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Abstract

The association of lung cancer with changes in microRNAs in plasma shown in multiple studies suggests a utility for
circulating microRNA biomarkers in non-invasive detection of the disease. We examined if presence of lung cancer is
reflected in whole blood microRNA expression as well, possibly because of a systemic response. Locked nucleic acid
microarrays were used to quantify the global expression of microRNAs in whole blood of 22 patients with lung
adenocarcinoma and 23 controls, ten of whom had a radiographically detected non-cancerous lung nodule and the other
13 were at high risk for developing lung cancer because of a smoking history of .20 pack-years. Cases and controls differed
significantly for age with a mean difference of 10.7 years, but not for gender, race, smoking history, blood hemoglobin,
platelet count, or white blood cell count. Of 1282 quantified human microRNAs, 395 (31%) were identified as expressed in
the study’s subjects, with 96 (24%) differentially expressed between cases and controls. Classification analyses of microRNA
expression data were performed using linear kernel support vector machines (SVM) and top-scoring pairs (TSP) methods,
and classifiers to identify presence of lung adenocarcinoma were internally cross-validated. In leave-one-out cross-
validation, the TSP classifiers had sensitivity and specificity of 91% and 100%, respectively. The values with SVM were both
91%. In a Monte Carlo cross-validation, average sensitivity and specificity values were 86% and 97%, respectively, with TSP,
and 88% and 89%, respectively, with SVM. MicroRNAs miR-190b, miR-630, miR-942, and miR-1284 were the most frequent
constituents of the classifiers generated during the analyses. These results suggest that whole blood microRNA expression
profiles can be used to distinguish lung cancer cases from clinically relevant controls. Further studies are needed to validate
this observation, including in non-adenocarcinomatous lung cancers, and to clarify upon the confounding effect of age.
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Introduction

Lung cancer contributes to more cancer deaths annually in the

United States than colorectal, breast and prostate cancers

combined [1]. Recent advances in the clinical management of

lung cancer have led to only small improvements in overall

survival for the disease, in part because a majority of the cases are

identified only after the cancer has advanced to a more malignant

stage. Screening of individuals at a higher risk of developing lung

cancer to diagnose the disease at an earlier stage therefore has the

potential to improve clinical outcome of the disease. This is

supported by results of the National Lung Cancer Screening Trial

that show an approximately 20% improvement in lung cancer-

related mortality with annual low-dose computerized tomographic

screening [2]. However, in the trial, 96% of the pulmonary

abnormalities seen were benign lesions. Periodic radiological tests

for screening may also expose individuals to a significant level of

radiation, the impact of which is unknown but possibly harmful. In

routine clinical practice, the incidence of pulmonary nodules

detected in chest radiography ranges from 0.09% to 0.2% and is

higher in more advanced radiological examinations [3,4]. The

chance of such a nodule being malignant varies widely from 1% to

70% [3,5], and depends on a number of factors such as the size of

the nodule and the clinical setting. The detection of a lung nodule

in a radiological examination can thus not only cause patient

anxiety but lead to tests such as positron emission tomography and

biopsy that can be invasive, often expensive, and likely of no

benefit for a large proportion of individuals. A non-invasive (e.g.,

blood-based) biomarker assay for the presence of lung cancer that

can complement or replace radiological examination during

screening or routine clinical visits can therefore be useful in

identifying subjects that are most likely to have a malignant lesion

in the lung that requires further investigation.

At least 18 non-invasive, blood-based studies have examined

microRNA expression profiles to identify microRNA biomarkers

for diagnosis of lung cancer. Most of them have quantified

microRNAs in the non-cellular serum (e.g., [6,7,8]) or plasma (e.g.,

[9,10,11]) fractions of blood. Although all these studies, except one

using plasma microRNA expression [12], have shown promising
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results, the use of serum or plasma RNA for microRNA biomarker

discovery has some limitations. The yield of RNA from human

serum and plasma is estimated to be in the range of 2.5–120 ng/

ml (e.g., [13,14,15]) and this limits unbiased biomarker discovery

by affecting reliable and accurate detectability of microRNAs in

global expression profiling assays. Isolation of serum or plasma

also involves additional steps, and microRNA expression patterns

can be sensitive to minor variations during these processing steps

(e.g., [12,16]). Furthermore, because cellular microRNAs are

overwhelmingly more in amount than extracellular ones, even a

very small degree of contamination of the isolated serum or plasma

samples with blood cells significantly alters their microRNA

expression profiles (e.g., [16,17]).

The mechanistic basis for the alterations in serum or plasma

microRNAs consequent to the presence of lung cancer is not clear.

It could be that tumors themselves release microRNAs into

circulation, as is suggested by the findings of some studies (e.g.,

[18,19]). However, it is unlikely that it is so for at least a majority

of the altered microRNAs [20]. It is believed that microRNAs are

released into blood circulation by all cells of the body [21] and not

just tumors which typically constitute only a very small fraction of

the body’s cellular mass. No microRNA is exclusively expressed by

cancer cells, and the fold-changes in microRNA expression levels

that occur in cancer tissues relative to normal ones are usually very

modest (e.g., [22]). It is therefore possible that the changes in

microRNA expression seen in serum or plasma reflect the body’s

systemic response to the presence of cancer, including changes in

microRNA expression in circulating blood cells [17]. Such a

response may be exhibited in whole blood microRNA expression.

