitive sites, regions

of open chromatin generally bound by TFs. Using published data

from 15 cell lines including human liver carcinoma cells [35]

(Methods), we found that 22 of the 23 common targets contain at

least one predicted EGR1 binding site overlapping a DNase I-

hypersensitive site. This is highly unexpected, as gauged by

randomly choosing binding sites with the same length and

comparable G/C content as the predicted binding sites in the

23 promoters (permutation test, p,0.001). Fourth, we tested

whether the predicted EGR1-target relationships can be repro-

duced using an independent liver gene expression dataset

comprising a large sample of healthy humans [36]. We found

significantly better correlation between the expression of EGR1

and its targets identified in our study, than between EGR1 and

non-target genes, as well as between EGR1 and its other predicted

targets (Wilcoxon test p,0.002; Figure S5; Methods). Taken

together, these results suggest that the majority, if not all, of these

23 genes are regulated by EGR1.

Mouse-specific responses to human vs. chimpanzee diet
differences
In addition to parallel expression differences between mice and

primates, our analysis revealed substantial differences in expres-

sion response to diet between the two taxa. Specifically, among

2,358 orthologs expressed in both datasets, 57 genes were

differentially expressed in both mice and primates at the FDR

,10% cutoff (requiring FDR ,10% in each primate dataset;

Methods) (Figure 3A). In contrast, 168 genes were differentially

expressed only between humans and chimpanzees, and 408 genes

only between mice fed human and chimpanzee diets. Differential

expression observed between humans and chimpanzees, but not

between mice fed human and chimpanzee diets, may have various

explanations. These could include other environmental differences

between these species, as well as neutral gene expression

divergence caused by accumulation of cis differences [37]. In

contrast, the majority of expression differences found in genetically

homogeneous mice living in a controlled environment should

represent mouse-specific responses to a single environmental

variable: diet. Studying these differences should help understand

how species diverge in their responses to the same environmental

change.

The 408 genes showing mouse-specific dietary response

constitute 17% of all orthologs expressed in both the mouse and

the primate livers. With respect to function, these genes were

significantly enriched in carbohydrate metabolism-related func-

tions (p,0.05, FDR ,10%, Table S2, Table S6). This is

important, as it suggests that the mouse-specific responses are

indeed due to dietary effects.

What could cause these dietary responses to be observed in mice

fed human and chimpanzee diets, but not between humans and

chimpanzees? One possibility is that the orthologous primate

genes do respond to diet, but at weaker levels, and that we lacked

the statistical power to detect differential expression, due to

technical or biological reasons, when testing each gene in-

dividually. If so, we might expect human-chimpanzee expression

divergence across these 408 genes, as a group, to be greater than

expression divergence across other expressed genes. However, we

found no such tendency (Figure S6). This indicates that the

mouse-specific diet effect was not caused by a lack of power in the

primate dataset.

May differences between mouse and primate dietary response

be caused by the transient nature of dietary exposure in the mouse

experiment [19]? Arguing against this, we detect the same EGR1-

regulated expression response in mice fed human diets for

2 weeks, and in mice fed high-calorie diets for 6 months. Likewise,

it has been shown that a two week period is sufficient for mice fed

a high-fat diet to reach stable plasma levels of total and LDL

cholesterol [38].

Finally, it is possible that these genes acquired novel functions in

the primate or the mouse liver through changes in their protein

structure. However, we found no indication of faster amino acid

sequence evolution among these 408 genes compared to other

genes expressed in both the primate and the mouse datasets (using

dN/dS ratios between humans and chimpanzees or between

humans and mice; one-sided Wilcoxon test p.0.1). Instead, we

found that primates and mice differ in how these genes are

regulated across tissues. Specifically, transcriptional liver-specific-

ity (gene expression level in liver relative to its expression across 79

or 61 tissue types in human and mice, respectively [39]) among

these 408 genes was significantly higher in mice than in humans

(one-sided Wilcoxon test, p=0.008, Figure 3B–C). This was not

seen among, for instance, genes differentially expressed in both

mice and primates. In other words, the expression of the 408 genes

has become more liver-specific in mice, or less liver-specific in

humans (and potentially also in other primates). The reason for

this change is not related to an overall change in the average

expression level of the 408 genes in humans: the 408 genes were

expressed at similar levels between the human liver and the mouse

liver (Figure S7). These observations were stable at an alternative

effect size cutoff, indicating the robustness of the result (Figure S8,

Figure S9 and Table S7).

