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Abstract

Background: Evidence is required to quantify the potential risks of transmission of variant Creutzfeldt Jakob (vCJD) through
dental procedures. Studies, using animal models relevant to vCJD, were performed to address two questions. Firstly,
whether oral tissues could become infectious following dietary exposure to BSE? Secondly, would a vCJD-contaminated
dental instrument be able to transmit disease to another patient?

Methods: BSE-301V was used as a clinically relevant model for vCJD. VM-mice were challenged by injection of infected brain
homogenate into the small intestine (Q1) or by five minute contact between a deliberately-contaminated dental file and the
gingival margin (Q2). Ten tissues were collected from groups of challenged mice at three or four weekly intervals,
respectively. Each tissue was pooled, homogenised and bioassayed in indicator mice.

Findings: Challenge via the small intestine gave a transmission rate of 100% (mean incubation 157617 days). Infectivity was
found in both dental pulp and the gingival margin within 3 weeks of challenge and was observed in all tissues tested within
the oral cavity before the appearance of clinical symptoms. Following exposure to deliberately contaminated dental files,
97% of mice developed clinical disease (mean incubation 234633 days).

Interpretation: Infectivity was higher than expected, in a wider range of oral tissues, than was allowed for in previous risk
assessments. Disease was transmitted following transient exposure of the gingiva to a contaminated dental file. These
observations provide evidence that dental procedures could be a route of cross-infection for vCJD and support the
enforcement of single-use for certain dental instruments.
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Introduction

vCJD remains a challenge for public health due to uncertain

prevalence in the population and the possibility of cross-infection

through medical procedures. The disease almost certainly

emerged due to the consumption of bovine spongiform enceph-

alopathy (BSE)-infected meat [1] but clinical cases have not

reflected the widespread exposure of the UK population. The

possibility of a self-sustaining and potentially amplifying ‘‘epidem-

ic’’, caused by the iatrogenic transmission of vCJD from pre-

symptomatic cases and asymptomatic carriers to more genetically

susceptible individuals, is a major concern.

The prevalence of the disease in the population is estimated at

between 237 and 109 vCJD carriers per million of the UK

population (95% confidence limits 49–692 per million [2] and 3–

608 per million [3], respectively) All clinical cases of vCJD, to date,

have been PRNP-129 Met homozygotes, but pre-/sub-clinical

carriage has been identified in 2 valine homozygotes and a

heterozygous patient [2][4][5]. Extended asymptomatic incuba-

tion periods in these genotypes have been suggested by transgenic

animal studies [6] and also by studies on Kuru [7]. A recent study

has identified a patient with atypical sporadic CJD and valine

homozygous at PRNP codon 129 [8] which could represent the

first case of clinical disease in this genogroup. Aside from blood
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transfusion [5,9] there remains no evidence of iatrogenic vCJD

transmission to date via any surgical route.

The potential transmission of vCJD by dental practice remain

poorly defined. A risk assessment carried out by the Department of

Health in 2004 (http://www.dh.gov.uk/en/Publicationsandstatistics/

Publications/PublicationsPolicyAndGuidance/DH_4084662; last ac-

cessed 12th November 2011), suggested a low level of risk, based on the

assumption that there would be insignificant levels of infectivity except

within the dental pulp and that only dental instruments which

contacted this material posed any risk of cross infection. These

assumptions are tested in this study. This risk assessment was

revised in 2007 (http://www.dh.gov.uk/en/Publicationsandstatistics/

Publications/PublicationsPolicyAndGuidance/DH_081170; last ac-

cessed 12th November 2011), based on data which includes the

preliminary outputs of this study.

Studies have described the presence of infectivity in hamsters

following intraperitoneal challenge with 263 K scrapie [10], with

7.2 (gingiva) and 5.6 (dental pulp) log LD50 i.c. units (the dose

capable of causing the death of 50% of challenged animals when

injected intracranially into hamsters) per gram of tissue. The study

also showed that scrapie could be transmitted through injection

into the dental pulp. A recent study has shown infectivity in the

root of the right caudal incisor tooth in an ME7-scrapie infected

mouse following intracerebral challenge [11]. Collectively these

studies suggest the potential for transmission of the disease via the

oral cavity, but comprehensive data, particularly using prion

strains more directly relevant to modelling vCJD in humans,

remains lacking.