Indeed, a number of recent studies have shown changes in

microRNA expression profiles of peripheral whole blood in

patients with various malignancies, such as brain [23], breast

[24], ovary [25], and pancreas [26], as well as in non-malignant

diseases [27,28,29].

The goal of this study was to examine the potential of whole

blood microRNA profiling to distinguish patients with lung

adenocarcinoma, which accounts for about a half of lung cancer,

from clinically relevant controls. Whole blood mRNA expression

changes have been associated with presence of lung cancer [30],

and four studies so far have identified whole blood microRNA

biomarkers associated with the presence of lung cancer

[31,32,33,34]. Three of these four studies were published while

the work described here was in progress.

Materials and Methods

Ethics Statement
This study was approved by the Institutional Review Board of

University of Pennsylvania (study identification number 806390).

Study Population and Blood Collection
Study participants included 22 patients with lung adenocarci-

noma (cases) and 23 patients without lung cancer (controls) who

were evaluated at the University of Pennsylvania between

November 2007 and October 2010. Peripheral blood (2.5 ml)

was collected from the participants during clinical visits in a

PAXgeneTM Blood RNA tube (QiagenH, Valencia, CA), which

was then frozen at 220uC within 2 hours and then transferred to

280uC within a day for long-term storage. None of the case

subjects received any treatment for cancer prior to blood

collection. Ten controls underwent surgery for a suspicious lung

nodule or mass that on pathological evaluation later was found to

be benign. The remaining 13 controls were older than 50 years

with a smoking history of .20 pack-years. White blood cell (WBC)

and platelet counts, and blood hemoglobin values at time-points

closest to the time of blood collection for RNA isolation were

collated from medical records. These were identified before

surgery in all but one case for which the values were obtained

immediately after surgery. For controls, blood counts and

hemoglobin values could be obtained for 17 (74%) subjects; for

six of them, the values were determined .90 days before blood

had been collected for RNA isolation.

Isolation of RNA from Blood
Total RNA including small RNA was isolated from blood

collected in PAXgeneTM Blood RNA tubes using the PAXgeneTM

Blood miRNA kit (QiagenH) as per the protocol supplied by the

manufacturer. RNA was collected in 80 ml of the BR5 buffer

provided with the kit. Concentration and quality of RNA was

assessed by absorbance spectrometry on NanoDropTM 2000

(ThermoH, Waltham, MA) and imaging of ethidium bromide-

stained RNA electrophoresed on an agarose gel.

MicroRNA Quantification by Locked Nucleic Acid
Microarray

This work was performed as a commercial service by ExiqonH
(Vedbaek, Denmark). The miRCURYTM microRNA Power

Labeling kit (ExiqonH) was used to 39- or 59-end label 0.5 mg of

a sample or a human ‘universal reference’ total RNA (AmbionH,

Austin, TX; product number AM6000) with the Cy3-like Hy3TM

or the Cy5-like Hy5TM (ExiqonH) dye, respectively, before they

were co-hybridized overnight to 5th generation miRCURYTM

locked nucleic acid microarrays (ExiqonH) [35]. After washing,

microarrays were scanned and analyzed using ImaGeneH software

(version 9; BioDiscoveryH, Los Angeles, CA). Manual and

automated examinations of the scans and analyses of microarray

signals for 52 spiked-in synthetic, small RNAs showed that all

labeling reactions and hybridizations were of good quality. The

arrays had more than 1890 locked nucleic acid probes for multiple

RNAs of human, mouse, rat, and some viruses printed in

quadruplicate on randomly distributed spots of 105 mm diameter

and 250 mm inter-spot distance. A total of 1305 probes on the

arrays targeted 1282 human microRNAs, including 376 propri-

etary ones (miRPlusTM, ExiqonH), and 23 non-microRNA human

small RNAs of ,200 nucleotides, including the 5S ribosomal RNA

and the two RNU6 small nucleolar U6 RNAs. Except for RNU6-1

(U6A), every RNA was recognized by only one of the 1305 probes.

Only eight of the 1268 probes against human microRNAs and one

of the 24 against human non-microRNAs recognized more than

one species of RNA. In this study, the multiple RNAs recognized

by such probes are enumerated individually even though the

analyses of microarray signals considered each probe and not each

microRNA as a separate variable. Raw and pre-processed

microarray data are available online in the Gene Expression

Omnibus database [36] with accession number GSE27486.

Pre-processing of Microarray Data
Hy3TM and Hy5TM signal values from the 45 hybridizations

were processed together using the limma [37] Bioconductor

package (version 3.6.9) and custom code in R (version 2.12). Raw

values were corrected for background noise using the convolution

model-based normexp method [38] with an offset of 10, and then

normalized, first within array by the global loess regression

method [39] with a span of 1/3, and then between arrays by the

limma Rquantile method to achieve identical distributions of

Hy5TM values among all hybridizations. Microarray signal values

were then identified as summarized Hy3TM values which were the
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means of values from the multiple probe-spots when the maximum

was ,1.5x of the minimum, or the medians if otherwise. At this

point, data from probes that did not recognize human RNAs was

removed. RNAs recognized by probes for which the microarray

signal values were .3x that of probe-less empty microarray spots

in at least a quarter of the 45 hybridizations were considered as

expressed. There were 548 probe-less empty spots on each array,

and the mean and range of signal values from all such spots on all

45 arrays were 11.0 and 8.6–12.4, respectively. Microarray signal

values for the expressed RNAs were used for further analyses.