Mechanistically, how could these genes show more liver-specific

expression in mouse and respond to dietary change only in this

lineage? Notably, four of the five TFs identified as potential

regulators of the response to human-chimpanzee diet differences

in the mouse liver, were either not differentially expressed between

human and chimpanzee livers (YY1 and ATF6) or oppositely

differentially expressed between primates and mice (RFX1 and

SREBF1; i.e. humans and human diet-fed mice showed contra-

dictory effects) (Table S1). In addition to these trans- changes, we

also found that the proximal promoter and the 39 un-translated

region (39 UTR) sequences of the 408 genes were significantly less

conserved among placental mammals compared to the other

expressed genes (one-sided Wilcoxon test, p,0.002; Methods).

This suggests that both trans- and cis-regulatory changes control-

ling the expression of these genes may have led to differential tissue

specificity between mice and primates, and eventually, differences

in diet-related response between the two lineages.
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Discussion

Our results show that a subset of gene expression differences

between human and chimpanzee livers may be regulated through

differences in expression of a single TF: EGR1. Using orangutan

and rhesus macaque expression as outgroup references, we predict

that an increase in the expression level of EGR1, as well as its

predicted target genes, took place on the human evolutionary

lineage after the human-chimpanzee lineage split (see below). We

further demonstrate that elevated expression of EGR1 and its

predicted targets observed in the human liver is replicated in mice

fed human versus chimpanzee diets, and in mice fed high calorie

versus low calorie diets. This implies that the human-specific

increase in EGR1 expression represents a response to the high

caloric content of the human diet.

EGR1 function and target recognition
The immediate early gene EGR1 is a versatile zinc-finger type

transcription factor, functioning in diverse tissues (reviewed in

[40]). For example, it plays inhibitory/excitatory roles in the

growth of different cancer types [41,42], while in the brain it has

a role in memory formation [43]. Notably, EGR1 was previously

shown to play a role in dietary lipid response in mouse [44], in

insulin response in rat liver cells [29], and in glucose response in

human mononuclear cells [28], consistent with a role for EGR1 in

a potentially adaptive response to the human-specific high-nutrient

diet.

There is a total of 11,123 occurrences of V$KROX_Q6 motifs

in promoter regions across the genome, and 1,267 (,12%) of these

show conservation across vertebrates (Methods). Among the 1,267

genes containing such conserved binding sites, 333 and 372 were

expressed and 45.6% and 15.3% of these showed expression

correlation with EGR1 in the primate and mouse diet experiments,

respectively (Pearson correlation test p,0.05). Recent ChIP-chip

and ChIP-seq experiments studying EGR1 activity during blood

cell differentiation have likewise identified thousands of binding

sites across the human genome [33,34], suggesting a wide

spectrum of targets regulated by EGR1.

Importantly, EGR1 has been reported to recognize two distinct

motifs [45], described in the TRANSFAC database as

V$EGR1_01 and V$KROX_Q6. We found significant non-

random correlations between EGR1 and targets predicted based

on V$KROX_Q6 only. This may not be unexpected, given that

the two motifs regulate distinct sets of genes during blood cell

differentiation [46]. Meanwhile EGR3, which recognizes the same

motif and is differentially expressed in the primate dataset, does

not show significant non-random correlation with its predicted

targets’ expression (Wilcoxon test p.0.1).

Differential regulation of EGR1 between human and
chimpanzee
In mice, elevated EGR1 expression was caused by an

environmental change in dietary content. What mechanism could

be driving EGR1’s differential expression between human and

chimpanzee livers? Two scenarios are possible. First, the EGR1

effect in the human liver might be purely environmental, that is,

a plastic response to differences in caloric content of the study

subjects’ diet, as seen in mice. Second, continuous exposure to

a high-calorie diet during human evolution might have led to

genetic assimilation [25], that is, selection and fixation of genetic

changes that permanently elevated EGR1 levels in the human

liver. Under the latter scenario, mutations causing elevated EGR1

expression in the human liver may, in addition, result in similar

expression increases in other human tissues. Indeed, gene

expression differences linked to cis-regulatory mutations can

readily penetrate multiple tissues (e.g. [47]), whereas plastic

responses to environmental changes might be expected to involve

specific tissues. For instance, the majority of expression changes

observed in the livers of mice fed human versus chimpanzee diets,

were not observed in the mouse brain [19].

To test a possible cis-regulatory effect permeating multiple

tissues, we analyzed EGR1 expression in published human and

chimpanzee gene expression data including brain, testis, kidney,

and heart [20]. We found that EGR1 showed higher average

expression in kidney and testis, including significantly higher

expression in the latter (p,0.05, Figure S10). This result raises the

possibility that EGR1’s differential regulation in the human liver is

not restricted to this tissue and, therefore, might be caused by cis-

regulatory mutations. The differential expression pattern found in

brain and heart could then involve trans-acting tissue-specific

regulation or the use of alternative promoter regions [48]. That

said, the evidence is equivocal, and further work is needed to

resolve the mechanism of EGR1 differential expression between

human and chimpanzee livers.