Bioassays using tissues from vCJD patients are underway

(Sutton et al unpublished), but no disease-associated prion protein

(PrPSc) staining has been observed in any oral tissue from vCJD

patients [12]. With very small number of samples involved and the

absence of direct transmission from human tissue to animals in low

titre vCJD tissues (,103 ID/gram tissue; [13]), rodent-passaged

TSE strains are essential to assess the relative levels of infectivity in

different tissues, following exposure by different routes, as well as

data on spread of disease.

The present study provides evidence on the potential risks of

vCJD transmission by measuring relative levels of infectivity in

oral tissues and assessing the potential for transmission through

contact of a contaminated instrument with the gingival margin.

Methods

Primary challenge of VM mice via the small intestine
All studies were conducted under a project license approved by

the UK Home Office. Prior to submission for approval the license

was reviewed by the Microbiological Services Porton Ethical

review committee and signed off by the Establishment Certificate

Holder. Project license 30/2700 was granted by the UK Home

Office under the Animals (Scientific Procedures) Act, 1986. A

volume of 100 ml of a 2% (w/v) titred stock of BSE301V-infectious

mouse brain homogenate (estimated titre 108.9 infectious units per

gram brain) [14] was injected into the lumen of the upper small

intestine. Groups of 10 VM ((SincP7P7 mice [15]. mice (8–10 weeks

old) were anaesthetised by intraperitoneal injection of a mixture of

Hypnorm (fentanyl/fluoanisone) and Hypnovel (midazolam)

(Schering-Plough Animal Health, Welwyn Garden City, UK).

With the animal in dorsal recumbency, a small incision was made

in the skin of the upper abdomen, the upper loop of the jejunum

just posterior to the duodenum was visualised and an injection

made through the mesenteric membrane using a 1 ml syringe with

a 30G needle. Groups of 10 mice were sacrificed at 3-weekly

intervals (3 to 21 weeks) post-inoculation (p.i.) or on appearance of

defined clinical symptoms at around 22–24 weeks [14].

Primary challenge of VM mice via transient exposure of
the gingival margin

Dental files were selected to perform the study, due to their

relatively small size and ease of handling. Size ‘‘08’’ (21 mm)

dental files were immersed in 10% brain homogenate and

incubated for 30 minutes. Files were removed, and air dried at

room temperature for 1 hour.

The mice were fully anaesthetized, as above, and the infected

dental file was gently inserted into the mouth of the mouse in

parallel with the right jawbone at the height of the gingival

margin. It is highly likely that the far point of the file (up to a

maximum of 1 mm will have entered the outer layer of the

gingival epithelium (but not the area known as the gingival sulcular

epithelium adjacent to the tooth socket). Due to the parallel

placement, this penetration would have been at a very glancing

angle to the tissue and the majority of the file was thus left lying in

parallel contact with the gingiva along the length of the jaw (jaw

about 6 to 7 mm length; contact region with file estimated at

around 5 mm) for the designated 5 minute period, after which it

was gently withdrawn. Due to the serrated nature of these files

damage to the epithelium cannot be ruled out, but on no occasion

was there any trauma or bleeding observed during or after this

procedure so any damage to the epithelium will have been

minimal.

The maximum load of infectivity on coated dental files was

estimated. The dental files are manufactured as a morse taper with

an end diameter of 0.08 mm. Assuming a 5 mm section was

inserted into the mouth, the maximum diameter would be around

0.18 mm. Surface area of a plain wire would be approximately

2 mm2 (2p(rav)h+prend
2). The fluting is assumed to increase the

area by no more than 5 fold (maximum surface area 10 mm2).

Previous studies using a similar coating strategy have suggested

retention of approximately 0.2 mg brain tissue per mm2 [15].

Based on a titre of 108.9 ID50 per gram brain [14] the maximum

load of infectivity on the dental file is estimated at 46102.9 ID50

per challenge).