Analyses of Microarray Signals
Differential expression analyses were performed using empirical

Bayes-moderated t-statistics with the limma Bioconductor pack-

age. Differentially expressed RNAs were identified as those with

false discovery rates of ,5% as per the Benjamini-Hochberg

method. Classification analyses of microarray signals for expressed

microRNAs were done in R using the CMA [40] Bioconductor

package (version 1.8.1) for the support vector machines (SVM;

linear kernel) method, and the tspair [41] Bioconductor package

(version 1.8) for the top-scoring pairs (TSP) method [42]. Internal

validation was performed using the leave-one-out and Monte

Carlo cross-validation methods (LOOCV and MCCV, respec-

tively). In LOOCV, training sets of 44 samples consisted of all but

the one sample that formed the test set. In MCCV, the 45 samples

of the study were randomly assigned to training and test sets of 36

and 9 samples, respectively, in 1000 iterations. For cross-validation

using SVM, a nested three-fold cross-validation loop was used to

choose from 0.1, 0.2, 0.5, 1, 2, 5, 10, 20 and 50 the best value for

the kernel parameter cost, and the maximum number of

microRNA variables was 15, with variable-filtering based on

differential expression using limma’s moderated t-statistics. For

cross-validation using TSP, the microRNA pair with the best TSP

score constituted the variables.

MicroRNA Quantification by Reverse Transcription-PCR
(RT-PCR)

TaqManH microRNA assays [43] from Applied BiosystemsH
(Foster City, CA) were used to quantify microRNAs let-7e, miR-22,

miR-30a-5p, miR-185, miR-210, and miR-423-5p (assay identifica-

tion numbers of 2406, 398, 417, 2271, 512, and 2340,

respectively). Briefly, TaqManH microRNA reverse transcription

kit (Applied BiosystemsH) was used to reverse transcribe 15 ng of

RNA using a microRNA-specific oligonucleotide. PCR with real-

time fluorometry was performed on RT reactions in triplicate in a

7900HT thermocycler. SDS software (version 2.4; Applied

BiosystemsH) was used to identify quantification cycle (Cq) values

and the mean Cq values for the triplicate PCRs were used for

analysis. MicroRNA quantification of all RNA samples were

performed in the same experiment. Negative control reactions,

without any RNA, had undetectable Cq values.

Other
All analyses were done in the Mac OS X 10.6 operating system.

Annotated codes used in R for data processing, and differential

expression and classification analyses are provided in text S1.

Graphical plots were generated using R or PrismH (GraphPad

SoftwareH, La Jolla, CA; version 5.0d). Unless otherwise specified

or implicit, all statistical tests were two-tailed, assumed equal group

variances, and had a threshold of 0.05 for P value to identify

significance. Receiver-operator characteristic curves were gener-

ated and areas under curves (AUC) determined using PrismH or R.

Comparison of curves was performed online using StAR [44].

Analysis of differential expression using the Wilcoxon rank sum

(Mann Whitney) test, and of hierarchical clustering of samples

using log2-transformed microarray signals for expressed micro-

RNAs, with Pearson correlation coefficient for distance metric and

average linkage for inter-cluster distance, and with leaf-ordering of

either the sample tree or the gene tree optimized, were done in

TM4 [45] MultiExperiment Viewer (version 4.6 or 4.8). Processed

microRNA expression data from the studies of Keller, et al. [31]

and Leidinger, et al. [34] were obtained from the Gene Expression

Omnibus database with accession numbers GSE17681 and

GSE24709, respectively, and used directly for differential expres-

sion analyses.

Results

Clinical Characteristics of Cases and Controls
Clinical and demographic features of the 22 cases and 23

controls are summarized and detailed in tables 1 and S1,

respectively. All cases had lung adenocarcinoma with pathological

stage varying from IA to IIIB and were treated with surgical

resection. Two cases had a second cancer, one with a synchronous

lung cancer and the other with small lymphocytic lymphoma. The

23 controls were chosen for clinical relevance. Ten (43%)

underwent surgical resection for a suspicious lung nodule or mass

that was later found to be benign on pathological evaluation. The

remaining 13 controls were at high risk for developing lung cancer

because of age (.50 years) and a cigarette smoking history of .20

pack-years. There were no significant differences between cases

and controls for gender distribution, smoking status, or blood

hemoglobin level, WBC count or platelet count (table 1).

However, there was a difference in age, with cases an average of

10.7 years older than the controls (P,0.01). There was no

significant Pearson correlation between age and blood hemoglobin

level, WBC count or platelet count.

Quantification of MicroRNAs in RNA Isolated from Whole
Blood

Whole blood from the 45 cases and controls was collected in

PAXgeneTM Blood tubes, and total RNA isolated using the

PAXgeneTM Blood miRNA kit. The widely used PAXgeneTM

system incorporates cell lysis, RNA stabilization, and treatment

with deoxyribonuclease for reproducible RNA purification and

quantification [46], although some studies indicate that other

blood collection and RNA isolation methods perform better

[47,48,49]. Cases and controls did not differ for the mg of RNA

isolated from 2.5 ml of blood, with overall mean being 2.65

(range = 1.25–5.26, standard deviation [SD] = 0.95). The mean of

ratio of absorbances of the RNA isolates at 260 nm and 280 nm

was 2.48 (range = 2.19–3.04, SD = 0.21), and of that at 260 nm

and 230 nm was 0.21 (range = 0.09–0.44, SD = 0.08). There was

no significant difference between cases and controls for the three

parameters. There was no significant Pearson correlation between

RNA yield and age, or blood hemoglobin, WBC count or platelet

count.