Meanwhile, the expression pattern of EGR1 targets among

primate species differs from primate EGR1 expression and from

EGR1 targets’ expression in the mouse diet experiment

(Figure 2A). The primary inconsistency involves the high

expression of EGR1 targets in orangutans. Considering that

orangutan diets in captivity are more similar to that of

chimpanzees than humans, this result raises doubt on whether

the predicted targets are all responsive to dietary differences. We

note, however, that our statistical power to accurately measure

expression in orangutans is particularly limited. Indeed, the

combined dataset comprises 18 human and 17 chimpanzee

samples, compared to 12 macaque and only five orangutan

samples. In addition, orangutan expression profiles were measured

only by human microarrays and might have low reliability given

the evolutionary divergence between humans and orangutans.

The expression levels in macaque samples were measured by the

RNA-sequencing, and human and chimpanzee samples on both

platforms; data for the latter species should therefore be more

reliable.

Additional regulators of dietary response
EGR1 is unlikely to be the only regulator involved in dietary

adaptations common to all humans. First of all, current knowledge

of TFs and TF-based transcriptional regulation is greatly limited

by incomplete annotation. More than a thousand human genes

are assigned transcription factor activity in the Gene Ontology

database [49], but less than 300 have annotated target recognition

sites [26]. Furthermore, many TF binding sites are short and

degenerate, leading to high false discovery rates in TFBS

prediction [50–52], and constraining our power to estimate TF

regulatory effects.

In addition, here we have not considered other important

classes of gene expression regulators, such as microRNA [53],

histone modifiers [54], or DNA methyltransferases [55]. As

transcriptional regulation is a combined effect of multiple factors,

measuring and incorporating the effects of these regulators should

lead to substantially improved models of differential expression

between species.

It is also worth noting that we could associate only 39% of genes

(n = 814) responding to human and chimpanzee dietary differ-

ences in mice with the expression variation of their putative TF

regulators. In other words, mechanisms driving the majority of

diet-related expression changes in mice also remain unknown.

Further studies are needed to identify transcriptional regulators
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involved in conserved and human-specific dietary responses across

mammalian species.

The utility of mouse models
Mice have been used to study diverse biological phenomena

relevant to humans, including diet-related diseases such as type 2

diabetes [17] and obesity [38]. The relevance of mouse models for

studying differences between human and other primates’ diets,

however, is not well understood. Here we found evidence for

extensive mouse specificity in response to primate dietary

differences: as much as 88% of strong gene expression changes

observed in mice, in response to human and chimpanzee diets,

were not observed in primates. Our results further imply that this

high degree of mouse-specificity in the dietary response could be

due to altered transcriptional tissue specificity of the genes

involved. These findings raise caution with regard to the

interpretation of results from mouse dietary response models and

their extrapolation to humans.

Future work with mice subjected to longer-term exposure to

particular nutritional content could reveal the exact limitations of

mouse models for studying the molecular basis of human dietary

change. Meanwhile, alternative models with closer genomic

similarity to humans, such as pigs or primates, may prove more

effective than mice for this purpose.

Methods

Microarray and RNA-sequencing datasets
We used two previously published gene expression datasets of

postmortem primate liver. One was based on Affymetrix Human

Genome U133plus2 GeneChipH arrays measured in six humans,

five chimpanzees and in five orangutans [20,21], available at the

ArrayExpress Archive (http://www.ebi.ac.uk/arrayexpress/) with

accession numbers E-AFMX-11 and E-TABM-84. A second

dataset was based on RNA-sequencing on the Illumina platform,

which contained data from 12 humans, 12 chimpanzees and 12

rhesus macaques [22] and was downloaded from NCBI Gene

Expression Omnibus (GEO) public data repository [56] (http://

www.ncbi.nlm.nih.gov/projects/geo/query/acc.

cgi?acc =GSE17274).

We also used a mouse liver gene expression dataset, where

expression was measured using Mouse Genome 430 2.0

GeneChipH arrays in 24 mice fed two human diets, one

chimpanzee diet, and one regular mouse food diet, six mice for

each diet [19], downloaded from GEO (http://www.ncbi.nlm.nih.

gov/geo/query/acc.cgi?acc =GSE6297).