Groups of 10 mice were sacrificed at 4-weekly intervals (1–6

months) post-inoculation (p.i.) or on appearance of defined clinical

symptoms [14].

Analysis of time-course samples
The whole brain (including the medulla oblongata), spleen,

salivary gland, trigeminal ganglia, dental pulp, gingival margin,

lingual muscle (front 2/3rds of the tongue), lingual tonsil (back 1/3

of tongue including tonsular tissue), salivary gland (submandibular)

and saliva (following pilocarpine stimulation) were collected from

mice at the different time points. The individual tissues from each

time point were pooled and stored at 280uC prior to re-

inoculation. Tissue homogenates were prepared at 20% (w/v)

tissue in phosphate buffered saline using a Ribolyser (Fast prep

120A; Q-Biogene). As the weight of tissue from the dental pulp

could not be measured this tissue was diluted to the minimum

volume of homogenate required for re-inoculation. Ribolyser

beads were washed with 100 ml PBS, which was used to dilute the

homogenates to 10% (w/v) prior to inoculation.

In vivo analysis: The infectivity of the tissues was assessed by

i.c. inoculation into the brains of VM mice. Groups of 6 VM mice

(6–8 weeks old) were anaesthetised by intra-peritoneal injection

with alfaxalone/alfadolone (Saffan, Schering-Plough Animal

Health, Welwyn Garden City, UK) and inoculated intra-cranially

with 20 ml of the 10% homogenate. Non-specific toxicity was
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observed in some groups and samples were diluted (to 1% or

0.1%) as required.

Mice were monitored for clinical symptoms and sacrificed by

injection of barbiturate (pentabarbitone sodium) at a defined

clinical end-point. Brains from indicator mice were removed and

stored in formalin prior to histological assessment by Animal

Health and Veterinary Laboratories Agency, Weybridge, UK.

In vitro analysis: Homogenates were analysed by Western

blot essentially as described previously [14]. In brief, homogenates

were digested with Proteinase-K at a final concentration of

5.37 mg/ml for 30 minutes at 60uC. The enzyme was inactivated

by incubation with 5 mM APMSF (Sigma, Gillingham, UK) in

Nu-PageTM gel loading buffer (Invitrogen, Paisley, UK) at 99uC
for 10 minutes. Samples, together with the relevant controls, were

run on 4–12% Bis Tris NuPage gels (Invitrogen, Paisley, UK) and

transferred to nitrocellulose. The membrane was blocked in 5%

skimmed milk powder in phosphate buffered saline containing

0.1% Tween 20 (PBS-T) for 30 minutes, washed in PBS-T and

incubated with primary antibody 6H4 (Prionics, Schlieren,

Switzerland) (at 1:10,000 dilution) for 18 hrs at 4uC. The

membrane was washed four times in PBS-T and bound antibody

was detected with anti-mouse horse radish peroxidase (HRP)-

conjugate (Sigma, Gillingham, UK); diluted 1:1000). Signal was

generated using West Dura reagent (Pierce, Cramlington, UK)

and imaged using a Chemidoc image analyser (Pharmacia,

Sandwich, UK). The Western blot method could not detect signal

below a gel loading equivalent to a 0.1% brain homogenate

(results not shown).

Results

Primary transmission of infectivity from the small
intestine to simulate oral exposure to BSE

Mice were challenged via direct inoculation into the small

intestine to avoid any chance of contamination of the oral tissues

during the primary challenge. Disease transmission was observed

in all animals, with a mean incubation period to a defined clinical

endpoint of 157617 days (Table 1A). Previous studies have shown

that direct i.c. challenge with the same titre of infectious BSE-

301V stock (estimated titre 108.9 infectious units per gram brain

[14]) reaches a clinical end-point in 12068.5 days.

Analysis of relative levels of infectivity in oral tissues
following simulated oral exposure

The levels of infectivity in different oral and control tissues were

assessed by re-inoculation of 10% (w/v) tissue homogenate,

intracranially into VM mice. The mean incubation period was

compared to a titration series generated from BSE-301V terminal

brain material as reported previously [14]. It is assumed in this

study that serial dilution of infectivity would be unaffected by the

tissue type and as such the incubation period can be used as an

indication of the relative titre in the different tissues. In all cases

shorter incubation to clinical symptoms is indicative of higher titre.

