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Abstract

Background: Large-scale sequencing projects have now become routine lab practice and this has led to the development
of a new generation of tools involving function prediction methods, bringing the latter back to the fore. The advent of Gene
Ontology, with its structured vocabulary and paradigm, has provided computational biologists with an appropriate means
for this task.

Methodology: We present here a novel method called ARGOT (Annotation Retrieval of Gene Ontology Terms) that is able to
process quickly thousands of sequences for functional inference. The tool exploits for the first time an integrated approach
which combines clustering of GO terms, based on their semantic similarities, with a weighting scheme which assesses
retrieved hits sharing a certain number of biological features with the sequence to be annotated. These hits may be
obtained by different methods and in this work we have based ARGOT processing on BLAST results.

Conclusions: The extensive benchmark involved 10,000 protein sequences, the complete S. cerevisiae genome and a small
subset of proteins for purposes of comparison with other available tools. The algorithm was proven to outperform existing
methods and to be suitable for function prediction of single proteins due to its high degree of sensitivity, specificity and
coverage.

Citation: Fontana P, Cestaro A, Velasco R, Formentin E, Toppo S (2009) Rapid Annotation of Anonymous Sequences from Genome Projects Using Semantic
Similarities and a Weighting Scheme in Gene Ontology. PLoS ONE 4(2): e4619. doi:10.1371/journal.pone.0004619

Editor: Sridhar Hannenhalli, University of Pennsylvania School of Medicine, United States of America

Received November 9, 2008; Accepted January 9, 2009; Published February 27, 2009

Copyright: � 2009 Fontana et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Autonomous Province of Trento as part of the ‘‘Grapevine genome sequencing’’ project. The funders had no role in
study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: stefano.toppo@unipd.it

Introduction

The amount of data available in public databases has reached

an unprecedented complexity which is not easily manageable by

users. 789 genomes have been completed and over 1,600 are in

progress assembly (as of November 2008). This means that

thousands of raw sequences are readily obtainable, but the

challenge now [1] is to assign them a putative function and to keep

the annotation up-to-date [2]. The results are difficult to interpret,

especially when the retrieved hits share low sequence identity with

the starting query or when restricted local alignments identify a

single domain in multi-domain protein hits or, finally, when the

updating state of protein hits is incomplete and even contradictory

making functional transfer difficult [3].

The definition of protein function itself is elusive and ambiguous

as it depends on i) context: where the protein acts and its behavior

in particular conditions; ii) scale: the level at which functional

assignment is reported, namely molecular or cellular and

organismal; iii) time: when and for how long a certain protein

operates in the cell’s life-span [3,4].

Against this background, the Gene Ontology (GO) consortium

has developed a successful solution that may be considered the

gold standard in functional classification [5,6]. It uses a structured

controlled vocabulary organized in a hierarchical Directed Acyclic

Graph (DAG) that has two important characteristics: it has

become an acknowledged and widely used framework for

functional annotation and it is designed to be easily exploited by

computational methods [7]. However, some questions still remain

unanswered as the Gene Ontology structure provides a static

representation of biological function but does not account for the

dynamics of protein expression in the metabolic and structural

pathways of the cell’s life cycle [6]. Currently, sequences deposited

in public databases are automatically reviewed with increasing

accuracy and annotation coverage is nearly 60% of the total

proteins (as of November 2008). On the other hand, manual

curation of protein function and knowledge transfer from both

experimental data and the literature still lag behind, even though

increasing interest is pushing international efforts to close the gap

as soon as possible.

Before the advent of the Gene Ontology, different independent

studies provided conflicting results: varying estimates have been

proposed to infer function from sequence identity showing the

difficulties in reaching a shared agreement. The thresholds for

accurate prediction oscillate from a lower bound of 40% [8]

sequence identity to the more stringent criterion of 60–70%

[9,10], but the latter estimate suggests a cut-off of 50% [11]. These
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differences reflect the intrinsic difficulties with functional inference

from simple evaluation of sequence identity and show an urgent

need for a critical assessment of acknowledged standards in

prediction methods [12,13]. In recent years, different approaches

have been proposed to improve function prediction performance.

King and colleagues [14] were among the first to demonstrate the

potential for gaining new information from machine learning

algorithms and GO annotation patterns. Lord and colleagues

introduced the use of semantic similarity to investigate the

relationship between sequence and annotation [15,16]. Semantic

similarity among concepts has been used extensively in natural

language processing and seems to be perfectly suited to Gene

Ontology. It is, in fact, a manageable metric which reflects the

closeness or distance between the concepts, corresponding to weak

or strong biological relationships [15]. Recently, Tao and

colleagues [17] extended this idea proposed by Lord in

information retrieval and based their method on measurement

of the distances between clusters of existing GO annotations which

are shared by sequences. This approach has proven to be effective

in extending gene function information and to have higher recall

than previously published methods.

Other approaches rely on text mining and information extraction

systems applied to the biological domain, such as the BioCreAtIvE

initiative [18]. These methods still perform poorly as they attempt to

interpret free text extracted from scientific literature, where the

same concept may be described in different ways, whereas in GO

each concept is unequivocally coded. It is undoubtedly true that one

of the main limits of published strategies for function prediction is

the source of information. Using a simple similarity search like

BLAST [19] to annotate unknown sequences may be more

successful in terms of coverage than querying databases of structural

and sequence features using complex algorithms; this is due to the

discrepancy between primary databanks, containing millions of

sequences, and specialized databanks, containing a few thousand

3D structures, protein domains and functional patterns. In support

of this idea, Jones and colleagues [2] suggest that the first returned

BLAST matching hit is a fairly good strategy for annotating novel

sequences, arguing that new methods should at least be able to

outperform this approach. On the other hand, BLAST search alone

is not sufficient to infer function as previously demonstrated

[8,9,10,11]. We here describe a method that partially overcomes

these limitations by implementing semantic similarities among GO

terms and an appropriate weighting scheme. To satisfy all of these

needs, we have developed a fast method called ARGOT

(Annotation Retrieval of Gene Ontology Terms) that is able to

interpret the ‘‘GO dialect’’ and analyze hundreds of sequences very

rapidly. The algorithm works on an acquired source of information,

usually a list of ranked hits whose scores reflect biological similarity

to the starting query. To our knowledge, ARGOT is the first

example of a tool implementing semantic similarity and weighting

schemes based on scores extracted from, for instance, the well-

established sequence similarity search. GOtcha, developed by

Martin and colleagues [20], may be considered the first automatic

tool for function prediction which takes advantage of a weighting

scheme based on term-specific probability measures of confidence,

but it does not consider the semantic similarities among retrieved

terms. Indeed, semantic similarity is generally used as a metric to

evaluate common and distant features among sequences and their

annotated functions [21] but has never been effectively employed in

the process of annotating novel sequences. We tested ARGOT

using the common BLAST similarity search against the primary

repository UniProtKB and assessed it over two large benchmark test

sets. The first consisted of 10,000 randomly chosen proteins

extracted from UniProtKB, while the second comprised the well-

studied S. cerevisiae genome for which in-depth functional knowledge

is available.