Preprocessing gene expression data
For Affymetrix microarray data analysis, we summarized

expression levels per Ensembl [57] gene (version 54) using custom

CDF files [58] (available at http://brainarray.mbni.med.umich.

edu/Brainarray/Database/CustomCDF/genomic_curated_CDF.

asp). Expression levels were calculated using the ‘‘rma’’ (robust

multichip average) method in the ‘‘affy’’ package [59], which is

part of the R Bioconductor software [60]. Microarray probes that

did not match human (hg18), chimpanzee (pantro2) and

orangutan (ponabe2) genomes perfectly were identified using

BLAT [61] and discarded. The extracted expression levels were

log transformed and quantile-normalized. Detection p-values

(probability of the expression signal representing background)

were calculated using the ‘‘mas5’’ method in the same package. In

further analysis we included (1) genes with a nominal detection p-

value ,0.05 among at least half of the samples, and (2) genes

showing above-detection expression unevenly among sample

groups (indicating differential expression), as determined using

the ‘‘dMFNCHypergeo’’ method in the R ‘‘BiasedUrn’’ package

[62] at p,0.1.

For the RNA-sequencing dataset, preprocessed read counts for

20,689 Ensembl genes were directly downloaded from NCBI

GEO with accession GSE17274. 7,544 genes that had no read

count in more than half of all samples, or which had no differential

expression test p-value according to the ‘‘DESeq’’ R package (see

below) due to 0 variance, were removed from further analyses,

resulting in 13,145 genes. Read counts were log transformed and

quantile-normalized.

Choice of statistical tests
We used parametric tests for testing differential expression (t-test

or ANOVA) or comparing expression profiles between pairs of

genes (Pearson correlation test). When comparing distributions of

variables that are by definition not normally distributed (e.g.

correlation coefficients or dN/dS ratios) we used non-parametric

tests (Spearman correlation and Wilcoxon signed-rank tests).

Testing for differential gene expression in microarray
datasets
We used ANOVA to test for each gene’s differential expression

among groups. If data were generated in different batches, two-

way ANOVA was used with experimental batch (the day of

hybridization) included as an additional factor. To remove the

batch effect, for each gene, we subtracted each batch’s mean from

expression profiles of samples within that batch. If a factor (e.g.

species) had more than two levels, testing differential expression

between each pair of levels was accomplished using the Tukey

HSD post hoc test (‘‘TukeyHSD’’ function from the ‘‘stats’’ R

package [60]).

Testing for transcriptome-wide human vs. chimpanzee
differences
We first determined differential expression in each primate

dataset separately, and then combined the results. To identify

differential expression in the RNA-sequencing dataset, we first

determined a p-value cut-off based on a permutation approach to

ensure FDR ,10%. Specifically, (1) species identities of samples

were randomized, (2) a differential expression test (using the

‘‘nbinomTest’’ method in the ‘‘DESeq’’ R package [63]) was

applied to all genes using the randomized species identities. This

routine was repeated for 1,000 times, and the exact p-value cutoff

was chosen to ensure that the median number of significant genes

across the 1,000 permutations is 10% of the actual number of

significant genes. Using this criterion, we identified 4,551 out of

the 13,145 genes as differentially expressed between human and

chimpanzee at p,0.024.

For the Affymetrix U133plus2 dataset, using a similar procedure

we identified t-test p,0.037 as the cutoff at FDR ,10%. At this

cutoff, 969 genes were differentially expressed between humans

and chimpanzees out of 4,531 expressed genes.

The two datasets were combined using 4,161 genes that were

commonly expressed in both, with each gene’s expression profile

standardized (mean extracted and then divided by the standard

deviation, resulting in a z-score) first across human and

chimpanzee samples in each dataset and subsequently across all

samples from both datasets. 428 genes that showed significant

differential expression (at FDR ,10%) in both datasets in the

same direction (e.g. higher in human in both datasets) were

considered as significantly differentially expressed between human
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and chimpanzee. In addition, we defined an effect size-based set of

genes showing species effects (see below).

Testing for transcriptome-wide diet effects in mouse
Following the original mouse diet study, we combined the data

from the two human diets – the cafeteria and fast food diets – due

to their similar effects on mouse liver gene expression levels, and

compared them directly to the chimpanzee diet. Using the

permutation-based approach described above, 1,316 out of 6,147

expressed genes showed differential expression between mice fed

human and chimpanzee diets at ANOVA p,0.073 with

FDR,10%.

Effect size calculation
The following formula was adopted to calculate effect size:

d= (M1–M2)/SDp, where M1 and M2 are the means of the two

groups and SDp is the pooled standard deviation, calculated as

(((N121)6SD1
2+((N221)6SD2

2))/(N1+N222))0.5, where N1 and

N2 are the sample sizes and SD1 and SD2 are the standard

deviations of the two groups, respectively. In the mouse and

primate datasets, the first group was mice fed human diets or

humans, the second mice fed chimpanzee diets or chimpanzees,

respectively.

