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Abstract

Background: Several authors, most prominently Jared Diamond (1997, Guns, Germs and Steel), have investigated
biogeographic determinants of human history and civilization. The timing of the transition to an agricultural lifestyle,
associated with steep population growth and consequent societal change, has been suggested to be affected by the
availability of suitable organisms for domestication. These factors were shown to quantitatively explain some of the current
global inequalities of economy and political power. Here, we advance this approach one step further by looking at climate
and soil as sole determining factors.

Methodology/Principal Findings: As a simplistic ‘null model’, we assume that only climate and soil conditions affect the
suitability of four basic landuse types – agriculture, sedentary animal husbandry, nomadic pastoralism and hunting-and-
gathering. Using ecological niche modelling (ENM), we derive spatial predictions of the suitability for these four landuse
traits and apply these to the Old World and Australia. We explore two aspects of the properties of these predictions, conflict
potential and population density. In a calculation of overlap of landuse suitability, we map regions of potential conflict
between landuse types. Results are congruent with a number of real, present or historical, regions of conflict between
ethnic groups associated with different landuse traditions. Furthermore, we found that our model of agricultural suitability
explains a considerable portion of population density variability. We mapped residuals from this correlation, finding
geographically highly structured deviations that invite further investigation. We also found that ENM of agricultural
suitability correlates with a metric of local wealth generation (Gross Domestic Product, Purchasing Power Parity).

Conclusions/Significance: From simplified assumptions on the links between climate, soil and landuse we are able to
provide good predictions on complex features of human geography. The spatial distribution of deviations from ENM
predictions identifies those regions requiring further investigation of potential explanations. Our findings and
methodological approaches may be of applied interest, e.g., in the context of climate change.
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Introduction

Differences in economic traits and the distribution of wealth

amongst the peoples of the world are of concern for understanding

human history [1] as well as in applied macroeconomics [e.g., 2–4].

Food production is the most basic aspect of economy, as pointed out

e.g. in [5]. It is the foundation of sustainable wealth and persistence

of societies. Only very few societies, if any, could make themselves

independent from local food production for any long periods of

time. Four basic types of landuse can be distinguished: Hunting-

and-gathering, which directly exploits resources of the land;

nomadic pastoralism, which uses domesticated animals to make

use of natural primary productivity; agriculture, which controls

primary productivity by growing domesticated plants; and seden-

tary animal husbandry, which uses domesticated animals as

addition or alternative to agriculture, making use of primary

productivity and/or agricultural products as food for livestock.

While earlier speculations implied, directly or indirectly, that

economic differences among the peoples of the world are due to

differences between cultures, races or individual governmental

decisions, several authors [e.g. 1,6] have begun to propose a

biogeographic explanation of the ultimate reasons behind these

differences. According to Diamond’s narrative [1], several aspects

of ecological and geographic conditions, such as the availability of

plants and animals suitable for domestication, were pivotal to the

different timings of the transition from hunter-and-gatherer

lifestyles to agriculturalist or pastoralist societies (i.e., the ‘neolithic

revolution’, [7]). Resulting changes in population densities then

had cascading effects of societal and cultural development. While

Diamond’s supporting evidence [1] was largely anecdotal,

subsequent statistical modelling and testing supported the validity

of the general idea [e.g., 8–10, but see 11].

Diamond [1] also provided manifold examples of how

consequent advantages lead to a recurring pattern of cultural or

physical genocide of hunter-and-gatherers by agriculturalists

throughout history [see also 12,13]. Reports of conflicts between

followers of different landuse forms are known since the earliest of

written history (e.g. agriculturalist vs. nomads, cf. Cain vs. Abel),
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and they can still be seen at least as indirect factors in some

modern-day conflicts.