Using BLAST results allowed us to compare the ARGOT

method with other available tools, in particular Blast2GO [22],

using the same file source and the TOPBLAST strategy [20],

which is based on the functional transfer of annotations carried by

first significant BLAST hits.

A further small and curated dataset of 28 targets was evaluated

and compared with the following function prediction methods

available on the web: JAFA [23], Blast2GO [22], GOtcha [20],

PhyDBAC [24], GOblet [25], PFP [26], InterProScan [27].

We demonstrate here that by using a simple similarity search

valuable information with a high degree of confidence and high

coverage can be obtained, even at low sequence identity, thanks to

a strategy that carefully equates semantic similarity with shared

and ranked biological features. The tool has already been

employed in the annotation of over 29,000 predicted gene

sequences from the large scale Vitis vinifera sequencing project

[28] and has been used to annotate a small subset of over 500

sequences from a cDNA-AFLP sequencing project in Medicago

truncatula [29]. Manual validation of the annotations acquired for

this small subset of sequences of Medicago truncatula confirmed the

high quality of the functional inference processing tool.

ARGOT is available free to academic users at the following

URL: http://genomics.research.iasma.it/argot/index.html.

Materials and Methods

Trimming the GO graph
The functional inference of a query sequence is performed on a

starting list of scored and ranked GO terms (see Fig. 1). In

principle, the ARGOT algorithm is not dependent on the method

used to obtain this list. In the present work we used the BLAST

searching tool, as it is the most commonly used method for

annotating biological sequences. The first step of the algorithm

involves the extraction of the GO terms from those BLAST hits

which are annotated in Gene Ontology. Each GO term inherits

the BLAST e-value score of the corresponding hit from which it

has been extracted. If multiple hits share the same GO term, the

sum of the logarithms of their e-value scores is calculated as

explained in the next section ‘‘weighting the GO nodes’’. Once

GO hits and their corresponding scores are obtained, they are

processed in order to reconstruct all of the possible paths leading to

the root node; the rest of the GO nodes that does not belong to the

reconstructed paths are discarded and we finally obtain the ‘‘initial

trimmed GO graph’’ (see Fig. 1-i). The user can set the number of

hits ARGOT has to analyze for annotation (the default is 50).

Weighting the GO nodes
Once the ‘‘initial trimmed GO graph’’ has been obtained, each

node is weighted according to the BLAST e-values. The corrected

weights are reconstructed starting from the leaves of the graph up

to the root following a non-redundant and cumulative strategy (see

Fig. 1-ii). Cumulative means that the weight of the parent node is

the sum of the weights of its child nodes. During the exhaustive

reconstruction of the multiple paths leading to the root of the

graph, some parent nodes may be visited many times. Non-

redundant means that the score of a child node is added only once

to the weights of the parent nodes during this process. The weight

W is calculated as follows:

WGi
~
XN

j~1
log SGj

���
���
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Where WGi
is the weight of the node Gi, SGj

is the score of the

node and
PN

j~1 log SGj

���
��� is the absolute value of the sum of the

child nodes’ scores. These scores are extracted from the results of

BLAST as described in ‘‘Trimming the GO graph’’ section. The

weighting strategy is always non-redundant and cumulative. What

may change is how the original extracted scores are converted and

normalized. In this case, we have used the logarithm of the

BLAST e-values and the absolute value of their sum. As a result of

this additive strategy, only the most generic annotation terms,

those near the root, show the highest scores at the expense of

carrying less information. To tackle this behavior a different

measure based on the Information Content (IC) was used to obtain

an acceptable trade-off between detailed knowledge and statistical

significance (see the section ‘‘GO Information content’’).

GO Information content
The standard definition of information content of a term in a

taxonomy, as proposed by Resnik in 1999 [30], is quantified as the

negative log likelihood as follows:

IC~{log p cð Þ

Where IC is the Information Content and p(c) is the relative

frequency of all of the descendants of the GO term c that are

extracted from the GOA database.

p cð Þ~ total occurences of GO terms decendants of GO term c

total number of GO terms in the GOA database

Depending on the GOA database release used, the IC value

changes as a consequence of continuous enhancements and

updates of both the protein annotations and the GO graph

structure.

The formula expresses the notion that informativeness decreases

as the frequency of a term increases. The probability of any

concept appearing in the taxonomy depends on the sum of the

probabilities of the concepts it subsumes and, consequently, the

nearer the term is to the root the more frequent and the less

informative the concept is (see Fig. 1-ii).

Choosing the most probable paths in the ‘‘initial
trimmed GO graph’’

In the ‘‘initial trimmed GO graph’’ some terms may belong to

hits that are not functionally related to the original query. Usually

the GO terms of these hits are found in isolated paths within the

graph and consequently have low weights. This typically occurs

when false positive hits sharing low sequence similarity with the

query are considered for functional annotation transfer. To avoid

the subsequent computation of these GO terms, which may be

unrelated to the query sequence, the Z-score cut-off is applied on

the node weights as follows:

Zi~
Si{S

s

Where S is the average calculated as the score of the root node

divided by the total number of the nodes that compose the ‘‘initial

trimmed GO graph’’, Si is the score of node i and s is the

standard deviation assuming a Gaussian distribution of the weights

(see Fig. 1-ii). The path is chosen if, starting from the leaves, its Z-

score becomes positive before reaching the root which, by default,

has a positive value as it represents the sum of all the node weights

(see Fig. 1-iii). This approach allows paths that are statistically

significant to be discriminated from those that are not. Low

scoring nodes (see Fig. 1-iii) do not contribute to the general

annotation path and reduce the computational efficiency. At the

end, these nodes and their paths are discarded and the initial

trimmed GO graph is reduced in size. We here refer to the

resulting graph as the ‘‘final trimmed GO graph’’

Grouping by means of semantic similarity
Once the ‘‘final trimmed GO graph’’ has been obtained, the

remaining GO nodes are grouped according to their semantic

similarity (see Fig. 1-iii,1-iv). This approach has already been

applied in natural language processing and taxonomies providing

a manageable metric with which to link different terms carrying

similar information. There are many different methods for

calculating the shared information between two terms

[30,31,32], but we obtained the best results using Lin’s formula

[33]. This formula has the advantage of reporting a normalized

value between 0 and 1 and has already been proven to outperform

other algorithms [17] even though it may be affected by shallow

annotations [34,35]. Lin’s formula is defined as:

sim c1,c2ð Þ~ 2|simres c1,c2ð Þ
IC c1ð ÞzIC c2ð Þ

Where

simres c1,c2ð Þ~ max
c[S c1,c2ð Þ

IC cð Þ

S c1,c2ð Þ are the common subsumers of c1 and c2 terms and

simres c1,c2ð Þ is the one with the highest IC as previously described

in the section ‘‘GO Information content’’. In other words, the

algorithm finds the nearest parent node that is shared by the two

terms whose semantic distance is to be calculated.