Rational for using effect size as cutoff
In addition to ANOVA, we also used effect size to define

differentially expressed gene sets, for two reasons: First, using effect

size allows straightforward comparisons of datasets with different

sample sizes. Second, the number of genes reaching nominal

significance cutoffs for differential expression in both the primate

and mouse datasets was limited (N= 57), too small to allow testing

for common regulatory factors. We reasoned that this narrow

overlap might partly be caused by weak statistical power to detect

differential expression in either dataset (i.e. high false negative

rates). One approach to overcome this limitation is to search for

regulatory effects over a larger set of genes showing weaker

differential expression signals. We thus chose a more relaxed cutoff

to determine species or diet effects based on effect size (|effect

size|.0.8). The cutoff 0.8 has been proposed as a general cutoff

for modest effects [64]. Note that in the combined primate dataset,

this cutoff roughly corresponds to t-test p-value ,0.025 (permu-

tation based FDR =4.4%).

Gene Ontology analysis
We used the Gene Ontology (GO) [49] and the Fisher’s exact

test for functional analysis. Annotations from the biological process

(BP) ontological domain were used. Ensembl genes with GO

annotation downloaded from Ensembl (version 64) were assigned

to GO categories based on Ensembl GO annotation and the Gene

Ontology directed acyclic graph (DAG), accessed through the

‘‘GO. db’’ R package [65] (this latter step is necessary to assign

genes to ancestral GO categories, which are not included in the

Ensembl table). The numbers of tested genes and those of their

relevant background genes with annotations are shown in

Table S2. Genes expressed in a dataset but that did not show

a specific effect, were chosen as background. Only GO categories

containing a minimal number of genes with GO annotation were

tested (see Table S2). To correct for multiple testing, we randomly

re-sampled the same number of genes as in the tested set from the

relevant background genes with GO annotation for 1,000 times.

The FDR was defined as the ratio of the expected (median)

relative frequency of significantly enriched categories among the

1,000 permutations, to that observed, at a certain p-value cutoff.

The global significance of the tests across all GO categories was

defined as the relative frequency of permutations with at least as

many enriched categories as that observed, passing a p-value

cutoff. When reporting significance, we use a p-value cutoff

(chosen from 0.05, 0.01, 0.005, and 0.001) at which FDR ,10%

and the global p-value ,0.05.

Predicting target genes of transcription factors
We borrowed the procedure from [27] to predict target genes of

each transcription factor (TF). Briefly, the ‘‘MATCH’’ algorithm

from the TRANSFAC database (version 7.1) [26] was used to

predict TF binding sites (TFBS) on each gene’s putative promoter

region; genes with at least one conserved predicted binding site of

one TF were considered that TF’s targets. Specifically, the

promoter was defined as the region within 2,000 base pairs both

upstream and downstream of the focal gene’s TSS (as annotated

by Ensembl version 54 [57]). To find TFBS conserved among

vertebrates, we required that $80% of nucleotides of the focal

TFBS have 17-way vertebrate PhastCons scores and an average

score $0.6. PhastCons scores were obtained from the UCSC

Genome Browser 17-way Vertebrate Conserved Element Table

[66].

Identifying candidate transcription factors regulating
expression differences
We used the same procedure for identifying candidate TFs

regulating observed differential gene expression between groups,

in both the primate and mouse diet datasets. Briefly, we first

narrowed the search space to TFs and predicted target genes

showing differential expression, and then tested each TF for non-

random (more positive or more negative) correlations with its

targets, compared to non-target genes (genes that are targets of

other TFs). This was considered indication of a regulatory effect of

the TF on its targets. Specifically, we calculated Pearson

correlations between each TF and its predicted target genes that

showed at least minimal species or diet effects (|effect size|.0.8).

These correlations were then compared to that between the same

TF and non-target genes whose |effect size|.0.8, using a two-

sided Wilcoxon test (given that correlation coefficients are not

normally distributed). A p-value ,0.01 was used as cutoff. When

a TF was associated with more than one TFBS motif (8 cases in

the primate dataset and 9 in the mouse primate diet dataset), we

tested target gene sets for each motif separately. To estimate how

many TFs would pass the cutoff randomly, TF-target relations

were permuted 1,000 times, the above-procedure applied each

time, and the number of TFs passing the cutoff recorded. The

global significance was defined as the relative frequency of

permutations with the same number or more TFs passing the

cutoff as that observed.