In this paper we explore the hypothesis that the spatial

distribution of basic landuse types is determined solely by climate

and soil conditions. This can be viewed as a ‘null model’ [14] for

historical and social research on the topic: What would we expect

if there were no historical legacies, no cultural preferences or other

contingencies, but if all people had chosen their landuse in light of

the suitability of local climate and soil? In particular, we are

interested in what regions large deviations occur between our

model and reality. Here, we propose, further investigation on

additional, e.g. cultural and historical factors may be particularly

worthwhile.

To map the spatial distribution of the suitability for landuse

types we used ecological niche modelling (ENM), an approach

commonly applied to estimate geographic distributions of species

[15] (i.e., we replaced ‘species’ with ‘landuse type’). We are not

aware of previous attempts to predict cultural traits with this

method, but there are other exemplar cases of concepts and

models from ecology and evolution proving successful to research

questions in cultural systems [16–18].

Specifically, we explored the output of our ‘null model’

predictions for the following questions.

1. How good do the models match reality, and where do they

differ?

2. In what regions are there conditions of similar quality for

different landuse types? Actual landuse in these regions will be

ambivalent to predict, but these regions may highlight potential

conflict zones between peoples of different landuse traditions.

3. How are population densities and economic ‘‘power’’ related to

modelled suitability of landscapes for agriculture, and where

are deviations?

Methods

We restricted the geographic extent of our research to the Old

World including Australia (i.e., 25uW–180uE longitude, 60uS–

90uN latitude). We worked in a spatial resolution of ca. 565 km

raster cells (i.e., grid cells with a side length of 2.5 arc minutes,

working in geographical projection). All necessary manipulation of

data as well as map creation was carried out in a geographic

information system (GIS; software ArcGIS 9.2).

Economic trait data
For each of the four landuse types (hunting-and-gathering,

nomadic pastoralism, sedentary animal husbandry and agricul-

ture) we compiled between 47 and 290 ‘presence records’,

respectively. Each one indicated a site (defined by geographical

coordinates) where this form of landuse is currently practised. To

reduce data non-independence due to spatial autocorrelation [19]

and cultural contingencies, we used only few site records within

each ethnic group, defined by cultural and linguistic categories.

This should reduce the effect of members of ethnic groups sharing,

among many other cultural traditions, their ways of landuse. See

Table S1 for details, data and sources.

Environmental data
We used climate data from [20], a compilation of monthly data

of 30 year averages (1961–1991) that were interpolated to almost

the entire world. These data entered the model as continuous data,

whereas a soil classification from the Food and Agriculture

Organization of the United Nations (FAO, World Soil Resources

Coverage; http://www.fao.org/ag/agll/wrb/soilres.stm) was ras-

terized and used as categorical data. Data were reclassified to the

latest FAO soil type classification (32 soil types).

Modelling and model evaluation
Ecological niche modelling has been championed in recent

years to provide good estimates of species’ geographic ranges

despite limited survey data being available [15,21,22]. We used

maximum entropy modelling (Maxent; [23,24]), which is currently

regarded as one of the best methods available [25]. Output from

Maxent models is the probability of occurrence for a given landuse

type, which we tentatively term ‘‘suitability’’ throughout this paper

(see Discussion). We used response curves to describe the (partial)

effects of the most important variables in the models. Responses

are selected for best predictive ability [see 24 for details]. Although

they may sometimes elucidate functional relationships, it is

important to point out that they do not represent any proof of

relationships in a null hypothesis testing framework. The area

under the receiver-operating characteristic (AUC) from cross-

validation was used as a standard measure of model quality. We

included details on modelling and model evaluation in File S1.

Table 1 gives an overview to environmental variables used for

each of the four models.

Table 1. Environmental variables used for Maxent models.