A two-color, oligonucleotide [35] microarray platform from

ExiqonH was used to quantify levels of 1282 human microRNAs

and 23 human non-microRNAs of ,200 nucleotides in the RNA

isolated from whole blood specimens. As per version 18 of the

miRBase microRNA repository [50], 1921 mature human

microRNAs have been identified as of November 2011. The

415 RNAs deemed as expressed in .25% of the 45 samples of the

study were used to generate the final microRNA expression

profiles analyzed here. The 415 expressed RNAs included 20

(87%) of the 23 non-microRNAs, and 395 (31%) of the 1282
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microRNAs, including 75 (20%) of the 376 miRPlusTM (ExiqonH)

proprietary microRNA sequences, that were quantifiable with the

microarrays. Descriptive statistics for the microarray signal values

for the 415 RNAs are provided in table S2. About 57% and 87%

of them were considered expressed in all and .50% of the 45

samples, respectively, as per the aforementioned criterion. The

microarray signal values for the RNAs varied by about 9 log2 units

though the 25th and 75th percentiles were about 25.5 and 27.5,

respectively. There was no difference between cases and controls

for the microarray signal value distributions (figure S1).

Validation of Microarray-based MicroRNA Quantifications
Using RT-PCR

To check the accuracy of the microRNA expression data-set

generated using microarrays, eight randomly selected microRNAs

in RNA samples from 11 randomly selected subjects were

quantified using RT-PCR-based TaqManH microRNA assays

[43]. Six of the eight microRNAs, let-7e, miR-22, miR-30a-5p, miR-

185, miR-210, and miR-423-5p, were detectable in more than half

of the samples, and demonstrated significantly good Pearson

correlation (|r| .0.6) between log2-transformed microarray signal

and RT-PCR Cq values, indicating validity of the microarray-

based microRNA quantification (figure 1). An examination of the

ranges of the quantifications showed that for five microRNAs the

inter-sample difference was amplified 1.4–3.3x in the RT-PCR

method compared to the microarray method; it was slightly

diminished (0.9x) for miR-185. Such a generally wider signal

distribution in the TaqManH microRNA RT-PCR assay com-

pared to the ExiqonH locked nucleic acid microarray assay has

been reported previously [51].

Changes in Whole Blood MicroRNA Levels in Patients
with Lung Adenocarcinoma

Unsupervised hierarchical clustering using Pearson correlation

measures of the quantification values for the set of 395 expressed

microRNAs showed that there was a good clustering of the cases

and controls, indicating presence of lung cancer-specific informa-

tion in the microRNA expression profiles (figure 2A). This was

supported by results of differential expression analyses. With the

non-parametric Wilcoxon rank sum (Mann Whitney) test with P

values adjusted for multiple testing by the Benjamini-Hochberg

method for a false discovery rate of 5%, 122 (29%) of the 415

expressed RNAs, that included the 395 expressed microRNAs,

were differentially expressed between cases and controls. Using

empirical Bayes-moderated t-statistics calculated by the limma

Bioconductor package [37], 104 (25%) of the 415 expressed RNAs

were found to be differentially expressed with false discovery rate

of ,5% after Benjamini-Hochberg correction for multiple testing

(table S2). Of the 104 RNAs, 102 (98%) were also identified as

differentially expressed with the Wilcoxon test. The ratios of mean

value for cases to that of controls (fold-change values) for the 104

differentially expressed RNAs that included 96 microRNAs

ranged from 0.54 to 1.59. Among the 96 differentially expressed

microRNAs, the expression of 47 was lower in cases compared to

controls. Lists of 12 each of the differentially expressed RNAs with

the most over- and under-expression values are shown in table 2.

The relative expression of the 43 microRNAs whose expression

was altered .25% in either direction in the cases compared to the

controls is depicted as a heat map in figure 2B. Among the 23

controls, differential expression between those with pulmonary

nodules and those without was seen for 198 (50%) of the 395

expressed microRNAs.

Table 1. Demographic and clinico-pathologic characteristics of the study population.

Variable Cases Controls P valuea

Number 22 23

Mean Age (Range, SDb) 70.6 (50–85, 7.7) 59.9 (36–74, 9.1) ,0.01

Gender (% Male) 55 52 1.00

Race (% Caucasian) 100 100 1.00

Tobacco Use (% Positive) 91 83 0.67

Cancer Stage IA 9 (41%)

IB 5 (23%)

IIB 2 (9%)

IIIA 3 (14%)

IIIB 3 (14%)

Histology Adenocarcinoma 22 (100%)

Granuloma 1 (4%)

Hamartoma 7 (30%)

Fibrosis 1 (4%)

Amyloid 1 (4%)

Normal (No nodule) 13 (57%)