Testing for excess of common candidate TFs in the
mouse and the primate datasets
When choosing TFs that were detected in both the combined

primate dataset and the mouse dataset (N= 36) as background, we

performed a one-sided Fisher’s exact test for the overlap between

candidate TFs from each dataset that showed consistent changes

in the primate and mouse diet datasets: e.g. up-regulation in

humans or under a human diet in mice (note that EGR1 was the

only TF showing consistent change).
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Testing for correlation of TF-target correlations between
mice and primate datasets
The predicted TF-target relationships were permuted for genes

that showed at least minimal species or diet effects (|effect

size|.0.8) in both the mouse and primate datasets. For each TF

that was identified as candidate regulator in at least one dataset,

we calculated its correlation with its tested target genes in both

datasets. Next, the correlation of these correlations (CoC) between

two datasets was calculated using Spearman correlation (given that

correlation coefficients are not normally distributed). This pro-

cedure was applied 1,000 times, and the relative frequency of

random cases in which the number of TFs whose CoCs were no

less significant than observed (i.e. for EGR1) was used as measure

of significance. The procedure was repeated also for YY1 and

NFIC, the two TFs that showed a diet effect and regulatory effects

and diet in the mouse dataset, and species differences in the

primate dataset.

The high-calorie mouse diet dataset
A mouse liver gene expression dataset based on Agilent-012694

Whole Mouse Genome G4122A (Feature Number version)

containing liver samples from mice fed normal or high-calorie

diets (5 individuals per group) was downloaded from NCBI GEO

with accession number GSE6089. The data analyses followed the

same procedures described above.

Non-random occurrence of conserved EGR1 binding sites
To test whether the occurrence of conserved EGR1 response

motifs (V$KROX_Q6) in the 23 common targets’ (genes identified

as targets in both the mouse diet and primate datasets) promoter

regions may reflect the nucleotide composition of these promoters,

we performed a randomization test while controlling for overall

G/C or dinucleotide content and conservation. Specifically, using

the uShuffle software [67], we randomized the proximal promoter

sequences (62,000 bp from the TSS) while keeping the numbers

of all possible 16 dinucleotides fixed. We further permuted

PhastCons scores per nucleotide, while keeping the distribution of

PhastCons scores among the 4 nucleotide types fixed. We thus

generated one thousand batches of random sequence, for each of

the 23 genes’ promoter regions. The sequences were used as input

in the TRANSFAC ‘‘MATCH’’ algorithm [26]. In each batch, we

asked whether each of the 23 genes would be predicted as EGR1

target, i.e. whether it contained at least one binding site fulfilling

the same criteria as in the original analysis. The maximum

number of genes containing at least one predicted EGR1 binding

site among 1,000 random batches was 4 (Figure S11). The random

expectation was calculated as the median of this distribution.

Overlap between binding sites and DNase I
hypersensitive sites
Processed DNase I footprint data from human lymphoblast cell

lines as well as 14 cell lines generated by the ENCODE project

[68] were obtained from http://centipede.uchicago.edu/

SimpleMulti/ [35] and used conforming to the ENCODE

Consortium Data Release Policy [69]. DNase I sites cover ,6%

of the 23 common EGR1 targets’ promoters (genes identified as

targets in both the mouse diet and primate datasets). In 22 of the

23 promoters, we found a minimum 1-nt overlap between a DNase

I site and the conserved EGR1 binding site. To calculate the

random expectation we used the following procedure: (1) For each

of the 23 genes, a 14-nt long DNA stretch (the length of the EGR1

response motif) was randomly chosen from the gene’s proximal

promoter sequence and its G/C content was calculated. (2) This

procedure was repeated until 1,000 14-nt sequences of comparable

G/C content were chosen. We required that the G/C content of

the sequences to be at least as high as that of the originally

identified 27 binding sites (79%). We thereby controlled the

occurrence of high G/C content within DNase I hypersensitive

sites. (3) The number of random sequences with a minimum of 1-

nt overlap with DNase I sites was calculated. The p-value was

defined as the relative frequency among the 1,000 randomizations

in which the number of genes with a binding site-DNase I site

overlap was equal to or larger than that observed (i.e. 22 genes).

The random expectation (median number of genes with overlap

among the 1,000 randomizations) was calculated as 11/23.

Correlation between EGR1 and the 23 common targets in
human liver
Liver transcriptome data from a large human sample (N= 60,

each with two replicates) was downloaded from NCBI GEO with

accession number GSE28893 [36]. The data was quantile-

normalized. In this dataset 13,942 genes were expressed, including

20 of the 23 common targets. A one-sided Wilcoxon test was used

to test if these 20 genes were more strongly correlated with EGR1

than (i) other expressed genes predicted as EGR1 target based on

sequence predictions, (ii) all other expressed genes with TF

annotation.