Variable Type AGR ANIM PAST HG

Altitude CON X X X X

Annual temperature range CON X X X X

Annual temperature maximum CON X X

Maximum temperature of warmest month CON X

Mean monthly temperature range CON X X X X

Mean annual temperature CON X X X

Mean temperature of the coldest quarter CON X X X X

Mean temperature of the warmest quarter CON X X X X

Mean temperature of the wettest quarter CON X X X X

Mean temperature of the driest quarter CON X X X X

Annual temperature minimum CON X X X

Minimum temperature of the coldest
month

CON X X X

Annual precipitation CON X X X X

Precipitation of the wettest quarter CON X X X

Precipitation of the driest quarter CON X X X X

Precipitation of the warmest quarter CON X X X X

Precipitation of the coldest quarter CON X X X

Precipitation seasonality CON X X X X

Soil CAT X X X X

CON denotes continuous, CAT categorical variables used for Maxent modelling
of agriculture (AGR), sedentary animal husbandry (ANIM), nomadic pastoralism
(PAST) and hunting-and-gathering (HG). Variables used for a particular landuse
model are denoted by X, whereas red printing indicates that a variable was
often among the three most influential variables (based on 10 model runs).
Restriction to chosen variables was based on preliminary model trails (not
detailed here) and some logical reasoning (e.g., using climate variables in
relation to season rather than to month, considering the trans-equatorial extent
of our study). See main text for the shape of effects of some variables in the
models. Note that Maxent ENM is not designed as null hypothesis test on the
effect of particular variables.
doi:10.1371/journal.pone.0010416.t001
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We used a FAO landuse classification (http://www.fao.org/nr/

lada/index.php?/maps/Maps-lada/) as an independent assess-

ment our model predictions. We converted modelled suitability

into a presence-absence prediction on landuse types (see File S1 for

details). FAO categories were re-classified to fit our landuse types,

but only for agriculture we see enough reliability to present in

detail data of a comparison between FAO ‘‘reality’’ and our model

prediction. We must point out that uncertainty was encountered in

how to classify various ‘‘mixed’’ categories in the FAO data, and

we applied an ‘‘agriculture if in doubt’’ strategy. Therefore, results

based on the FAO data must be viewed with care.

Further analyses
To map areas where two landuse types (lut1 and lut2) would

have similar, and high, values of suitability, we designed an ‘index

of shared suitability’ (ISS).

ISS~ 1{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lut1{lut2ð Þ

p 2
� �

|
lut1zlut2ð Þ

2

ISS will reach values close to one where two landuse types are both

well suited; it will be close to zero where one is clearly better than

the other, or where both are bad. We presume that high ISS are a

precondition of conflicts over the ‘‘best’’ form of landuse, which

may translate into conflicts between cultures with different

traditions in this respect.

We used population data provided by LandScan (for the year

2005; http://gcmd.nasa.gov/records/GCMD_Landscan.html) to

relate agricultural suitability to population density (data per km2,

interpolation averages for our ca. 565 km cells). We extracted a

sample of 2000 randomly chosen points (using Hawth’s tools,

http://www.spatialecology.com/htools/) and carried out regres-

sion analyses on this sample, using a log10(x+1) transformation of

population data (software Statistica 8). We assessed the statistical

significance of linear relationships by using spatial correlation

(adjusted degrees of freedom, Dutilleul’s method, implemented in

software by [26]) to account for spatial non-independence in raster

data. We calculated both, a linear regression of suitability and log-

transformed population density, and a breakpoint regression. We

extrapolated these models to the entire region, re-exponentiated

data, and mapped residuals from the ‘‘true’’ population data.

Following the approaches of [8] and [10] to test Diamond’s

hypothesis [1] on why some regions are more ‘‘powerful’’

politically and economically than others, we also related modelled

suitability for agriculture to economic data. Unlike earlier authors

we used a correction of gross domestic product data (GDP) known

as purchasing power parity (PPP; e.g. [27]). PPP acknowledges

that currency exchange rates sometimes do not reflect the true

value of wealth generation due to trade imbalances and/or active

manipulation of exchange rates. One PPP currency unit may be

interpreted as having the same purchasing power of a locally

produced good. We used data of GDP-PPP per grid cell for the

year 2000 ([28]; available at http://gecon.yale.edu/, version

2.11).We applied the same analytical procedures as for agricultural

suitability - population density correlations.