The study aimed to demonstrate the relative maximum levels of

infectivity in different oral tissues following simulated food-borne

exposure to BSE contamination. All tissues/fluids at the terminal

stage of disease showed the presence of infectivity (Table 2). In all

tissues except for the lingual tonsil, terminal tissues showed the

maximal levels of infectivity recorded for that tissue. Incubation

periods ranged from 118 days (60 days, 2/2 animals infected) for

brain tissue through to 213 days (633 days, 4/5 animals infected)

for lingual muscle tissue. In the case of lingual tonsil, the shortest

incubation period (197626 days) and highest attack rate (5/5) was

reached by the 15 week time point. The lingual tonsil material

from terminal animals showed lower levels of infectivity with only

a single animal (1/6) succumbing to disease with an incubation of

222 days.

The oral tissues most likely to be contacted during routine

dental surgery, (gingival margin and dental pulp), gave mean

incubation periods of 152 days (60 days, 6/6 animals challenged)

and 160 days (655 days, 6/6 animals challenged), respectively. To

provide a comparison of the relative levels of infectivity, diluted

brain samples gave mean incubation periods of 141611 day

(,1000 ID50/milligram), 157618.5 (,100 ID50/milligram) and

226694 days (,10 ID50/milligram) ([14]). This suggests that

gingival margin has between 100 and 1000 ID50/milligram, whilst

dental pulp has at least 10 to 100 ID50/milligram given that the

homogenate was less than 10% (w/v).

Maximal levels of infectivity were observed in all time course

tissues, other than saliva, ahead of the appearance of any clinical

symptoms. Maximal levels were reached by week 3 (spleen), 9,

(salivary gland), 12 (brain, dental pulp, lingual tonsil), 15

(trigeminal ganglia, lingual muscle, alveolar bone), 18 (gingival

margin), respectively. Clinical symptoms appeared around week

Table 1.

Table 1A: Summary of primary challenge data for different transmission routes

Challenge Route

Attack rate (number of animals succumbing
to disease / number of animal challenged (%
attack rate))

Mean incubation / days post infection ±
standard deviation

Small intestine challenge 46/46 (100%) 157 6 17*

Gingival margin challenge 68/70 (97.1%) 233 6 33.4"

Table 1B: Separate analysis of primary cull data from gingival challenge shows two populations

Challenge Route

Attack rate (number of animals succumbing
to disease / number of animal challenged (%
attack rate))

Mean incubation / days post infection ± standard
deviation (range). Data for TSE positive animals
only.

Gingival margin; Early terminal only 11/11 (100) 166 6 18 (140-188)

Gingival margin; Late terminal only 57/59 (96.6%) 247 6 14 (211-275)

*range 131–230 days, median 153 days; 1 mouse died without clinical BSE symptoms at 422 days post-challenge, with no histological confirmation of BSE and was
excluded from the calculation (otherwise 178667 days). Outlier at 230 days; otherwise 156614 range 131–192.
doi:10.1371/journal.pone.0049850.t001
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22, with these animals collected as the terminally diseased group.

Saliva from terminal animals was the only time point which

showed infectivity for this sample (mean incubation 207644 days;

4/6 animal diseased).

By the first time-point at 3 weeks post-challenge, infectivity was

already detected in the brain, spleen, trigeminal ganglia, gingival

margin, dental pulp, salivary gland, alveolar bone, and lingual

tonsil (with synulox), but not in lingual muscle or saliva. Incubation

periods ranged from 129 days (62 days; attack rate 4/4 animals)

for spleen to 273 days (1/5 animals) for gingival margin (Table 2).

The incubation period in the spleen sample was already at the

minimum level, corresponding to a maximum level of infectivity

for this tissue. By contrast brain tissue showed a mean incubation

period of 233 days with only 1 of 3 mice that survived challenge

developing disease.