Blood parameters (mean, SD) White Blood Cell (x1000/ml) 6.7 (1.8) 7.7 (2.7) 0.17

Platelets (x1000/ml) 233.9 (81.1) 263.4 (68.8) 0.24

Hemoglobin (g/dl) 13.5 (1.4) 13.5 (1.3) 0.93

aFisher’s exact test for categorical variables; two-tailed t tests assuming equal group variances for continuous variables.
bStandard deviation.
doi:10.1371/journal.pone.0046045.t001
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Figure 1. Correlation between microRNA quantification by reverse transcription-PCR (RT-PCR) and microarray. The scatter-plots show
RT-PCR quantification cycle (Cq) values and log2-transformed microarray signal values for microRNAs let-7e, miR-22, miR-30a-5p, miR-185, miR-210, and
miR-423-5p (n = 11). Pearson correlation coefficients (r) and their 95% confidence intervals and associated P values, and best fitting (least squares)
lines are also shown.
doi:10.1371/journal.pone.0046045.g001
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Figure 2. Whole blood microRNA expression in lung adenocarcinoma cases and controls. A. Unsupervised clustering of the 45 samples of
this study by log2-transformed microarray signal values of all 395 expressed microRNAs. The numbers indicate identities of the 45 subjects, with cases
(n = 22) and controls (n = 23) shown in black and grey, respectively. The sample tree with optimized leaf-ordering is drawn using Pearson correlation
for distance metric and average linkage for cluster-to-cluster distance, and the scale for it represents node-heights. B. Supervised clustering of
microRNAs by their log2-transformed microarray signal values. The heat-map, with the pseudo-color scale underneath, shows log2-transformed
microarray signal values of the 43 microRNAs whose expression is altered .25% in either direction in the cases compared to the controls. The gene
tree is drawn as in A.
doi:10.1371/journal.pone.0046045.g002
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Ability of Whole Blood MicroRNA Expression Profiles to
Distinguish Lung Adenocarcinoma Cases from Controls

Classification analyses with internal cross-validation were

performed to determine if it was possible to distinguish cases from

controls using whole blood microRNA expression profiles. Two

different classification methods were employed: SVM with linear

kernel, which has the advantage that there is only one adjustable

kernel parameter (cost) to tune, and TSP, which is computationally

simple, uses only two variables, is relatively unaffected by

normalization methodology, and does not require differential

expression of RNAs [42]. For SVM, variable filtering was done to

use the 15 most differentially expressed microRNAs determined

using limma’s moderated t-statistics, and an internal three-fold

cross-validation was first performed to select the optimal value for

cost to avoid biasing classification by adjusting this parameter on

the test set [52]. In LOOCV, a classifier was generated using a

training set of 44 samples and tested on the one remaining test

sample, for a total of 45 possibly different classifiers and 45

predictions. In MCCV, the training and test sets had 36 and 9

samples, respectively, and the sets were randomly generated 1000

times, for a total of 1000 possibly different classifiers and 9000

predictions.

Using TSP, the prediction accuracy, sensitivity, and specificity

determined in LOOCV were 96%, 91%, and 100%, respectively.

MicroRNAs miR-630 and miR-1284 formed the best top-scoring

pair and thus the classifier in all 45 iterations of LOOCV. A

scatter-plot of the microarray signal values for the two micro-

RNAs, of which only miR-1284 is differentially expressed (table

S2), shows the clear separation of cases and controls based on the

ratios of these two microRNAs (figure S2). In MCCV, the means

(and ranges and SDs) of prediction accuracy, sensitivity, specificity,

were 92% (22–100, 13), 86% (0–100, 19), and 97% (0–100, 13),

respectively. Thirty-five different microRNAs constituted the two-

microRNA classifiers obtained in the 1000 iterations. MicroRNAs

miR-630 and miR-1284, also identified in the LOOCV analysis,

were present in 947 and 918 of the classifiers, respectively, while

the next most common microRNA was present in only 23. As

expected, changing the sizes of training and test sets affected

classifier performance (e.g., the mean accuracy increased from

75% at a training set-size of 12 to 95% at 42; figure S3).

Using SVM, the prediction accuracy, sensitivity, and specificity

values determined in LOOCV were all 91%. Twenty-four

microRNAs were present in one or all of the 45 15-microRNA

classifiers, eight (including miR-1284) of which were present in all.

In MCCV, the means (with range and SD) of prediction accuracy,

sensitivity, and specificity were 88% (44–100, 11), 88% (25–100,

17), and 89% (0–100, 16), respectively. Eighty-seven different

microRNAs constituted the 15-microRNA classifiers obtained in

the 1000 iterations. MicroRNAs miR-190b, miR-942 and miR-1284

were present in all of them. Changing the sizes of training and test

sets affected classifier performance, though not as much as seen for

TSP. For instance, increasing the training set size from 18 to 42

resulted in only a modest increase in mean accuracy, from 82% to

87% (figure S3). Overall, the two classification methods, SVM and

TSP, identified four microRNAs (miR-190b, miR-630, miR-942,

and miR-1284) that were present in a majority of the classifiers that

were generated in the cross-validation analyses. The expression of

these four microRNAs among the cases and controls is shown in

figure 3.

Effect of Age on MicroRNA Expression Profiles
Because of the significant difference in age between cases and

controls (table 1), its effect on microRNA expression profile and its

diagnostic utility was examined. The median age of the study

population was used to separate it into cohorts of 22 young (age

,68 years; 4 cancer cases and 18 controls) and 23 old (age $68

years; 18 cancer cases and 5 controls) subjects. Using limma’s t-

statistics as described above, 65 (16%) of the 395 expressed

microRNAs were identified as differentially expressed between the

young and the old. Fifty-one (78%) of the 65 are among the 96

microRNAs differentially expressed between the lung cancer cases

and controls, suggesting that age may have had a significant effect

on the identification of microRNA expression differences between

the cancer cases and controls.