We used a database of post-1945 armed conflict (Peace

Research Institute, Oslo (PRIO): georeferenced localities and

approximate radius of conflict; http://www.prio.no/) for an initial

quantitative evaluation of ISS (agriculture–pastoralist) predictions.

Sites were classified as ‘‘conflict’’ or ‘‘no conflict’’, and a logistic

regression model with ISS as predictor was applied to a random

sample of 500 localities. We controlled for spatial autocorrelation

by including spatial eigenvectors as predictors [29, selected

according to default settings in software by 26].

Results

1) Model predictions
Model output for the four landuse types as presented in Fig. 1,

GIS-compatible data are available for detailed inspection and

further use (Data Sets S1, S2, S3, S4).

Agriculture. Suitability for agriculture is clearly non-

randomly distributed, with regions of high values being found in

the wet tropics and in some temperate regions, particularly

Western Europe, in the Ethiopian highlands, East Africa around

Lake Victoria, subtropical East Asia, the Himalaya foothills, south-

eastern Australia and New Zealand. Many fine-scaled patterns

cannot be discussed here in detail for space limitation.

With an AUC of 0.870 (average of 10 models), predictive

qualities of the model can be considered good. The most

influential environmental predictor variables (from their relative

contribution to 10 model runs) are detailed in Table 1. These three

variables explained, on average, .60% of data variance.

Response curves (after consideration of the effects of other

variables in the model) give account of how variables entered

ENMs for best predictive performance; they do not represent tests

of a priori hypotheses. For agriculture, they indicated a generally

positive relationship between agricultural suitability and annual

precipitation, a negative link with annual temperature range, and

a unimodal relationship with precipitation in the wettest quarter

(with maximum suitability in regions of relatively low precipita-

tion). Notably, climate appeared much more important than soil

types in the multivariate model.

Sedentary animal husbandry. Similar to agriculture,

western, central and southern Europe, East Africa, Iran,

southern Australian and New Zealand are considered suitable

for sedentary animal husbandry. In contrast to agriculture,

however, tropical West Africa and tropical Asia are considered

highly unsuitable, whereas southern Africa is indicated as a

suitable region.

Model quality is good with an AUC of 0.899. The most

important variables are detailed in Table 1. Suitability of animal

husbandry is very low at minimum temperatures below 215uC,

whereas it follows a unimodal function with a peak at ca. 5uC
above that. Gleyosols, planosols, andosols, cambisols and luvisols

were among the soil types associated with high suitability for

animal husbandry in the model. With regard to precipitation of

the wettest quarter, suitability had a sharp unimodal peak at low

precipitation and dropped to zero above that.

Nomadic pastoralists. The predicted suitability of nomadic

pastoralist follows a different pattern than that of agriculture, with

good areas in the southern Sahara, the drier parts of East Africa,

parts of the Arabian peninsula, Iran, arctic Scandinavia, central

Asia and parts of Siberia. Parts of the Mediterranean and eastern

Hungary are also suitable.

However, the model was considered markedly less precise with

an average AUC of 0.683. Soil type was very important for

predicting this trait, explaining 47% of variance on average.

Histosols, gleyosols, leptosols and phaeocems were soil types that

indicated the occurrence of nomadic pastoralists in the model. The

three most important variables (Table 1) explained, on average,

almost 70% of variance. Suitability decreased steeply with

precipitation in the warmest quarter, and it increased monoton-

ically with altitude (partial effects in the multivariate model).

Hunters-and-Gatherers. Hunters-and-gatherers find highly

suitable habitat, according to our model, in the wet tropics of

Africa and the Malay Archipelago, in the deserts of southern

Africa and Australia, and parts of the Arctic and Subarctic,

particularly eastern Siberia. Interestingly, highly suitable areas are

Climate, Soil and Landuse
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also located around the lower Ganges and Brahmaputra rivers

(i.e., Bangladesh and eastern India), the Mekong delta, and across

large parts of Japan. The classification of fishing as parts of a

hunter-and-gatherer strategy may be responsible for this effect.