This quantifies the extent to which two concepts are related

according to their position, which is highly dependent on the

graph connections and density. This measure is much more

effective and meaningful than absolute edge distance as it accounts

Figure 1. Schematic representation of the ARGOT algorithm. The sections of the ‘‘materials and methods’’ where the different steps of the
algorithm are explained in details, are enclosed in quotation marks. The first step i) ‘‘Trimming the GO graph’’ involves the trimming of the GO graph
to obtain a slim containing only the putative GO hits extracted in order to annotate the query protein (black circles). In the second step ii) ‘‘Weighting
the GO nodes’’ and ‘‘GO Information content’’, the algorithm calculates the Information Content (IC) (gray bars) of the nodes in the graph and their
cumulative weights (colored bars) derived from the BLAST scores. In the third step iii) ‘‘Grouping by means of semantic similarity’’ and ‘‘Choosing the
most probable paths in the ‘‘initial trimmed GO graph’’’’, GO nodes are clustered into groups having a given semantic similarity using the Lin formula;
GO terms which populate isolated branches of the graph are discarded on the basis of their Z-score (red and green triangles) applied to the node
weights. In the last step iv) ‘‘Grouping by means of semantic similarity’’ ARGOT tries to merge similar clusters on the basis of semantic distance
calculated among the groups’ founders (azure circles) using less stringent cut-offs. GO terms with the highest IC (green big circles) are chosen as
representatives of the clusters obtained.
doi:10.1371/journal.pone.0004619.g001
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for the real relationships among concepts. For example, the two

GO nodes GO:0043734 ‘‘pigmentation’’ and GO:0016032 ‘‘viral

reproduction’’ have the root node GO:0008150 ‘‘biological

process’’ as parent. These GO terms may be erroneously

considered neighbors as their edge distance is 2 but their meaning

is completely different. This difference appears immediately

evident from a semantic similarity perspective, as the IC of the

parent node is 0, being the root of the ontology, and consequently

the semantic similarity is 0, as expected. The same edge distance

exists between two similar GO terms: GO:0004602 ‘‘glutathione

peroxidase activity’’, which occurs 69 times over 168,919 gene

products (as of March 2008 GO release), and GO:0047066

‘‘phospholipid-hydroperoxide glutathione peroxidase activity’’,

which occurs 5 times. They both descend from a common

ancestor GO:0004601 ‘‘peroxidase activity’’ with 409 occurrences,

subsuming all the occurrences of its child nodes. In this case,

semantic similarity calculated with Lin’s formula is 0.66 as follows:

IC GO : 0004602ð Þ~{log
69

168,919
~3:39

IC GO : 0047066ð Þ~{log
5

168,919
~4:53

simres IC GO : 0047066ð Þ, IC GO : 0004602ð Þð Þ

~IC GO : 0004601ð Þ~{log
409

168,919
~2:62

sim GO : 0004602,GO : 0047066ð Þ

~
2|simres IC GO : 0047066ð Þ,IC GO : 0004602ð Þð Þ

IC GO : 0004602ð ÞzIC GO : 0047066ð Þ

~
2|2:62

3:39z4:53
~0:66

This reveals that the GO terms are strict neighbors. Comparing

the two examples it is clear that edge distance is unsuitable and

insufficiently discriminative for finding related concepts.

Semantic similarity is used to group GO terms that belong to

the ‘‘final trimmed GO graph’’ containing the most probable

starting paths and allows the number of similar GO terms in

highly populated regions of the graph to be further reduced (see

Fig. 1-iii,-iv). The algorithm attempts to group recursively the GO

terms that have been retrieved by the BLAST hits R and belong to

the ‘‘final trimmed GO graph’’ with strict semantic similarity of

over 0.7. Those GO nodes that are part of the different paths

leading to the root of the graph but that have not been found in

the annotation of the BLAST hits, are not considered in this

calculation.. A matrix distance is computed by performing an all

vs. all comparison of the IC scores of the GO terms retrieved from

R using the Lin’s formula and if two terms satisfy the cut-off they

are merged into the same group (see Fig. 1-iii):

for each i [ 1::n{1f g and j [ 1::nf g

if sim gGi
,gj

� �
§0:7 then gj [ Gi

gGi
is the initiator node of the group Gi. The initiator, gj is another

GO node and n is the total number of GO terms extracted from R
and present in the ‘‘final trimmed GO graph’’. At the beginning of

the clustering process any GO term is a potential initiator node

and is considered the founder of a forming cluster: the GO terms

sharing a semantic similarity of 0.7 are added. After the first

clustering step a second and less stringent threshold of 0.6 is

applied to further merge acquired groups that have at least one

GO term in common. Only the initiator nodes or founders gGi
are

involved in this process (see Fig. 1-iv). The grouping strategy has

the effect of gathering together semantically similar GO terms thus

actually reducing the search space as only one or few

representatives per group are chosen according to their scores,

described in the next section, and IC.

InC, AC, and TS scores
First of all, the GO hits that belong to the obtained clusters in

the ‘‘final trimmed GO graph’’ are ranked on the basis of three

different statistical scores: Internal Confidence (InC), Absolute

Confidence (AC) and Total Score (TS). GO terms with the highest

scores and IC are chosen (see the section ‘‘GO Information

content’’). The InC and AC are normalized scores whose values lie

in the 0–1 interval; they have been specifically designed to assess

the statistical significance of the retrieved hits and both are based

on node weights divided either by the root node weight (InC) or by

the maximal theoretical weight (AC). The TS score is derived from

the InC multiplied by the Z-score of the node under consideration

and is not normalized as it starts from 0 and has no upper bound.

InC~
WGi

WGroot

AC~
WGi

Max Theoretical Weight

TS~InC|Zi

Where WGi
is the weight of the node Gi, WGroot

is the weight of the

root node (see the section ‘‘Weighting the GO nodes’’), Max

Theoretical Weight is the maximal score the query sequence can get

based on the algorithm used to investigate the database, Zi is the

Z-score of node i. For the BLAST searching algorithm the Max

Theoretical Weight has been set to 10e{200 corresponding to a highly

significant hit based on the e-value score.

The user can choose among TS, AC, and InC indexes and set

the cutoff for ranking and selecting the GO terms. GO terms not

satisfying the threshold are discarded. In addition, the user can

choose the number of GO terms that can be extracted from each

cluster and these are called the representatives of the cluster. These

representatives are chosen on the basis of their highest information

content (IC) rather than their score based on the chosen index

among TS, AC, or InC. This strategy allows the algorithm to

select the most informative representatives of the clusters rather

than those with the highest AC, TS, or InC scores.

Algorithm implementation
ARGOT has been implemented in JAVA and accompanying

scripts are provided to set up the tool on a local computer running

Linux OS and MySQL database. An example script running

BLAST and ARGOT is supplied to perform batch processes of

protein sequence annotation. The tool is available free to

academic users and can be downloaded from the following

URL: http://genomics.research.iasma.it/argot/index.html.

Construction of the test sets RES and YEAST
To test the efficacy of the ARGOT method, 10,000 sequences

were randomly extracted from the GOA database (release June

ARGOT Function Prediction Tool
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2007) with at least one GO term associated to perform the blind

test. No restrictions were applied in order to simulate a real

random test case. This test set was called RES (Randomly

Extracted Sequences) (see Fig. 2).

The method was further assessed by simulating the annotation

of a whole genome with a high level of annotation accuracy, such

as S. cerevisiae [36] (see Fig. 2 showing the evidence code

distribution), extracted from UniProtKB (release 12.0, June

2007). This test set was called YEAST.