The brains of all indicator animals were examined by staining

with haemotoxylin and eosin (H&E) and by immunohistochem-

istry. All brain sections showed identical patterns of staining to that

observed previously for this model ([14,15]).

Brain samples were also analysed by Western blot using

antibody 6H4 following proteinase K digestion of the 10%

homogenates (Figure 1). In contrast to the bioassay results, levels of

detectable PrPres varied significantly with the conventional triple

glycoform banding pattern being observable in the 12 week brain

samples only with extended exposure (results not shown) and

increasing in the 15, 18 and 21 week samples to reach maximal

levels only in the terminal group.

Transmission of infectivity from the gingival margin
following transient exposure

Dental files were used to assess whether short term contact was

able to transmit infectivity via the gingival margin. The exposure

was designed to mimic relatively atraumatic contact between a

contaminated dental instrument and gingival epithelium (although

limited abrasion of the gingival epithelium cannot be excluded –

see materials and methods). The dental files were coated in 10%

(w/v) brain homogenate to provide a worse case challenge via this

route and in the absence of prior data on levels of infectivity in oral

tissues.

Transmission via this challenge route was shown to be efficient

with 97.1% (68/70) of challenged animals succumbing to disease.

When the incubation period of individual animals was plotted

(Figure 2A and B), two distinct incubation-period groups were

identified (Student’s T-test; p,0.001 [16], Sigmaplot version 10).

The mean incubations for these two populations are shown

separately in table 1B. The ‘‘early’’ terminal group had a mean

incubation period of 166618 days (n = 11; range 140–188) whilst

the ‘‘standard’’ terminal group had a mean incubation period of

247614 days (n = 57; range 211–275).

Relative levels of infectivity in early and standard
terminal groups, resulting from challenge via the gingival
margin

The tissues from early and standard terminal groups were

collected and processed as separate groups for re-inoculation into

indicator mice (Table 3). The groups showed similar incubation

periods in most tissues. Only alveolar bone (17466 days, 6/6

animals challenged vs 16065 days, 6/6 animals challenged) did

not show overlapping standard deviations for early vs standard

terminal groups, respectively. Comparisons were not made where

there were less than 3 surviving animals in each challenged group

(lingual muscle, saliva and gingival margin).

Again the brains of all indicator animals were examined by

(H&E) staining and by immunohistochemistry. No differences

were observed between any of the tissues from early versus

Figure 1. Detectable levels of PrPSc on Western blots do not
correlate with the levels of infectivity. 10% brain homogenates
from an uninfected brain (lane 2) time-course samples week 3, 6, 9, 12,
15, 18, 21 (lane 3–9), and the terminal sample (lane 10) were digested
with proteinase K at 60uC for 10 minutes and assessed by Western blot.
The observed signal does not correspond with the levels of infectivity
found in corresponding bioassays for the week 12–21 post-exposure
time-points.
doi:10.1371/journal.pone.0049850.g001

Figure 2. Comparison of the cull dates for the mice challenged
via the gingival margin. Panel A; Frequency distribution plots show
the presence of a normally distributed population with a mean
incubation period of around 250 days plus a small number of animals
with significantly shorter incubations ranging from 140–188 days. Panel
B; when these two groups are compared they show distinct means and
distribution and are considered as distinct populations (p,0.001).
doi:10.1371/journal.pone.0049850.g002
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standard terminal groups, and all results were consistent with

previous studies ([14,15]).

Analysis of relative levels of infectivity in oral tissues
following transient challenge via the gingival margin

Levels of infectivity were assessed as described above. Again, all

tissues at the terminal stage of disease showed the presence of

infectivity (Table 3). Incubation periods ranged from 126 days (+/

25 days, 6/6 animals challenged) for brain material to 198 days

(+/243 days, 3/5 animals challenged) for lingual tonsil, with all

tissues showing maximal levels of infectivity in terminal animals.

Saliva again showed infectivity only in terminally diseased animals

(160 days, 1/2 animals challenged) and in a single animal at the

earliest time point at extended incubation (353 days, 1/5 animals

challenged) possibly due to persistence of the original inoculum.