Human vs. chimpanzee divergence rate at putative
promoter regions and protein coding DNA sequence
We used human-chimpanzee promoter divergence rates (Kp),

normalized by an estimate of the substitution rate of a genomic

region (Ki), as calculated by [20]. This measure was used to

estimate sequence divergence for promoter regions for human and

chimpanzee. Divergence at protein coding regions was defined by

non-synonymous divergence normalized by synonymous diver-

gence (dN/dS), and was downloaded from the Ensembl database

(version 60).

Mammalian conservation at promoter and 39 UTRs
We used PhastCons scores to estimate sequence conservation as

previously reported [27]. Briefly, using the PhastCons 18-way

Placental Mammal Conservation Track (a subset of the 28-way

Placental Track) from the UCSC Genome Browser, for each

Ensembl human gene, we calculated mean sequence conservation

for proximal promoter (62,000 bp from the TSS) and 39 UTR.

Calculating liver-specificity in gene expression
A dataset including 79 human tissues and 61 mouse tissues [39]

was used to calculate each gene’s expression level in liver relative

to that in other tissues. Specifically, for each species, for each gene,

the liver expression level was scaled as the distance to the mean in

units of standard deviation across all tissues, i.e. a z-score. We

compared liver-specificity among gene sets using this z-score.

Testing liver-specificity differences among gene sets
To estimate the significance of the difference between human

and mouse in liver-specificity among genes differentially expressed

only in the mouse dataset (the foreground genes), we first had to

account for overall differences in liver-specificity between the two

species, which could arise because of technical or sampling

reasons. To achieve this, we normalized the liver-specificity

measure using a background gene set that should not show

difference in liver-specificity: genes that were differentially

expressed neither in mice nor in primates. We shifted the human

and mouse measures so that the background genes had the same
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median liver-specificity in both species. We then tested for a higher

median of these foreground genes’ liver-specificities in mouse than

in human using a one-sided Wilcoxon test (p=0.0077).

Supporting Information

Figure S1 Consistency between microarray and RNA-
sequencing datasets of primate liver gene expression.
Scatter plot of effect sizes of differentially expressed genes

(permutation based FDR ,10%). Gray: genes differentially

expressed in either primate dataset. Black: genes differentially

expressed in both primate datasets. Red: genes differentially

expressed in both primate datasets and in the mouse diet dataset.

(TIFF)

Figure S2 Liver expression profiles of MEF2A and EGR1
among primates. The two TFs,MEF2A (A) and EGR1 (B), were

chosen for showing significantly non-random correlations with

their predicted targets, where both the TFs and targets also

showed species effects (|effect size|.0.8). Shown are relative

expression levels (distances to mean levels in units of standard

deviation across all liver samples) of the two genes in human,

chimpanzee, orangutan and macaque samples, based on the

microarray (‘Array’) and RNA-seq datasets. Results are expressed

as mean 6 SEM. EGR1 expression was significantly higher in

humans compared to all other primates based on both the RNA-

seq and the microarrays dataset (one-sided t-test p,0.05).

(TIFF)

Figure S3 Sequence logo of V$KROX_Q6. This is the logo

of V$KROX_Q6 created using WebLogo [70]. The sequence

from the 6th to 10th position (GGGGG) is defined as the core

element by TRANSFAC. Note that TRANSFAC arbitrarily chose

sequences from the strand opposite to the one bound by EGR1

and uses a motif reverse complementary to this one (personal

communication).

(TIFF)

Figure S4 Positions of 27 binding sites of the 23
common genes. The x-axis is the distance to transcription start

site (TSS). Positive values are downstream (39 direction) to TSS

and negative upstream.

(TIFF)

Figure S5 EGR1-target gene correlations in the human
liver. The boxplots represent absolute value Pearson correlation

coefficient distributions between EGR1 and three gene sets in

a human liver dataset [36]. The gene sets are (a) the common

EGR1 targets identified in the primate and mouse diet datasets (20

of the 23 genes expressed in the human liver dataset); (b) all

predicted targets based on evolutionary conservation of the TFBS

(n = 495); (c) all other expressed genes annotated as TF targets

(n = 7,348). Asterisks indicate significance based on one-sided

Wilcoxon tests, **: p,0.01. Note that we use absolute correlation

coefficients because a number of observations suggest that EGR1

may act both as an activator and repressor of transcription.