Construction of a small reference test set
Comparison with other tools, which are not available for

downloading and hence with which it is not possible to perform an

extensive benchmark, was assessed on a well-annotated small

subset of sequences extracted from Uniref50 (release 13.0, March

2008). The sequences were chosen from those having at least one

GO term in their molecular function ontology and with at least

one non-IEA evidence code reported in the GOA database

(meaning that experimental data are available). Proteins carrying

only general and shallow GO terms in the graph, such as ‘‘protein

binding’’ (GO:0005155), were discarded. Further filtering was

applied on the basis of sequence similarity vs. UniProtKB (release

13.0, March 2008). To test effectively the performance of these

methods in retrieving the right annotation from hits with low

sequence identities, only proteins having at least 50 BLAST hits

and with the first hit in the range of 25–50% sequence identity,

were considered for testing. Further manual checks and pre-

processing of original annotations were carried out in order to

confirm protein functions. Selected sequences were then submitted

to the following servers: JAFA, GOtcha, PhyDBAC, GOblet,

Blast2GO, PFP, and InterProScan.

BLAST searches and TOPBLAST
The sequences of the two test sets were searched using BLAST

against UniProtKB (version 12.0, June 2007) with default values.

Those of the test set RES had been eliminated from the

UniProtKB databank before BLASTing and restrictions were also

applied to the YEAST test set in that all of the sequences from

Fungi were discarded.

The TOPBLAST [20] strategy is based on direct assignment of

GO terms extracted from the first top hits of the BLAST output.

These GO terms are used for functional transfer and annotation.

Sequence similarity is used as a cut-off to assess positive or negative

prediction (see the section ‘‘Statistical analysis’’).

Blast2GO
The same BLAST results produced for ARGOT annotation

were analyzed with Blast2GO [22], which was the only tool freely

available for local installation at the time of benchmarking. This

tool predicts function from BLAST results and is suitable for direct

comparison with ARGOT as it uses the same file source.

Statistical analysis
The performances of the methods were assessed using ROC

(Receiver Operating Characteristic) curves. The varying discrim-

ination thresholds for ARGOT were the three scores AC, InC and

Figure 2. Distribution of GO evidence codes in the test sets RES and YEAST. The evidence codes are as follows: Inferred from Direct Assay
(IDA), Inferred from Physical Interaction (IPI), Inferred from Mutant Phenotype (IMP), Inferred from Genetic Interaction (IGI), Inferred from Expression
Pattern (IEP), Inferred from Sequence or Structural Similarity (ISS), inferred from Reviewed Computational Analysis (RCA), Traceable Author Statement
(TAS), Non-traceable Author Statement (NAS), Inferred by Curator (IC), Inferred from Electronic Annotation (IEA). The y-axis reports the log2 value of
the distribution in each category. For further information on evidence codes, please see the GO annotation guide on the GO Home Page (http://www.
geneontology.org/GO.evidence.shtml).
doi:10.1371/journal.pone.0004619.g002
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TS, whereas for TOPBLAST sequence identity was used, as

explained below. To avoid undermining the accuracy of the

statistical assessment, the predicted GO terms were treated as

correct if and only if they were identical to the original annotations

of the test set. Using different permitted distances between the

correct and the predicted GO terms was not considered rigorous

nor biologically appropriate, as shown elsewhere [37]. The

quantities were calculated as follows:

TP (True Positive): the method assigned the right GO term

(good prediction)

FP (False Positive): the method assigned the wrong GO term

(bad prediction)

TN (True Negative): the method did not assign the wrong GO

term (good prediction)

FN (False Negative): the method did not assign the right GO

term (bad prediction)

‘‘Right GO term’’ refers to the real annotations of the test sets

and ‘‘wrong GO term’’ refers to errors.

In benchmarking the BLAST performance, we considered only

the first BLAST hit in the ‘‘top 1 BLAST’’ class up to the first five

BLAST hits in the ‘‘top 5 BLAST’’ class (see ROC curves in

Fig. 3(f) and Fig. 4(f)) and we chose the sequence identity

calculated by BLAST as the varying discrimination threshold. The

interval investigated ranged from 100% down to 40% with

decremental steps of 10% in sequence identity. A GO term was

counted as a positive prediction (either TP or FP depending on the

match with the real annotation) if it belonged to a hit found above

the current cut-off and conversely a negative prediction if found

below (either TN or FN). As expected, highly similar BLAST hits

are assumed to belong to the same protein family and hence share

the same GO terms. We did not eliminate this redundancy and

automatically counted GO terms as many times as they occurred.

We used this strategy because we observed that the same GO

terms were found both above and below the chosen threshold

causing problems for their correct evaluation. Blast2GO did not

report any score and version 1.2, which we used locally at the time

of benchmarking, was time consuming due to unpredictable stops;

we therefore limited the comparison to 4,000 sequences and

stopped the analysis after a one-month calculation. These

problems have now been solved in the current Blast2GO release.

To allow a fair comparison with Blast2GO we treated ARGOT

results as if they had the same score.

Specificity (TN/(TN+FP)) and sensitivity (TP/(TP+FN)) were

calculated and reported in the x-axis (1 - specificity) and y-axis

(sensitivity) of the ROC plots respectively. The ROC curve shows

the extent to which the method is able to obtain as many positive

results (increase of sensitivity) as possible at the expense of increasing

false positive predictions (decrease of specificity). To assess the

positive and negative predictive rate both the positive predictive

value (PPV = TP/(TP+FP)) and the negative predictive value

(NPV = TN/(TN+FN)) were calculated at those thresholds that

were chosen as having the best trade-off between positive and

negative predictions after the ROC curve analysis. These measures

are more intuitive as PPV accounts for the proportion of positive

results which are really true, whereas NPV accounts for the

proportion of negative results which are really false. The accuracy

parameter (ACC = (TP+TN)/(TP+FP+TN+FN)), which accounts

for the degree of closeness to the true result, was also calculated.

Results

Test set evaluation
Before starting the analyses, sequences belonging to the test set

RES were clustered at different identity thresholds using CD-HIT

[38] to confirm the unbiased composition, in terms of sequence

identity, of the randomly extracted proteins (see Table 1). A

further check was carried out to calculate the real coverage of

unique GO terms represented in the test set compared to their

total in the Gene Ontology graph (see Table 1). No quality checks

were performed on the test set YEAST as it represents the

proteome of an entire organism and the whole range of functional

classes is guaranteed. We also calculated the distribution of the

evidence codes that reflect the different types of associated

functional descriptions. As expected, a greater percentage of

curator reviewed annotations is present in the YEAST test set

compared with the RES test set (see Fig. 2). This is because over

95% of the deposited proteins in UniProtKB are inferred from

computational methods and not manually checked (IEA evidence

code). This does not entail that IEA annotated proteins are less

accurate than sequences with experimental evidence. Incomplete,

too generic, or erroneous information may affect even well-studied

proteins. For instance, a number of false positives may be found

even in high throughput yeast two-hybrid assays with consequent

erroneous functional assignments (IDA, IPI, or RCA evidence

codes) in the protein interaction maps [39]. However, reliable

progress has been made in the GOA consortium’s automatic

annotation pipeline and efforts have been made to limit the error

rate in the annotation records [40]. This has motivated us not to

discard IEA annotated proteins in the test sets nor in the databank.