In Pearson correlation analyses of age and microarray signal

values, though a significant correlation (|r|.0.4) between

microarray signal values and age was seen for only 22 (6%) of

the 395 expressed microRNAs, 20 (91%) of the 22 were

differentially expressed between cancer cases and controls, and

12 (55%) of the 22 were among the 24 microRNAs present in one

or all of the 45 15-microRNA classifiers obtained in LOOCV with

the SVM method. In contrast, expression of 132 (33%) of the 395

expressed microRNAs, with 35 (27%) of the 132 among the 96

microRNAs differentially expressed between cancer cases and

Table 2. Twelve differentially expressed small RNAs each that
are most over- or under-expressed in cases compared to
controls.

Mean Expression (sd)a

Cases (n = 22) Controls (n = 23) Fold-Change

Overexpressed RNAs

miRPlus-E1016 211.82 (129.47) 133.2 (53.13) 1.59

SNORD2 277.69 (156.92) 185.25 (36.39) 1.50

SNORD44 132.65 (65.03) 91.02 (17.84) 1.46

SNORD3@ 602.26 (261.49) 415.53 (104.4) 1.45

RNU5 750.37 (310.9) 521.01 (111.97) 1.44

RNU6–1 552.41 (184.89) 390.61 (118.08) 1.41

RNU6–1/RNU6–2b 4037.13 (1552.97) 2878.75 (896.93) 1.40

miRPlus-C1110 312.42 (62.17) 224.99 (50.54) 1.39

miRPlus-E1258 86.75 (20.49) 64.07 (11.77) 1.35

miR-720 340.15 (119.55) 252.95 (74.57) 1.34

miR-1290 171.55 (50.99) 128.19 (32.76) 1.34

SNORD13 513.58 (204.28) 384.05 (88.93) 1.34

Underexpressed RNAs

miR-144 143.57 (72.96) 267.88 (119.29) 0.54

let-7f 172.56 (96.41) 312.48 (150.58) 0.55

miR-15a 1067.1 (500.02) 1899.57 (859.99) 0.56

miR-20a 315.49 (215.14) 560.07 (295.46) 0.56

miR-18a 103.44 (62.86) 175.58 (100.54) 0.59

miR-1976 1141.76 (601.13) 1936.79 (853.76) 0.59

miR-93 585.97 (374.69) 980.62 (477.89) 0.60

miR-20b 50.43 (24.24) 83.2 (43.62) 0.61

miR-320c 207.32 (83.05) 339.03 (172.55) 0.61

miR-17 604.37 (343.17) 975.14 (443.34) 0.62

miR-652 126.41 (53.51) 202.94 (75.64) 0.62

miR-18b 44.08 (24.7) 69.15 (38.45) 0.64

aMicroarray signal values are shown.
bBoth RNU6-1 and RNU6-2 RNAs are detected by the same microarray probe.
doi:10.1371/journal.pone.0046045.t002
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controls, correlated with the WBC count with |r|.0.4. For blood

hemoglobin and platelet count, and for age if its values were

resampled to simulate a random value distribution, |r|.0.4 was

seen for 1.5%, 3% and 1.3% of the 395 expressed microRNAs,

respectively (figure 4B).

To evaluate the effect of age further, receiver-operating

characteristics analysis was used to determine if age could

distinguish between cases and controls. Unlike blood parameter

values for which AUCs were not significantly higher than 0.5, the

AUC for age was 0.82 (figure 4A). This suggests that age has the

potential to distinguish between cancer cases and controls.

However, the AUC of 0.82 was significantly less (P,0.05 in the

DeLong AUC comparison test [53]) than the AUC values of 0.95

and 1 seen respectively for ratios of microarray signal values for

miR-630 and miR-1284, the best top-scoring pair identified by the

TSP method in the set of all 45 samples, and the probability values

for being a case determined using a linear kernel SVM identified

for the 45 samples (figure S4). Whether consideration of age along

with microRNA expression data would improve classification was

examined by receiver-operating characteristics analysis of the

probability values obtained in LOOCV using the SVM method.

The AUC without age being considered was 0.939 and it

decreased slightly to 0.937 when age was included as a variable

along with microRNA expression. Further, the prediction

accuracy, sensitivity, and specificity, also declined slightly, by

2.2, 0, and 4.3 percentage units, respectively. This analysis,

however, does not suggest that the diagnostic power in the

microRNA expression profiles was uninfluenced by age because

microRNA expressions were themselves affected by age.

Binary classification analysis with the TSP method in LOOCV

showed that the microRNA expression profiles could be used to

classify subjects into young (,68 years) or old with accuracy,

sensitivity and specificity of 73%, 70% and 77%, respectively.

With the SVM method, the values were 67%, 70% and 64%,

respectively. As detailed earlier, prediction accuracy, sensitivity

and specificity were all .90% for classification of subjects into

cancer cases and controls. This suggests that the microRNA

expression profiles, though likely influenced by age, had informa-

tion content that could be used to separate cases and controls by

their lung cancer status.