The model is considered good with an AUC of 0.867. The three

most important variables (Table 1) explained an average of 69% of

data variability. Modelled suitability increased with increasing

precipitation, declined with increasing annual temperature range,

and was typically high at soil types such as cryic leptosol, gleyosol,

andosol, ferralsol or acrisol.

Comparison to FAO landuse data. Our model for the

presence of agriculture (threshold value of 0.18, applied to

cumulative Maxent output) leads to mispredictions in certain

parts of the world (Fig. 2) that require further investigation – for

example, we predicted the absence of agriculture from large

farming areas of eastern Europe, southern Siberia, northern

China, parts of India, and the Sahel zone south of the Sahara. On

the other side, we predict agriculture in regions where it seems less

widespread according to FAO – e.g. central Europe (probably the

effect of centuries of reforestation efforts [30]), wet-tropical Africa,

southern China and Southeast-Asia, New Guinea, the Australian

east coast and New Zealand.

For animal keeping (combined for nomadic or sedentary types,

as FAO data is unspecific; not shown), potentially important

deviations between our predictions (threshold values of 0.13 and

0.09, respectively, applied to cumulative output) and FAO’s

equivalent data are the factual presence of livestock in many drier

part of Australia, western Madagascar, southern China, parts of

the Arabian deserts, and much of Kazakhstan.

2) Shared suitability
Maps of ISS for some landuse pairs yielded highly interesting

results (Fig. 3), especially when it is considered that they are based

on just soil and climate parameters. High ISS for agriculture vs.

nomadic pastoralism, in particular, occurred in many regions

known for violent conflicts over land and resources. Some of those

are even ethnically associated with agriculturalist vs. nomad –

conflicts (e.g., in Rwanda, Burundi, Congo’s Kivu region, Dafur,

southern Mali, parts of Ethiopia), whereas this seems difficult

currently to reconcile for regions such as northern Ireland,

‘‘Kurdistan’’, northern Israel and Lebanon, northern Ivory Coast

and parts of central Asia. This does not rule out, however, that

such landuse conflicts lay once at the heart of some of these often

long lasting struggles.

A quantitative test of ISS prediction on post-1945 conflict data

(see Methods) indicated that ISS for agriculture vs. nomadic

pastoralism made a significant contribution to predict conflict

occurrence from a logistic regression model (containing ISS and

two spatial eigenvectors as predictors; N = 500, x2 = 157.5,

p,0.0001; partial effect of ISS: t = 2.58, p = 0.01). Predictive

accuracy was ca. 68%. However, it has to be recognized that the

conflict database did not allow a detailed distinction of which

conflicts were related to landuse. The observed effect is therefore

encouraging to our hypothesis, but more meaningful tests will

Figure 1. Modelled ‘‘suitability’’ (probability of occurrence, Maxent) for (A) agriculture, (B) sedentary animal husbandry, (C)
nomadic pastoralism, and (D) hunting and gathering.
doi:10.1371/journal.pone.0010416.g001
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require a careful classification of conflict causes that are well

beyond the scope of this paper.

Similarly suggestive, ISS for agriculture vs. hunter-and-gather-

ers was high in the Congo region, coastal West Africa, and the

Asian tropics and subtropics. Incidentally, this largely overlaps two

of Diamond’s prime examples of the genocide on hunters-and-

gatherers, the expansion of the Bantu and of the Austronesians [1].

High ISS for pastoralist vs. hunter-and-gatherers identified large

areas in southern and eastern Africa (reminiscent of the scattered

occurrences of Khoisan ethnic groups), and in much of the drier

part of Australia (where pseudo-nomadic cattle and sheep herding

is carried out on formerly aboriginal land).