In addition, the UniProtKB database for BLAST searches has

not been modified further and sequence redundancy has not been

reduced. In fact, sequences belonging to the same protein family

should carry the same functional features, but their annotations

may vary from sequence to sequence depending on varying

factors. One of these may be a certain asymmetry in the

relationship between sequences and their GO terms due to the

updating state of the databanks. A recent sequence submission

may improve on and outdate previous annotations for only one

member of a protein family, but the other members might not

benefit from this acquisition. Consequently, reducing complexity

and redundancy in sequence databases may negatively affect

efficient functional inference. ARGOT has been specifically

designed to annotate the starting query by finding the best

trade-off between specificity of GO terms and sequence features or

similarities to annotated hits.

ROC plot evaluation
We assessed ARGOT’s performance using ROC plots to test

the behavior and robustness of the method over different

thresholds of sequence identity. The assessment was carried out

at GO term level as the proteins of the test sets contain an average

of more than four GO terms each. For this reason, the

performance of the method cannot be effectively evaluated at

protein level as the assignment of an exact result over a wrong one

is uncertain, whenever a mix of correct and incorrect predictions is

recovered for every protein. In addition, the benchmark test was

designed to retrieve the original annotations of the starting

proteins in order to obtain the best unbiased view of the method’s

performance. Using semantic similarity or counting the minimum

edge distance of two terms in the GO graph, would result in an

overestimation of performance [2] and would not account for

particular cases where near concepts in the graph may be

biologically unrelated. At two edges distance, for instance, GO

terms may share the same parent node but have different

meanings, such as the GO identifiers GO:0004602 and

GO:0004096 which correspond respectively to ‘‘glutathione

peroxidase activity’’ and ‘‘catalase activity’’. Though both proteins

exert a ‘‘peroxidase activity’’ (common parent node GO:0004601),
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these enzymes have different catalytic mechanisms and belong to

different gene families. Using a benchmarking strategy based on a

permissive distance of two edges, would make no difference

between glutathione peroxidase and catalase as their molecular

functions are within the distance of two edges in the graph

structure. Consequently, if in the starting test set there is a

glutathione peroxidase which the method has predicted to be a

catalase, this benchmarking strategy would erroneously assess this

result as correct. For the same reasons, we have not considered

semantic similarity as an appropriate evaluation measure of the

benchmark results. Semantic similarity is a powerful technique for

clustering putatively related functions, but is not necessarily an

appropriate method for retrieving exact annotation as this strictly

depends on the cut-off, the graph structure and the measure used

[15,21,35].

behavior and meaning of AC, InC and TS Indexes
To give an overall idea of the functional assignment performed

by ARGOT we have developed three different and complemen-

tary indexes that may be useful in particular situations. Indeed, the

three indexes behave in almost the same way although there is a

slight prevalence of TS over the other two. The AC index is an

absolute measure and gives an idea of how far the extracted GO

term is from the maximal theoretical score. The lower the measure

the further the extracted annotation is from the hypothetical ideal

score, the latter being strictly dependent on how close or how far

hits are related to the query. The InC index, on the other hand, is

a conditional score that is calculated relative to all the retrieved

hits and is independent of the method used to score the hits.

Unlike AC, it does not depend on how the query relates to the

found hits and is particularly effective in retrieving the more

representative GO terms when hits share weak similarities with the

query. The different behaviors of the two scores are shown in

Fig. 3(c), 4(c) for AC and Fig. 3(e), 4(e) for InC. The AC trend is

negatively affected by low sequence identity whereas InC is more

stable, as expected. The net effect is that InC is more reliable with

low scoring hits compared to AC as well as to TS (see Fig. 3(d),

4(d)). When using AC scores, the cut-offs must be chosen carefully

taking into account how similar the hits are to the query (see cut-

off ranges in Table 2). Finally, the TS index is statistically more

robust as it considers how significant the GO term is using the Z-

score of the weighted nodes, and in most cases is more reliable

than AC and InC (see Fig. 3(a), 3(b), 4(a), 4(b)). In fact, the TS

score is the InC multiplied by the Z-score and, given the stable

trend of InC over different identity cut-offs, we expected TS to

improve upon InC in any identity range or, at least, to behave

similarly. The slight performance decrease is due to the fact that

when only low scoring hits are retrieved by BLAST these are few

and the rate of false positive alignments with unrelated sequences

increases. In this particular condition, the Z-score proves to be

ineffective and may negatively alter the InC index. The best cut-off

ranges for annotating sequences with ARGOT are reported in

Table 2.

Test set RES
The results of test set RES are reported in Fig. 3 for ARGOT

and TOPBLAST. Original GO annotations with UniProtKB

sequence accession numbers and the results of ARGOT are

supplied in the supporting material, Dataset S1 and Dataset S2

respectively. To check the robustness of ARGOT in predicting the

correct function at different sequence similarities we have plotted

the ROC100 in 3(a) with no restrictions applied to the sequence

identity shared between query and hits. In 3(b) the ROC40 plot

refers to over 700 sequences from our test set that share no more

than 40% sequence identity with first BLAST hits. We made this

distinction as most of the sequences of the test set share over 70%

sequence identity with first BLAST hits and this could positively

affect the assessment making functional inference an easy task. On

the contrary, comparison of the curves obtained at different cut-

offs and at 40% as shown in 3(b) has proven that ARGOT does

not suffer evident performance loss and still shows high sensitivity

without affecting specificity. What is unexpected is the great

heterogeneity found in the annotations of the BLAST results used

for assessing ARGOT. This is mainly due to a high false positive

rate as shown in 3(f). The ROC plot is even more remarkable

when the curve of the first BLAST hit is compared with those of

the first two up to the first five hits. Unexpectedly again, the first

hit does not seem to necessarily carry the correct information as,

under our test conditions, its ROC curve is always below the

others, although only slightly. In general, the overall trend of

TOPBLAST curves is not far from the no discrimination line (the

diagonal plotted line) and random guess. This proves that using a

simple sequence similarity approach like BLAST for functional

inference may not be so immediate nor trivial even at high

sequence identity [37]. BLAST may be highly sensitive as the

correct annotations can be extracted from the retrieved hits, but

this occurs at the expense of having poor specificity due to the high

number of false positives. As the main goal of every method is to

have a good trade-off between false and true positives, ARGOT

has been devised and tuned to take into account the potential false

positive hits of whatever method is used, including BLAST, for

functional annotation. This is accomplished by clustering the GO

terms on the basis of their semantic similarity and ranking them.

This allows ARGOT to outperform TOPBLAST as shown in

Fig. 3, where the curves of the different scores lie near the upper

left hand corner.