Discussion

Changes in whole blood microRNA expression profiles because

of diseases have been noted for both non-malignant conditions,

such as myocardial infarction [28] and sarcoidosis [29], and

cancers of tissues such as breast [24] and ovary [25]. This study

sought to examine if such changes also occur in lung cancer. As

referenced earlier, at least 14 studies have documented microRNA

alterations in serum or plasma in lung cancer. The biological basis

of such alterations remains unclear, and it is possible that it lies to

at least some degree in the body’s systemic response and/or

genetic susceptibility to cancer. If so, it might be manifested in

changes in whole blood microRNA expression patterns. Com-

pared to serum or plasma, whole blood is easier to collect and has

200–10006 more RNA content, which facilitates reliable and

accurate global microRNA expression measurements using less

clinical material. It should be noted that mature red blood cells

(RBCs), whose cell concentration in blood is about 5006 higher

than that of WBCs and whose cellular mass per volume of blood is

about 2006higher than that of platelets, bear a majority of whole

blood microRNAs. MicroRNA concentration in mature RBCs is

estimated to be similar to that in nucleated cells [54], and some

microRNAs, such as miR-16 and miR-451 are present at more than

a million-fold higher level in RBCs than plasma [55].

In this study, whole blood microRNA expression in lung cancer

cases was compared to that in controls who did not have the

disease but were clinically relevant because they had radiograph-

ically detected pulmonary nodules or were at high risk of

developing lung cancer because of a significant smoking history

(tables 1 and S1). Such types of subjects are commonly

encountered in routine clinical practice and lung cancer screening

programs. All the cases of this study had lung cancer of

adenocarcinoma histology at pathologic stage IA-IIIB, and were

similar to controls for history of smoking, gender, ethnicity, and

blood hemoglobin levels, WBC and platelet counts (tables 1 and

Figure 3. Expression of miR-1284, miR-942, miR-630, and miR-190b. Dot-plots with medians and inter-quartile ranges of log2-transformed
microarray signal values for the 22 cases (black) and 23 controls (grey) are shown for the four microRNAs that are present in a majority of the classifiers
generated in internal cross-validation analyses using the linear support vector machines and top-scoring pairs classification methods.
doi:10.1371/journal.pone.0046045.g003
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Figure 4. Association with lung adenocarcinoma of age, and blood hemoglobin level, and white blood cell (WBC) and platelet
counts. A. Receiver operating characteristic curves, the areas under curve (AUC) for age, and the line of identity, x = y, with an AUC of 0.5, are shown.
B. Correlation with microRNA expression. Values for the clinical variables were correlated with microarray signal values for the 395 expressed
microRNAs (n = 45 for age; n = 39 for others). The curves depict frequency histograms of Pearson correlation coefficients (r) with a bin of 0.025. Curves
were smoothened using four neighbors for averaging and a zero order polynomial. Correlations are also shown for the random variable resampled
WBC count for which values were generated by resampling the WBC count data.
doi:10.1371/journal.pone.0046045.g004
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S1). Cigarette smoking is known to alter expression of circulating

microRNAs [56], and changes in blood cell counts reflecting

anemia, leukocytosis and thrombocytosis are frequently seen in

lung cancer (e.g., [57,58,59]).

Significant differences in expression of 96 microRNAs were

observed between the lung cancer cases and controls (figure 2B,

and tables 2 and S2). These microRNAs included miR-21 and

miR-210, but not miR-30a, miR-31, miR-126, miR-145, or miR-

182, all of which have been shown in multiple studies as

differentially expressed between normal and cancerous lung

tissues [60]. This discrepancy between microRNA expression

changes in cancer tissues and in the circulating blood in lung

cancer has been noted before [9,61], and suggests that many of

the differentially expressed microRNAs seen in this study do not

originate from lung tissue. The changes in their levels likely

reflect a systemic response or susceptibility to cancer. The 96

differentially expressed microRNAs of this study included

microRNAs such as miR-17 [9] and miR-574-5p [62], but not

miR-27b [8] or miR-155 [11], serum or plasma levels for all of

which have been associated with presence of lung cancer. This

observation can be expected from the difference in the types of

cells that contribute to microRNA expression in whole blood and

in extracellular circulation.

In unsupervised clustering analysis of the whole blood

microRNA expression profiles, the cases and controls in this study

segregated to a good degree (figure 2A). The biomarker potential

of microRNA expressions to diagnose lung cancer was examined

with internal cross-validations in classification analyses using two

different methods (SVM and TSP), which yielded accuracy,

sensitivity and specificity values ranging from 86% to 100%. Age

was identified as a confounder for these results. The controls in this

study were significantly younger than the cases (tables 1 and S1).

The young and old subjects differed for the expression of 65

microRNAs, 78% of which were also identified as differentially

expressed between cancer cases and controls. Of the 22

microRNAs whose expression had good correlation with age

(figure 4B), 91% were differentially expressed between cancer

cases and controls. However, in receiver-operating characteristics

analyses, microRNA expression performed better at discerning

cancer than age, with AUC values of 0.94 and 0.82 (figure 4A),

respectively, and microRNA expression could classify lung cancer

better than age in LOOCV analyses, with accuracy values of 91%

and 67%, respectively. It thus appears that in spite of the effect of

age, whole blood microRNA expression could be used to

distinguish the lung cancer cases from the controls.