3) Agriculture and population density
Suitability for agriculture is significantly related to log-

transformed population density (N = 2000; adjusted for spatial

non-independence: Fadj = 26.6, dfadj = 52.0, p,0.001) and

explains 33.8% of data variability. However, a closer look at

the data indicates that the relationship is not linear (Fig. 4).

Rather, agriculture is strongly related to (log-transformed)

population density below a value of ca. 0.3, whereas there is

only a weak relationship above this. A breakpoint regression

accounts for this, and explained variance increases to 38.0%.

An alternative linear regression on non-transformed data, using

a negative binomial error structure, did not lead to better

results.

We present here only a map of residuals (Fig. 5) from the (log2)

breakpoint model, but differences to the (log2) linear regression

are minor. There are clear patterns of positive and negative

deviations of population density from those values predicted by

our modelled suitability for agriculture. Notably, as indicated in

Fig. 4, these deviations are more common above the breakpoint

value, i.e. in regions of generally high suitability of agriculture

(Fig. 1A), while the model is better in predicting where only few

people should live.

We found only much weaker correlations between log-

transformed population density and suitability for other landuse

types (spatial correlations: sedentary animal husbandry, r2 = 0.070,

Fadj = 6.1, dfadj = 80.4, p = 0.016; nomadic pastoralism, r2 = 0.023,

Fadj = 5.4, dfadj = 230.3, p = 0.021; hunting-and-gathering,

r2 = 0.037, Fadj = 3.6, dfadj = 93.8, p = 0.062). We also evaluated

multivariate models of linear combinations of the four landuse

suitabilities, using AIC-based model selection [31]. A model

containing the suitability of all three landuse types (all except

animal husbandry) as predictors (r2 = 0.357) is judged better than

the univariate linear model presented in Fig. 4 (DAIC.57, not

corrected for spatial effects). However, partial effects of the

suitability for hunting-and-gathering and nomadic pastoralism

would be negative, making no intuitive sense from a causal

perspective. Similar effects were observed in a generalized additive

model (GAM, allowing non-linearity in the shape of links). GAM

accounted for ca. 41% of data variability, which is not much better

Figure 2. Deviations between Maxent model prediction for the occurrence of agriculture and a reclassified FAO landuse map. Green
areas denote regions where FAO indicates agriculture, but the model does not predict it; red areas highlight where the model predicts agriculture,
but FAO does not record any. In white areas, model predictions and FAO maps agree. Note that apparently solid regions of deviation often show fine-
scale pattern at higher resolution. See Methods for caveats in the reclassification of FAO landuse data.
doi:10.1371/journal.pone.0010416.g002
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than the univariate breakpoint model (Fig. 4). We conclude, from

these and further modelling attempts not reported here, that

suitability for agriculture is by far the most important landuse type

to predict population density, but that remaining variability is

largely caused by factors other than landuse type (in our broad

categorization).

We found a weaker, yet significant linear relationship between

suitability for agriculture and log10 xz1ð Þ-transformed cell-wide

GDP-PPP (N = 2000, r2 = 0.153, Fadj = 11.0, dfadj = 60.7, p =

0.002), while a breakpoint regression (steep positive relationship

to a suitability of 0.1, weaker positive relationship above that;

data not shown) explains only slightly more data variability

(r2 = 16.4).

Correlations with agricultural suitability are not dependent on

the inclusion of zero values (i.e., cells without inhabitants or GDP;

excluding these would led to p,0.001, respectively p,0.01, in

spatial correlations). However, they were retained in the data

presented because they may be of functional significance, and

because exclusion of zeros can lead to bias in spatial data [32].

Discussion

Climate, soil and their consequences
We found a high correspondence of landuse with climate and

soil parameters, evidenced by our ability to predict in some detail

the spatial distribution of the former from the latter. We conclude

that the distribution of these basic geographical factors had an

important effect on the spread of landuse types, and therefore on

cultural traits associated with them. Furthermore, our data

indicated that one landuse type, agriculture, is related to

population density and even economic strength of regions,

explaining statistically 38%, respectively 16%, of data variability

of current conditions. Fig. 4 indicate that this, in particularly,

explains low populations densities of regions highly unsuitable for

agriculture.