Test set YEAST
The results of test set YEAST are reported in Fig. 4 for

ARGOT and TOPBLAST. Original GO annotations with

UniProtKB sequence accession numbers and the results of

ARGOT are available in the supporting material, Dataset S3

and Dataset S4 respectively. Regarding the test set YEAST, the

robustness of ARGOT was checked at different sequence

similarities and we report in Fig. 4(a) the ROC100 plot, where

no restrictions were applied to sequence identity between query

and hits, and in 4(b) the ROC40 plot of over 600 sequences

sharing no more than 40% sequence identity with first BLAST

hits. As previously observed for the test set RES, the relative trends

of the ROC curves demonstrate that ARGOT does not suffer

evident performance loss and still shows high sensitivity without

affecting specificity when sequence identity drops. Most of the

conclusions and observations made with respect to test set RES

apply just as well here, but some differences are worth mentioning.

Figure 3. ROC plots of the benchmark test set RES. In (a) the results of InC, AC and TS scores are reported for hits under 100% sequence
identity (ROC 100 plots). In (b) the performances of the three indexes are reported for low sequence similarity hits below 40% identity (ROC 40 plots).
In (c), (d), and (e) the AC, TS, and InC scores are shown respectively, with comparisons of their trends at low (ROC 40 plots) and high (ROC 100 plots)
sequence similarity. In (f) the annotations of up to the first top five BLAST hits are evaluated (TOPBLAST). See M&M for further details.
doi:10.1371/journal.pone.0004619.g003
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There is a general worsening of tool performance (see Table 2)

given that the areas under the curves (AUC) are smaller than those

of Fig. 3. Different factors contribute to this performance loss and

one of them is certainly the elimination from UniProtKB of all the

sequences from the Fungi kingdom that S. cerevisiae belongs to.

BLAST hits confirm that a higher ratio of distantly related

proteins and fewer hits were found compared with test set RES

(see Table 3). In addition, yeast is the most studied eukaryotic

organism for which a huge amount of experimental data and

highly detailed annotations, with an average of seven GO terms

per protein, are available (see Fig. 2). These annotations are

infrequent, even rare, in GOA and consequently difficult to

retrieve. BLAST itself was able to recover only 44% of yeast GO

annotations versus over 95% for the test set RES. The problem lies

with the similarity search rather than with ARGOT as shown in

Fig. 4(f), where BLAST is worse than in Fig. 3(f). In this case the

ROC curves are closer to the diagonal of random guess and are

almost straight lines. This confirms the presence of a higher

number of false positives together with low coverage of correct GO

terms in the BLAST results. Again, it is worth pointing out that the

previously observed trend of the first BLAST hit is confirmed and

constantly worse than in the other curves. In this case the tendency

to consider more BLAST hits for functional inference seems to

improve the chances of getting the correct annotation, the curve of

the first five BLAST hits being the best (see ‘‘top 5 BLAST’’ in

Fig. 4(f)). This is true only if first BLAST hits are taken into

account since increasing their number lowers performance, as one

might expect (data not shown).

ARGOT versus Blast2GO
We compared ARGOT with Blast2GO over the same BLAST

results (see supporting material Dataset S5) obtained for 4,000

proteins from the test set YEAST. The lack of a score associated to

the retrieved GO annotations did not allow us to plot a ROC

curve and we could not calculate false and true negatives. The only

parameter we evaluated was PPV (see Table 2) and the value

obtained was 0.71 whereas the worst ARGOT index was 0.83 for

TS = 3 and the best 0.93 for InC = 0.3. Overall improvement,

Figure 4. ROC plots of the benchmark test set YEAST. In (a) the results of InC, AC and TS scores are reported for hits under 100% sequence
identity (ROC 100 plots). In (b) the performances of the three indexes are reported for low sequence similarity hits below 40% identity (ROC 40 plots).
In (c), (d), and (e) the AC, TS, and InC scores are shown respectively, with comparisons of their trends at low (ROC 40 plots) and high (ROC 100 plots)
sequence similarity. In (f) the annotations of up to the first top five BLAST hits are evaluated (TOPBLAST). See M&M for further details.
doi:10.1371/journal.pone.0004619.g004

Table 1. Some details of sequence and GO composition in
the test set RES.

GO coverage 40.2%

Cluster identity Redundancy

90% 4.15%

80% 7.00%

70% 11.10%

60% 16.50%

50% 23.30%

GO coverage represents the percentage of unique and different GO terms in
the test set RES calculated over the whole Gene Ontology. The cluster identity
accounts for the fraction of sequences, expressed as percent in the
‘‘redundancy’’ column, sharing different levels of sequence identity reported in
the ‘‘cluster identity’’ column.
doi:10.1371/journal.pone.0004619.t001

Table 2. Results of the three indexes for the test sets RES and
YEAST are reported.

YEAST 100 Cut-off SENS SPEC PPV NPV ACC

TS 3 0.94 0.34 0.81 0.63 0.79

5 0.84 0.64 0.88 0.56 0.79

InC 0.2 0.84 0.69 0.89 0.59 0.81

0.3 0.72 0.82 0.93 0.48 0.74

AC 0.3 0.82 0.58 0.86 0.51 0.76

0.4 0.75 0.67 0.88 0.46 0.73

YEAST 40

TS 3 0.95 0.37 0.76 0.80 0.76

5 0.83 0.65 0.83 0.66 0.77

InC 0.2 0.90 0.61 0.83 0.75 0.81

0.3 0.78 0.74 0.86 0.63 0.77

AC 0.05 0.92 0.43 0.77 0.73 0.76

0.1 0.86 0.59 0.81 0.67 0.77

RES 100

TS 3 0.98 0.87 0.77 0.99 0.90

5 0.95 0.90 0.81 0.98 0.92

InC 0.2 0.97 0.82 0.71 0.98 0.87

0.3 0.90 0.85 0.73 0.95 0.86

AC 0.3 0.93 0.85 0.73 0.97 0.88

0.4 0.89 0.88 0.76 0.95 0.88

RES 40

TS 3 0.95 0.85 0.69 0.98 0.87

5 0.88 0.89 0.74 0.95 0.89

InC 0.2 0.96 0.81 0.65 0.98 0.85

0.3 0.90 0.86 0.71 0.96 0.87

AC 0.05 0.93 0.78 0.60 0.97 0.82

0.1 0.84 0.85 0.67 0.93 0.85

YEAST 4000

TS 3 0.93 0.35 0.83 0.60 0.80

5 0.84 0.64 0.89 0.53 0.79

InC 0.2 0.84 0.69 0.90 0.55 0.80

0.3 0.72 0.82 0.93 0.45 0.74

AC 0.3 0.84 0.55 0.87 0.49 0.77

0.4 0.77 0.65 0.88 0.44 0.74

Blast2GO default - - 0.71 - -

Two cut-offs, chosen on the basis of more or less stringent criteria, are reported
for each of the three scores. These thresholds represent the best trade-off
found after ROC plot analyses. The cut-offs are 3, 5 for TS, 0.2, 0.3 for InC, 0.3, 0.4
for AC in RES 40 and YEAST 40 and 0.05, 0.01 for AC in YEAST 100, RES 100 and
YEAST 4000. The first value represents the less stringent threshold. Sensitivity
(SENS), specificity (SPEC), positive predicted value (PPV), negative predicted
value (NPV), and accuracy (ACC) have been calculated for low sequence
similarity hits below 40% identity (RES 40 and YEAST 40) and for high sequence
similarity hits under 100% identity (RES 100 and YEAST 100). YEAST 4000 refers
to the benchmarking subset of 4,000 yeast sequences used to make the
comparison with Blast2GO performance (see text for further details).
doi:10.1371/journal.pone.0004619.t002
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under our benchmark conditions, was not marginal with ranges

from 15% to 25% depending on the cut-off and score used.