Maximal levels of infectivity were again reached for all tissues

(except for saliva) well ahead of the presentation of clinical

symptoms by 4 months (brain and dental pulp) and 5 months (for

all remaining tissues).

By the first time point in the time course, infectivity was

detected in spleen, gingival margin, lingual muscle, dental pulp,

salivary gland, lingual tonsil and alveolar bone, but not in brain,

saliva or trigeminal ganglia. Incubation periods ranged from 181

days (+/213 days, 6/6 animals challenged) for salivary gland to

314 days (+/2116 days, 3/6 animals challenged) for gingival

margin. In several cases, notably in alveolar bone, lingual tonsil

and gingival margin, infectivity was not observed in the 2 month

time-point, nor in the 3 month time-point for gingival margin and

lingual tonsil. This again may suggest localised persistence of the

inoculum followed by clearance and later infiltration.

Comparison of relative levels of infectivity between
terminal groups challenged by the small intestine or
gingival margin

The relative levels of infectivity were compared between

terminally diseased animals from the two different challenge

routes. Only the trigeminal ganglia (mean incubation 136+/217

days, 4/4 for small intestine route vs 160+/24 days, 6/6 for the

gingival challenge route (standard terminal group) and 159+/26

6/6 (early terminal group) did not show overlapping standard

deviations. The lingual muscle samples were statistically different

in the early terminal group from the gingival challenge route when

compared to the small intestine challenge route (too few animals

survived in the standard terminal group for valid comparisons to

be made). Comparisons were not made where there were less than

3 surviving animals in each group (saliva and gingival margin in

addition to the lingual muscle standard group).

At earlier time points accumulation of infectivity was propor-

tionally slower in spleen and trigeminal ganglia than in the gingival

challenge route. Spleen in particular showed much slower

accumulation of maximal levels of infectivity, reached by week 3

in the small intestine challenge but not until month 5 in the

gingival challenge group.

Discussion

The principle aim of the study was to provide underpinning

information regarding the potential risks of vCJD transmission by

dental procedures, which would contribute to a revised dental risk

assessment. The data provide an important insight into potential

risks, albeit in a small animal model and using a worse-case

approach.

The data presented here adds considerable information to the

previous studies related to dental transmission [10–12]. The levels
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of infectivity observed in this study are lower than those seen in the

Ingrosso study [10]. There are a number of potential reasons for

this difference including; the challenge route used (intraperitoneal

vs direct introduction to the small intestine), the higher titre of

scrapie vs the BSE agent (typically 1011 ID50 per gram brain for

263 K Scrapie compared to ,109 ID50 for BSE-301V) and the

different nature of the two prion agents themselves. As BSE-301V

is derived from the same prion agent that caused vCJD in humans,

it could be argued that the lower values are more representative of

the levels of infectivity that might be encountered in dental

patients. The absence of detectable disease-associated prion

protein (PrPSc) in human vCJD dental tissues [12] is not

incompatible with the levels of infectivity observed in this study,

given that the bioassay model is considered to be 100–1000 fold

more sensitive than even the high sensitivity Western Blot model

used in the cited study. Specifically, they identify that the levels of

PrPRes (ie the form of PrP that is resistant to digestion with

Proteinase K; elsewhere termed PrPSc) are at least 100-fold (dental,

pulp and alveolar nerve) and 100-fold (gingival) less than that in

matching grey-matter enriched brain tissue. The current study

estimates infectivity in gingival margin to be between 100 to 1000

ID50/mg and dental pulp to be between 10–100 ID50/mg

compared to the terminal brain containing approximately

1,000,000 ID50/mg (current study and [14]).

The re-infection studies carried out here are also more

representative of the routine risks of disease transmission during

dental procedures, than the highly invasive procedure used

previously [10], where infectious brain material was injected

directly into the pulp cavity.