Furthermore, deviations from model predictions are highly non-

randomly distributed geographically (Figs. 2 & 5). Part of our aim

was to also explore where more complex factors besides climate

and soil might be necessary to explaining landuse strategies. Some

Figure 3. Index of shared suitability (ISS) for (A) agriculture vs. nomadic pastoralism, (B) agriculture vs. hunting and gathering, (C)
nomadic pastoralism vs. hunting and gathering. High ISS values indicate that a land is of high suitability for both landuse forms.
doi:10.1371/journal.pone.0010416.g003

Figure 4. Suitability for agriculture and population density in 2000 randomly chosen grid cells. The green line represents a locally
weighted regression, a largely data-driven representation of the relationship. The blue line is a linear regression (on log-transformed population data;
y~0:241z2:107 � x (r2 = 0.338; two parameters estimated). The red line is a breakpoint regression y~ 0:142z3:854 � xð Þ IFxƒ0:271½ �zð

1:084z0:394 � xð Þ IFxw0:271½ �ð Þ: The breakpoint model (r2 = 0.380) required estimating four parameters. Note that regression parameters refer to
log10(Population Density+1) (see Methods), whereas y-axis values were re-exponentiated for display.
doi:10.1371/journal.pone.0010416.g004
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deviations are readily explicable by our simplifying assumptions,

such as not considering local-scale, rural-to-urban food transport

or water availability from rivers. These aspects are of lesser interest

here, but some examples are reported in File S2.

There are also less trivial deviations that deserve further study.

For example, contrary to the observed, our model indicated high

suitability for agriculture, hence high population density in some

tropical regions, while there are more people than predicted in

parts of Europe, India and China. Such deviations invite ad-hoc

hypotheses and speculations that may be investigated in further

research (see File S2 for details). For example, agricultural

efficiency may differ between regions; cultural conservatism

(non-acceptance of more efficient forms of landuse) or dis-

ease may have inhibited population growth [e.g. 33, p. 233].

‘‘Overpopulated’’ regions (according to model predictions; red in

Fig. 5) could also indicate unsustainably high numbers of people,

while ‘‘under-populated’’ places (green in Fig. 5) may point out

wilderness areas that should be given conservation priority [34]

because they may be predicted to ‘‘fill up’’ in the future. More

thorough analyses of what explanation applies where, in

combination with applying our model to climate change scenarios,

may provide useful data for global policy planning.

Our measure of ‘‘suitability’’ (precisely, probability of occur-

rence; see Methods) is not equivalent to productivity, but we

assume it to be largely monotonically related to it. More

sophisticated models have been used to assess agricultural yield

in the context of predicting climate change effect [e.g., 35], but we

nevertheless see a value in our independently derived data that

may well be used for similar tasks in further research on this topic

of applied relevance [36–38].

Predicting conflicts
Overlaps of suitability between various pairs of landuse types

coincided with many actual conflict regions (see Results), implying

that climate and soil could be, at least indirectly, related to the

occurrence such conflicts. Recently, other researchers also

suggested links between climate, violent conflict and human

economy [39,40].

Shared suitability does not necessarily imply violent landuse

conflicts, however. High ISS may simply lead to mixed strategies

in landuse practices (see File S2 for examples). It seems likely that

the key ingredient leading to either adopting mixed landuse

strategies or violent conflict is ethnicity. This hypothesis would

need to be investigated in the future. If different landuse traditions

coincide with other differences between peoples (e.g. language,

physical appearance, religion), not only violence may be more

likely but cultural self-definition may also prevent people from

adopting some of ‘‘the others’’’ landuse techniques despite

potential economic benefits (cf. Vikings in Greenland, [5]). We

suggest that intersecting our ISS maps with regions near ethnic,

Figure 5. Residuals of population densities (people per km2) from expected values based on the breakpoint regression reported in
Fig. 4. Yellow regions indicate good fit between population data and our model predictions, green region highlight areas where the model
overpredicted population densities (less people found than predicted), red regions indicate that more people are present than expected by the
model. Note that the asymmetric distribution of error (larger positive than negative residuals) is a consequence of modelling on log-transformed data
and does not require a functional interpretation.
doi:10.1371/journal.pone.0010416.g005
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religious or linguistic boundaries may lead to further refinement in

predicting potential conflict regions.