Evaluation and manual inspection of the small reference
test set

After the automatic procedure of extraction and manual check,

28 proteins satisfying our requirements (see M&M) were tested

with six web tools (JAFA, GOTCHA, PhyDBAC, GOblet, PFP,

InterProScan) and two local tools (ARGOT and Blast2GO).

Performance of the external tools may be overestimated as they

take advantage of the presence of the sequences themselves in

protein databanks. For this reason, we have not discarded them

from the BLAST results when assessing ARGOT and Blast2GO in

direct comparison. In any case, the impact of their absence in the

protein databank has been evaluated and reported in Table 4,

Table 5 and supporting material Table S1 as ‘‘ARGOT W/O’’

(ARGOT without) and ‘‘Blast2GO W/O’’ (Blast2GO without).

Whenever applicable, cut-offs were applied according to default

values. GOblet was queried with an e-value of 10e21, GOtcha

with a 10% cut-off when used in JAFA and 30% when alone, and

finally ARGOT with TS = 3. The complete results for ‘‘molecular

function, ‘‘biological process’’ and ‘‘cellular components’’ pro-

duced by ARGOT are reported in the supporting material Table

S2 for both ‘‘ARGOT’’ and ‘‘ARGOT W/O’’ tests.

Manual inspection allowed the meaning of correct annotation to

be extended to close parent or child nodes and to give the reader

accuracy at both protein (see Table 4) and GO levels (see Table 5)

taking into account the ‘‘molecular function’’ ontology. The results

were sorted into categories according to the match of the ‘‘best

scoring hit’’ with the original UniProtKB annotation as follows

(see Table 4): if no scores were available, as in the case of

InterProScan and Blast2GO, all terms were considered equally.

Table 5 reports the same results with evaluation of every single

GO term prediction.

Four tools yielded results for more than 75% of the query

proteins (PFP, JAFA, GOblet, and ARGOT) but ARGOT alone

scored over 70% good results without erroneous annotations

(Tables 4 and 5). In the worst case of ‘‘ARGOT W/O’’, coverage

at protein level was 78% and at GO level almost 55% with a PPV

of 0.88 whereas in the best scenario it reached 100% and 79%

coverage at the protein and GO levels respectively, with a PPV of

0.92 (see Tables 4 and 5). Blast2GO, InterProScan, and GOtcha

scored .50% good annotations but only 20% to 50% of the

queries produced results. The analysis performed after discarding

the query protein from the databank demonstrates the efficiency of

both ARGOT and Blast2GO tools despite lower coverage and an

increase in false positives. In our test conditions, ARGOT

performed better than the other tools, while JAFA, taking

advantage of the joint predictions from GOblet, GOtcha,

InterProScan and PhyDBAC, proved to be the best of the rest.

Indeed, PhyDBAC was shown not to work properly considering

that most of the proteins were from eukaryotic sequences and the

tool had been specifically designed to predict the function of

bacterial proteins from genomic context. On the other hand, the

performance of GOtcha was affected by the chosen cut-off of 30%,

suggested by the authors to avoid false positives [20] but negatively

influencing coverage. Finally, PFP reached a high level of coverage

and one more specific annotation but in our conditions it turned

out to have a high false positive rate.

Three example cases in detail
As mentioned above, manual inspection by expert users is of

great value in exploring and assessing all of the possible functional

features of a protein. Pre-processing and study of the 28 selected

proteins revealed all of the expected limitations of automatic

evaluation for large sets of sequences. Correct predictions would

have been either rejected or considered false unless a careful

manual inspection had been applied. We report here two different

Table 4. Results of the function prediction tools over a selected test set of 28 proteins.

tool cut-off
results on
28 proteins good more specific

uncertain
good false positive uncertain bad

PFP default 28 1 1 9 9 8

ARGOT TS = 3 28 23 2 2 - 1

JAFA GOblet 10e201, GOtcha 10% 22 16 - 2 1 3

GOblet 10e201 22 14 - 1 6 1

Blast2GO default 13 11 - 1 1 -

InterProScan default 10 10 - - - -

GOtcha 30% 5 2 1 2 - -

PhyDBAC default 2 1 - - 1 -

ARGOT W/O TS = 3 22 17 2 - 1 2

Blast2GO W/O default 10 8 - 1 1 -

The reported data refer to annotation precision at the protein level: i) good, when all terms were either identical to the UniProtKB annotation, parental or related to the
molecular function described for the same protein family; ii) more specific, if the annotation was good and one or more terms were child/children of the UniProtKB term;
iii) uncertain good, when the first term was exact but others with high scores were false positives; iv) false positive, when all terms were not good; v) uncertain bad, if the
first term was false positive and others had scores above the cut-off.
doi:10.1371/journal.pone.0004619.t004

Table 3. The figures represent the percentages of BLAST
results with the first hit under different thresholds.

Identity RES YEAST

40% 7% 11%

60% 22% 38%

80% 43% 65%

The test set YEAST shows a higher percentage of low scoring hits compared to
the test set RES.
doi:10.1371/journal.pone.0004619.t003
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cases, originally annotated with generic GO terms, that some tools

were able to refine in more detail and to catch inner functional

features. These particular case study examples are listed in the

supporting material Table S3. The first sequence, Q54EY2, is a

subunit of the translation initiation factor (eIF-2B) which catalyzes

the exchange of eukaryotic initiation factor 2-bound GDP for

GTP [41] in D. discoideum. The original GO description defines its

molecular function as a generic ‘‘GTP binding’’ property but the

subunit was correctly assigned the more specific guanyl-nucleotide

release factor activity by ARGOT, PFP and Blast2GO. This is an

evident example of the incompleteness of annotations in databanks

negatively affecting automatic evaluation of benchmark results as

the two GO terms ‘‘guanyl-nucleotide exchange factor activity’’

(GO:0005085) and ‘‘GTP binding’’ (GO:0005525) are in different

branches of the GO graph and do not share a parent. The distance

between them is great, even with a semantic similarity approach.

Any automatic assessment would inevitably evaluate this result as

false positive. The second protein, Q9RC23, is the mersacidin

decarboxylase (EC 4.1.1.-) from Bacillus sp., a homodecameric

lyase that catalyzes the oxidative decarboxylation of the C-

terminal cysteine residue of mersacidin to an aminoenethiol

residue [42]. Again, the UniProtKB databank reports only the

generic GO terms ‘‘oxidoreductase activity’’, ‘‘lyase activity’’ and

‘‘catalytic activity’’, but experimental evidence suggests that this

protein may possess a phosphopantothenoylcysteine decarboxylase

activity or, at least, that the enzyme may belong to the protein

family whose members have been demonstrated to catalyze this

reaction. This result was obtained with ARGOT, Blast2GO,

JAFA, GOtcha and PFP. The same conclusions as those drawn for

the Q54EY2 protein when making an automatic functional

assessment may be drawn here. On the other hand, the last

example, protein O94436, is a transcription initiation factor

TFIID subunit 14 [43] which was erroneously predicted as a

translation factor by ARGOT. This is due to the fact that first

scoring hits (UniProtKB accession numbers are: A1CBG5,

A1DDX4, Q2U688, Q6M9J3, A5DUJ4, Q4WVI2) were errone-

ously annotated as translation factors with GO terms belonging to

the IEA category (as of March 2008). These proteins are, in fact,

transcription factors but in this particular case the reported IEA

annotations are incorrect. Both the biological process and the

cellular component of these hits properly refer to their transcrip-

tion factor activity and complexity respectively. Indeed, ARGOT

assigned the correct biological process and cellular component as

expected (see supporting material Table S2). This is a clear

example of how IEA invalid annotations, being completely

automatic, can propagate in the databanks.