(TIFF)

Figure S6 Mouse-specificity of dietary response is not
due to lack of power. Boxplot of human vs. chimpanzee liver

expression |effect sizes|, among genes showing or not showing

diet effects in mice. ‘‘DE in mouse’’ indicates the 408 genes that

were significantly differentially expressed (FDR ,10%) only

between mice fed human and chimpanzee diets but not between

humans and chimpanzees in liver, ‘‘DE in neither’’indicates the

1,725 genes that were differentially expressed neither between

mice fed human and chimpanzee diets nor between humans and

chimpanzees in liver. n.s: two-sided Wilcoxon test p-value.0.1.

(TIFF)

Figure S7 Mouse-specific genes show higher liver
specificity but not higher expression levels in mouse
liver. Boxplot of relative expression levels in mouse and in human

livers (distance to the mean level in units of standard deviation

across all expressed genes within liver), across mouse-specific

differentially expressed genes (two-sided Wilcoxon p.0.1).

(TIFF)

Figure S8 Distributions of absolute effect sizes of
commonly detected genes. Shown are distributions of

absolute effect sizes (|effect sizes|) of the 2,358 genes that were

detected in both the primate dataset and the diet dataset. The gray

and pink bars show the effect size at the FDR ,10% cutoff in the

mouse and at the cumulative FDR ,5% in the combined primate

datasets, respectively. The effect size cutoff 0.8, used in identifying

regulatory effects in both datasets, is shown in green.

(TIFF)

Figure S9 Mouse-specific dietary response under dif-
ferent cutoffs. To ensure that our results on mouse-specific

dietary response were not affected by the choice of statistical

cutoff, we repeated the analyses using an effect size cutoff (|effect

size|.1.13) in the primate dataset equivalent to FDR ,10% in

the mouse diet dataset. (A) Boxplot of human vs. chimpanzee liver

expression |effect size|, among genes showing or not showing diet

effects in mice. ‘‘DE in mouse’’ indicates the 321 genes that were

differentially expressed only between mice fed human and

chimpanzee diets but not between human and chimpanzee in

liver, ‘‘DE in neither’’ indicates the 1,392 genes that were

differentially expressed neither between mice fed human and

chimpanzee diets nor between human and chimpanzee in liver

(see Figure S3). Here and in panel B–C, n.s: two-sided Wilcoxon

test p.0.1; ***: p,0.001. (B) Boxplot of relative expression levels

(distances to mean levels in units of standard deviation across all

expressed genes within liver) of the 321 mouse-specific differen-

tially expressed genes in human and mouse livers (two-sided

Wilcoxon p=0.47, see Figure S4B). (C–D) Liver-specificities of the

321 genes in human and mouse. Significance in all tests remains

qualitatively similar to results shown in Figure 3. The difference in

liver-specificities of mouse-specific differentially expressed genes

between human and mouse after correcting human-mouse liver

specificities of background genes is still significant (one-sided

Wilcoxon test, p=0.007). Compare to Figure 3.

(TIFF)

Figure S10 Expression divergence of EGR1 between
human and chimpanzee in five tissues. Median expression

of EGR1 in five tissues (brain, heart, kidney, liver and testis) [20].

The boxplots were plotted using the ‘‘boxplot’’ function in the R

‘graphics’ package [42]. Under default settings, the whisker ranges

are calculated as: M61.586IQR/n0.5, where M, IQR and n are

the median, interquantile range, and number of observations.

Human-chimpanzee effect sizes are shown at the bottom line.

(TIFF)

Figure S11 Distribution of numbers of predicted EGR1
targets based on random promoter sequences. Number of

genes predicted as EGR1 targets based on random promoter

region sequences shuffled maintaining dinucleotide levels (see

Methods). The same criteria were used for the real promoter

region sequences. The median of the distribution was found to be

one.

(TIFF)
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Table S1 Candidate TFs driving differential gene
expressions between human and chimpanzee, or be-
tween mice fed human/chimpanzee diets, in liver.
(XLS)

Table S2 Summary of Gene Ontology analyses.
(XLS)

Table S3 Biological processes enriched among genes
significantly differentially expressed between livers of
mice fed human/chimpanzee diets.
(XLS)

Table S4 Biological processes enriched among genes
showing diet effects (using an effect size cutoff) in livers
of mice fed human/chimpanzee diets.
(XLS)

Table S5 References to the experimental studies used
by TRANSFAC to describe the V$KROX_Q6 motif.
(XLS)

Table S6 Biological processes enriched among mouse-
specific differentially expressed genes.
(XLS)

Table S7 Biological processes enriched among mouse-
specific differentially expressed genes, using an effect
size cutoff.
(XLS)
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