Ecological niche models of landuse traits: properties and
caveats

Several properties of ecological niche modelling in its usual

application (i.e., predicting species’ geographical ranges) are

critically assessed, and some of these problems also apply here.

Species are assumed to be unrestricted in dispersal to all suitable

sites [but see 41,42]. In our context, we find it realistic to assume

that all peoples have knowledge of all four types of landuse. More

important, species’ niches are assumed to be constant throughout

their range (i.e., there is no local adaptation). Possibly because of

this often unrealistic presumption, geographic distributions of

wide-ranging species are more difficult to predict than geograph-

ically restricted ones [43]. Our application on landuse traits

certainly contains such local adaptation due to peoples’ choice of

utilized organisms. Growing rice will need other climate conditions

than growing wheat, while herding reindeer will require other

conditions than herding camels. Furthermore, all four landuse

traits are globally spread. In light of this, it is surprising that our

models generally are of good predictive quality as judged by AUC.

Model predictions are based on present day occurrences of

landuse types, and hence the effects of competition with other

landuses [cf. 44]. As a consequence, modelled effects may not

always point out best regions per se, but rather those where a

landuse type is a sufficiently good competitor to other practices.

Nomadic pastoralism, for example, may not be better on soils poor

in nutrients, but the absence of agriculturalists from bad soils may

pose a crucial advantage.

We noticed throughout our results that sharp changes in

mapped values sometimes coincided with country borders or other

culturally defined boundaries (see File S2 for examples). Possibly,

courses of history were sometimes subtly affected by climate and

soil and their consequent effects on the quality of lands (e.g.,

worthiness of defending). Some coincidences of this type may be

expected by chance. Deciding with certainty whether this is a

significant pattern would require thorough study beyond the scope

of this paper.

The value of a simple model
Our simplistic exercise showed that a ‘‘geo-deterministic’’

approach can predict surprisingly many features of human

cultural geography without any explicit cultural or historical

assumptions. Although many deviations require further factors for

a satisfying explanation, the nature of these deviations invite the

generation of hypotheses for further research. Our ‘null model’

offers a highly parsimonious, empirically supported explanation to

the question of why some regions are more ‘‘powerful’’ than

others, supplementing the idea of a historical effect operating

through the timing of transition to agriculture [2].

In some instances, our model may actually provide a simpler

explanation. Putterman [10], for example, suggested that the

dominance of Western European cultures indicates the transmis-

sion of ‘‘civilization’’ traits (other than knowledge on agriculture)

from regions of first domestication. Our data indicate that higher

climatic suitability may have been sufficient for Europe to ‘‘catch

up’’, allowing for much higher population densities than, e.g., the

‘‘fertile crescent’’ region. Models of ‘‘suitability’’ under past

climatic scenarios may be helpful to evaluate this. Similarly,

models applied to predicted future climatic scenarios may be

useful to anticipate changes of the economic suitability of landuse

types.

However, our model has clear deviations in some regions that

may well be explicable by the availability of animals and plants

suitable for domestication (e.g., central Africa). Apart from that,

and more importantly, we know that human societies and

economies went through historical development, so ignoring

history may not always be the best strategy to understand

causalities. This problem occurs also with other research questions

in biogeography, e.g. when investigating global biodiversity

patterns [45–47]. Nevertheless, our ‘null model’ will be a useful

tool in identifying regions that require further investigation to

understand additional processes that shape the distribution and

performance of human economic traits.
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