The transmission of infectivity following direct inoculation into

the small intestine proved to be highly efficient. This novel route of

challenge probably accesses the same routes of infection that

would be encountered after oral uptake of infectious material but

without the significant reduction in titre (of the order of 2–3 log)

expected on passage through the stomach. Whilst the approach

will inevitably result in localised trauma at the incision site, the

incubation period suggests that leakage into the peritoneum was

not the primary route of infection as intraperitoneal challenge has

resulted in animals reaching their clinical end-point at 196 days

[17] with oral challenge at 245 days (unpublished; referenced in

http://www.dh.gov.uk/prod_consum_dh/groups/

dh_digitalassets/@dh/@en/documents/digitalasset/dh_081219.

pdf (last accessed 12th November 2011)). Rapid accumulation of

infectivity in the spleen, reaching maximal levels by the three week

time-point, provides evidence of efficient infection through the

small intestine.

The observed levels of infectivity, as estimated from incubation

period, are higher than would have been expected in many tissues

within the oral cavity. The two tissues most likely to be relevant to

understanding the risks of iatrogenic dental transmission, the

gingival margin and dental pulp, show levels of infectivity of

between 100–1000 and at least 10–100 infectious doses (ID) per

mg tissue, respectively (based on the titration series for brain

material shown in [14]). The maximal levels of infectivity were

reached well ahead of the presentation of clinical symptoms in the

majority of tissues. This is likely to be similar in the human

situation.

At the outset of the study, there was no indication in the

literature that the two routes of infection would be as efficient as

they proved to be. As such the study used a high challenge dose in

order to be able to draw conclusions as to the spread of infection

and accumulation of high levels of infectivity under worst-case

conditions. Despite this, we do not believe that the use of a high

challenge dose, distorts the key findings of the study. In the small

intestine challenge experiments, the levels of infectivity in oral

tissues are actually lower than the levels observed in the one

limited but comparable study [10]. The accumulation of infectivity

in the spleen is comparable to the rate seen in other peripheral

challenges (intraperitoneal and oral) using the same model. The

ability of the spleen to amplify infectivity from low-dose oral or

peripheral challenge suggests that similar levels of infectivity would

have been reached in the oral tissues even with a lower challenge.

The different levels of infectivity and the different rate of

accumulation of infectivity in different tissues also suggests that

the model is not simply saturated with infectivity, but rather that it

represents normal spread of infectivity from the intestine,

potentially via both lymphoreticular and direct neuronal trans-

mission.

The transient exposure of the gingival margin to infectivity

dried onto dental files demonstrates the potential for iatrogenic

transmission of infectivity through contaminated dental instrument

contact within the oral cavity. The challenge was designed to be

less invasive than previous oral inoculations [10] and gingival

scarification [18]. Given the relatively atraumatic instrument

contact, the efficiency of transmission was greater than expected

with .97% of challenged animals succumbing to disease, with a

total population mean of 233 days. The identification of two sub-

populations within the culled animals on the basis of incubation

period is intriguing. One of these populations could represent

animals infected by ingestion of material following oral exposure.

However, the use of a low challenge titre dried onto the file

(estimated at around 46102.9 ID per file) and given the incubation

period observed for much higher challenges via the oral route (245

days; see above), would suggest that ingestion is not the major

infection route. The rapidly progressing (early) disease may be a

result of localised trauma to the gingiva, providing more efficient

spread of the disease, or may indicate that localised uptake has

accessed different infection routes, perhaps mediated by neuronal

(early terminal) and/or lymphatic (standard terminal) tissues,

respectively. The relatively rich neurological innervations of the

oral cavity and links with the trigeminal nucleus in the brain stem

may contribute to this rapid route of spread. It might be expected

that the two different routes of spread would show differences in

the initial brain lesions, if the animals were analysed early in the

infection process, before systemic spread of the prion agent

throughout the brain. This was not investigated as part of the

current study, as brains from primary infected animals were used

for re-inoculation into indicator animals and as it would require a

priori knowledge of which animals were infected by the different

routes. Despite the significant differences in the incubation period

of animals identified as early or standard terminal groups,

widespread differences in the levels of infectivity in tissues were

not observed on re-challenge. No difference in brain pathology

were observed in indicator mice challenged with different tissue

types from early and standard terminal groups, suggesting that no

modification of the TSE strain had taken place during the primary

challenge, irrespective of infection route.