Discussion

The present work deals with the implementation of a fast

annotation system which is able to cluster GO terms on the basis

of their semantic similarity and their calculated weights. The

grouping of these clusters allows for detection of highly populated

areas of the graph and significant representatives are chosen based

on their information content and weight that take into account

how biologically similar they are to the query. The latter

information may be acquired by simply performing a similarity

search using BLAST, as we have shown here for benchmarking.

To our knowledge, this is the first integrated approach that

implements both a weighting scheme and semantic similarity to

select the correct annotation. This approach has proven to be

more effective than other methods, especially TOPBLAST. We

based our test on simple BLAST results, and it may be argued that

this sounds neither attractive nor novel. We partly agree with this

view, but it must be borne in mind that the majority of the most

sophisticated methods developed so far still rely on different

strategies based on similarity searches, profiles, etc. for functional

inference [4]. Moreover, it is common practice to use BLAST or

other similarity search tools to query protein databanks first [44].

Furthermore, fresh data and updates to new and old protein

records are usually submitted to primary repositories such as

UniProtKB, but this knowledge takes time to propagate and to

become available in specialized databases, such as those consisting

of protein domains. The only way to get immediate access to this

information is by querying primary databases using a similarity

search. Unfortunately, other deficiencies affect databanks and

submitted sequences usually lack annotations in the form of GO

terms or may be incomplete or obsolete [17]. The GOA

consortium is making a considerable and timely effort to rectify

these deficiencies and some improvement has already been made.

Having easy access to the source of raw data may, in any case,

Table 5. Results of the function prediction tools over a selected test set of 28 proteins.

total n. of
GO terms TP

related
terms (RT)

more specific
(MS) FP

coverage %
(TP+RT+MS)/62

PPV (TP+RT+MS)/
(TP+RT+MS+FP) cut-off

Original annotation 62

ARGOT 52 43 2 4 4 79.03 0.92 3

Blast2GO 22 14 2 1 5 27.42 0.77 not applicable

GOblet 32 13 7 0 12 32.26 0.63 10e-1

InterProScan 12 11 1 0 0 19.35 1.00 not applicable

GOtcha 42 8 25 1 8 54.84 0.81 30%

PhyDBAC 4 0 2 0 2 3.23 0.50 not applicable

JAFA 38 22 7 2 7 50.00 0.82 not applicable

PFP 140 21 19 3 97 69.35 0.31 not applicable

ARGOT W/O 39 25 6 3 5 54.84 0.87 3

Blast2GO W/O 18 9 3 1 5 20.97 0.72 not applicable

The reported data refer to annotation precision at the GO level. The starting subset is composed of 62 annotations and predictions have been considered as i) true
positive (TP) if the same as the original annotations, ii) more specific (MS) if a more precise functional description was obtained, iii) related terms (RT) if the prediction is
either similar to or more generic than the original ones and iv) false positive (FP) if completely wrong.
doi:10.1371/journal.pone.0004619.t005
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make a difference. ARGOT exploits directly this primary

information and, moreover, has been designed to be independent

of BLAST in future releases. This will allow us to overcome the

present limitations of BLAST searches, which suffer from various

defects [45] such as: i) those concerning the local alignment

strategy when dealing with multiple domain proteins, ii) the

inability to find distantly related sequences sharing low or no

similarity but having the same function, iii) the false positive rate

that we and other authors have demonstrated to be high [37], iv)

excessive transfer of annotations, especially when dealing with

paralogs versus orthologs [3].

Another important question that still remains unanswered is the

design of an acknowledged standard to perform rigorous and easy

comparable benchmarks [12,13,46]. In addition, the frequent

changes and updates in both the Gene Ontology graph structure

and the GOA database of annotations need to be traced, as

changes may affect true comparisons between methods developed

and assessed over different benchmark test sets at different times

[40,47]. There is an open debate and worth attempts have been

proposed as the AFP endeavor [48]. The issue is indeed a thorny

one as there is not even agreement over the definition of protein

function, one of the most elusive concepts in biology for the

reasons mentioned in the introduction and, more importantly,

there are still few and incomplete experimental data to be

efficiently exploited [13]. This is evident in the restricted and well-

studied set of 28 proteins which lack certain valuable GO

annotations. This incomplete and fragmented knowledge impacts

the false positives rate as shown by the analyses of the reported

cases. Indeed, the real dimension of this phenomenon is difficult to

quantify, but it may limit and affect rigorous evaluation of an

automatic, comprehensive, and extended blind test over thousands

of proteins. Any solution may be flawed and manual intervention

is not viable especially when dealing with large sets of sequences.

This is why we decided not to complicate the function prediction

benchmark. We used a plain and conservative approach where

only the recovery of exact original annotations was taken into

account, to avoid bias or overestimation of tool performance. Even

though this is a rough measure and a controversial approach, it is

certainly one of the best alternatives to an unfeasible manual

control over all the sequences of the test set. In any case, the more

sequences that are tested the more the intrinsic biases and defects

of the benchmarking should become statistically marginal.

Finally, ARGOT has proven to be a fast and precise tool whose

main goal is to manage easily thousands of proteins in a typical

large scale genome project [28], but can also be effective on a

small scale and for single protein annotations, in order to gain

general insights into putative functions [29]. In the former case,

the updating of many thousands of sequences, whose BLAST

results have been acquired already, is a matter of a few hours on

an ordinary desktop computer and can be easily performed on a

weekly basis. This allows for comparison between the different

annotation releases to be made in order to trace differences over a

given time-span and for the functional annotations to be kept

updated. In the latter case, we have demonstrated the efficiency of

the ARGOT tool over a small set of 28 sequences with particular

annotations and low sequence similarities with known proteins. Its

levels of sensitivity and specificity are, in fact, encouraging

reaching values of 0.95 and 0.87 respectively using the TS index

(TS = 3 for RES 100 test set). When there is low sequence

similarity the InC index (InC = 0.3 for RES 40 test set) still shows a

high degree of confidence with 0.90 sensitivity and 0.86 specificity.

These data were confirmed in the small test set of 28 proteins

where accurate manual investigation allowed the intrinsic

limitations of automatic assessment to be bypassed.

Future developments are planned to be able to implement

different sources of data, such as the integration of protein domain

profile searches and specialized protein databanks annotated with

GO, in order to improve the functional coverage and predictive

power tested over BLAST and UniProtKB.
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