Four other studies have shown the association of changes in whole

blood microRNA expression with lung cancer. However, there is

minimal overlap between the significant microRNAs identified in

these studies. For example, let-7a expression, identified as reduced in

whole blood of lung cancer cases in the study of Jeong, et al. [33] was

not significantly different between cases and controls in the current

studyand twoother studies [32,34].Similarly,onlyeightand10of the

differentially expressed microRNAs of the current study are also

differentiallyexpressedasper thestudiesof,respectively,Leidinger,et

al. [34] and Keller, et al. [31]. MicroRNAs miR-190b, miR-630, miR-

942, and miR-1284, the most frequent constituents of the classifiers

generated in the current study, are not differentially expressed

between cases and controls in the data-sets of either Keller, et al. or

Leidinger, et al. as per the limma-based test used in the current study.

Neither has been any of these microRNAs reported as differentially

expressed between lung cancer cases and controls in a recent

transcriptome sequencing study of whole blood microRNAs [32].

This lowdiscordance between the findings of this study and the others

could be a result of the different microRNA quantification platforms

used in the studies, or could be because clinical and demographic

profiles of the case and control cohorts vary significantly among these

studies. For instance, the controls in the study of Keller, et al. are

significantly younger than the cases whereas cases and controls are of

similar age in the study of Jeong, et al. Similarly, the controls used in

the Leidinger study were selected from a cohort of chronic

obstructuve pulmonary disease patients while the controls in the

study of Keller, et al. were all healthy.

Many of the controls in the current study did not undergo

radiological investigations like computerized tomography whereas

all the cases did. Radiation exposure, even at low dosage, has been

shown to significantly affect levels of microRNAs in blood

[63,64,65]. It is therefore possible that some of the changes in

microRNA expression noted here are actually consequent to

radiation exposure. Similar differences between the cases and

controls for other environmental factors such as use of medica-

tions, many of which have been shown to influence blood

microRNAs [66,67], may also underlie the observations of this

study. Blood microRNA expression profiles appear to reflect the

physiological state of the body as well, as suggested by studies that

have examined their correlations with age [68], blood pressure

[66], diurnal state [69], gender [56], mental anxiety [70], physical

stress [71], etc.

It is clear that one has to judge with good temperance the

association of blood microRNAs with lung adenocarcinoma that is

noted in this investigation, which is beset with small sample-size,

significant age difference between cases and controls, and use of

two types of controls. Additional studies with large sample sizes,

and case and control cohorts matched for important variables such

as age, gender, smoking status, and blood cell counts are required

to confirm the association of whole blood microRNA changes with

lung cancer. Identification of specific microRNA biomarkers for

clinical utility will require the use of an appropriate and precisely

defined control population. Comparison of microRNA expression

before and after tumor resection may also be useful in identifying if

these biomarkers can detect the presence of lung cancer or predict

individual susceptibility.

Supporting Information

Figure S1 Scatter-plot of mean microarray signal values
of expressed RNAs in the two cohorts. Means for each of the

407 probes for which the target RNAs are considered expressed

for the 22 cases are plotted against the means for the 23 controls

(black dots). Some probes recognize multiple species of RNAs. Error

lines indicating the standard deviations for the case and control

cohorts are shown in red and green, respectively. The grey line

represents x = y. Axes are on a log2 scale.

(TIF)

Figure S2 Expression of miR-630 and miR-1284. Micro-

array signal values for miR-630 and miR-1284 that constitute the

best top-scoring pair (TSP) in TSP analysis of microRNA

expression profiles of the 22 cases (black) and 23 controls (grey)

are plotted.

(TIF)

Figure S3 Effect of training-set size on performance of
classifiers in Monte Carlo cross-validation analyses.
Mean and 95% confidence interval values for accuracy, sensitivity,

specificity, and positive and negative predictive values of varying

training-set sizes in Monte Carlo cross-validation analyses using

the top-scoring pairs (TSP) or support vector machines (SVM,

linear kernel) classifier methods are shown along the left Y axis.

The total number of microRNAs constituting the 1000 classifiers
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generated for each training-set size is shown along the right Y axis.

Analyses were performed as described in the Material and methods

section for the particular case of a training-set size of 36.

(TIF)

Figure S4 Receiver operating characteristic curves for
top-scoring pairs (TSP) and support vector machines
(SVM) classifier methods. On left, the curve shows the

association with the presence of lung adenocarcinoma of the ratio

of microarray signals for miR-630 and miR-1284 that constitute the

best pair of expressed microRNAs identified by the TSP method in

the 45 samples of the study. On right, the variable is the

probability for membership in the class of lung adenocarcinoma

cases calculated from the best linear kernel SVM determined using

all 45 samples of the study. Areas under curve (AUC) are also

shown.

(TIF)

Table S1 Case-specific demographic and clinico-pathologic

details.

(PDF)

Table S2 Descriptive statistics of microarray signal values for all

expressed microRNAs and non-microRNA small RNAs.

(PDF)

Text S1 R codes for processing of microarray data, differential

gene expression analysis using moderated t-statistics in limma

Bioconductor package, leave-one-out cross-validation analyses

with top-scoring pairs (TSP) and linear support vector machines

(SVM) classification methods, and Monte Carlo cross-validation

analyses with TSP and SVM, are shown with annotation and

information about the computing platform and R packages.

(PDF)
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