The gingival challenge route is entirely novel and was designed

to ask specifically whether infectivity could be transmitted via

transient contact rather than direct inoculation [10]. To assess this,

and given the very small amounts of inocula that are carried on the

contaminated dental files, a high titre material was essential in

order to test the feasibility of transmission. In terms of the validity

of the model, the absence of infectivity at the 2 month time point

for several tissues, including gingival margin, suggests that

infection is not simply being generally disseminated through the

oral cavity. Again this suggests that whilst the model is a worst-case

vCJD and Dental Practice
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the results are not incompatible with a natural infection from a

contaminated instrument at lower titres.

Further discussion on relative levels of infectivity in vivo and

PrPSc-signal detectable in vitro, is provided in Supporting

Information S1.

Implications for public health
Currently there is no evidence for vCJD transmission through

either surgery or dentistry. Transmission of vCJD by blood

transfusion [5,9] highlights that any procedure contacting nervous

or lymphoid tissue must also be considered a risk given the wider

tissue distribution of vCJD infectivity compared to sporadic CJD

[19–21]. The highly efficient transmission of BSE strain 301 V

infection through direct inoculation into the murine small intestine

in this study raises similar concerns for vCJD transmission through

endoscopic procedures in man.

The observations in the current study also provide theoretical

grounds for concern in respect to dental procedures. The levels of

infectivity observed in all oral tissues tested (most notably gingival

margin with up to ,1000 ID per mg) were higher than previously

considered.

A further element of the study assessed residual protein

contamination on a range of dental instruments after routine

cleaning and disinfection in general dental practice in England

[22]). The study showed a number of instrument types and

cleaning procedures where the upper interquartile range for

residual protein was in excess of 100 mg. This could equate to up

to 100 ID per instrument in the case of gingival tissue. Autoclaving

has been shown to achieve only a 3-log inactivation of various TSE

agents [23] and an autoclave designed for the dental market has

been tested recently and shown to provide only a 100-fold

reduction in infectivity in the BSE301V/VM model used here

(134uC, 18 minutes; Sutton et al unpublished). A dental instru-

ment soiled with infectious gingival tissue and disinfected under

this regimen would have an inadequate safety margin.

The gingival challenge was designed as a worse-case scenario in

respect to the infectious load on a dental instrument, but to be of

limited invasiveness. The procedure resulted in very high levels of

transmission with short incubation periods indicating that a much

lower titre challenge material would also have caused some

transmission. Even if a relatively rare event, the large number of

dental interventions taking place in a younger age profile

population (c.f. surgical procedures) and a carrier population of

unknown size means these risks are not negligible. This would

seem to be at odds with the absence of any reported cases of

clinical vCJD transmission linked to dental procedures. This might

be explained by a number of factors, including difficulties in

linking dental records to known vCJD patients [24], asymptomatic

cases [5] and extended incubation periods for patients exposed by

blood transfusion (up to 7.8 years; [25]). As a worse case study, the

incubation periods described here would be expected to be the

most rapid giving rise to prion-disease symptoms in this model,

and as a novel low-dose, peripheral model of infection, the

incubation periods might be expected to be considerably longer

than those observed for blood transfusion cases. Given the

difficulties in linking dental procedure case histories to vCJD,

such cases may not yet be evident.

Preliminary data from this study have already been provided to

the UK Department of Health as part of the revision of the dental

risk assessment (http://www.dh.gov.uk/prod_consum_dh/groups/

dh_digitalassets/@dh/@en/documents/digitalasset/dh_081217.

pdf; accessed 12th November 2011).

Additional control measures have been incorporated into

guidance on decontamination in dental settings in

England (http://www.dh.gov.uk/en/Publicationsandstatistics/

Publications/PublicationsPolicyAndGuidance/DH_109363; ac-

cessed 12th November 2011). The emphasis on standardised

decontamination methods and single use instruments for difficult

to clean devices appear sensible and proportionate given the

experimental observations described and discussed here.

Supporting Information

Supporting Information S1 Further discussion on relative

levels of infectivity in vivo and PrPSc-signal detectable in vitro.

(DOCX)
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