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Abstract

Chronic obstructive pulmonary disease (COPD) is a progressive, inflammatory lung disease that affects a large number of
patients and has significant impact. One hallmark of the disease is the presence of bacteria in the lower airways. Objective:
The aim of this study was to analyze the detailed structure of microbial communities found in the lungs of healthy
individuals and patients with COPD. Nine COPD patients as compared and 9 healthy individuals underwent flexible
bronchoscopy and BAL was performed. Bacterial nucleic acids were subjected to terminal restriction fragment (TRF) length
polymorphism and clone library analysis. Overall, we identified 326 T-RFLP band, 159 in patients and 167 in healthy controls.
The results of the TRF analysis correlated partly with the data obtained from clone sequencing. Although the results of the
sequencing showed high diversity, the genera Prevotella, Sphingomonas, Pseudomonas, Acinetobacter, Fusobacterium,
Megasphaera, Veillonella, Staphylococcus, and Streptococcus constituted the major part of the core microbiome found in
both groups. A TRF band possibly representing Pseudomonas sp. monoinfection was associated with a reduction of the
microbial diversity. Non-cultural methods reveal the complexity of the pulmonary microbiome in healthy individuals and in
patients with COPD. Alterations of the microbiome in pulmonary diseases are correlated with disease.
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Introduction

Chronic obstructive pulmonary disease (COPD) is a respiratory

disease associated with chronic inflammation of the lung leading to

tissue destruction and emphysema. Bacterial colonization is one

critical factor contributing to COPD progression and the

occurrence of acute exacerbations (AECOPD) [1,2]. The ‘‘micro-

bial hypothesis’’ highlights a vicious cycle, in which smoking

results in impaired innate lung defense with subsequent changes in

the pulmonary microbiome. This chronic colonization and

infection results in further impairment of the mucociliary

clearance and host defense apparatus due to aberrant mucus

secretion, disrupted ciliary activity, and airway epithelial injury.

Multiple pathways have been described how smoke exposure

destroys lung host defense mechanisms, including the suppression

of antimicrobial peptides [3], the destruction of the epithelial

barrier [4], and the colonization of lower airways with tobacco-

associated microbes [5].

Microbiological studies in COPD have been limited to the

detection of specific respiratory pathogens such as P. aeruginosa, M.

catarrhalis, and H. influenza [6,7] by means of cultural methods or

pathogen-specific PCR. The application of culture independent

methods to detect the presence of microorganisms has been

introduced to characterize the microbiome of various organs [8].

These methods include real time PCR, sequencing, and restriction

fragment length polymorphism analysis [9]. The microbiome of

the lungs in patients with cystic fibrosis were characterized by

culture independent methods and revealed a complex structure of

the microbial community in this disease [10–12]. Bacteria found in

respiratory tract may represent about 6% of total human

microbiome, which is comparable to the skin [13]. Several studies

in this field highlight that pulmonary microbial communities are

complex and diverse [14–18]. These studies focused on different

patients groups and used different methodology. Huang et al. in

their culture-independent survey focused on the microbiota during

COPD exacerbations [16], Hilty et al. studied bacteria presenting

in bronchoalveolar lavages of asthmatic children [15]. Differences

between these studies indicate a wide interindividual variation and

the need of standardization of sampling and analysis procedures.

Many recent studies that characterize microbial communities use
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approaches, which are based on the sequence analysis of the 16S

rRNA gene [19–22].

The aim of the current study was to examine the pulmonary

microbial communities in COPD patients as compared to healthy

individuals. Terminal restriction fragment length polymorphism

(T-RFLP) analysis and molecular cloning with sequencing were

used to characterize the pulmonary microbiome in health and

disease.

Materials and Methods

Participant Selection
The study was approved by the ethic committees of the

University of Marburg and the Landesärztekammer of the

Saarland; all participants gave written informed consent. Healthy

individuals were defined as never smokers, without chronic

disorders and without any respiratory illnesses over one year prior

the study. COPD patients had clinically diagnosed COPD as

described in the GOLD guidelines (http://www.goldcopd.org/).

The diagnosis of COPD was based on patient history, pulmonary

function tests, and a post bronchodilator ratio of forced expiratory

volume in 1 s (FEV1)/vital capacity (VC) or forced vital capacity

(FVC) below 0.7. The patient was defined as stable if there was no

exacerbation for the previous 4 wks and the patient was not

currently having an exacerbation. Table 1 summarizes the

characteristics of the study populations.

Bronchoscopy was performed using a flexible video-broncho-

scope following mild sedation and local anesthesia with xylocaine

2%. BAL of a segment of the middle lobe or the lingula was done

by instillation of 5 times 20 mL of sterile saline and recovered fluid

was immediately sent to the research laboratory.

DNA Purification
BAL samples were stored on ice prior to the DNA extraction.

After centrifugation at 2500 rpm at 4uC for 10 min, the

supernatant was discarded and the pellet was used as a starting

material for the DNA isolation. Total DNA was purified by using a

combination of a bead-beating method with the standard

phenol:chloroform extraction. Each cell pellet was resuspended

in 750 ml of sodium phosphate buffer (112.87 mM Na2HPO4,

7.12 mM NaH2PO4) and 250 ml of TNS solution (500 mM Tris-

HCl, 100 mM NaCl, 10% SDS (w/v). Tubes were filled with 0.7 g

of 0.5 mm sterile zirconia beads (Carl Roth GmbH, Karlsruhe,

Germany) and vortexed for 45 sec at 6.5 m/s using the

homogenizer PrecellysH 24 (PEQLAB Biotechnologie GmbH,

Erlangen, Germany). Following chilling on ice and pelleting of

remaining cell fragments, lysates were denaturated with one

volume of phenol:chloroform:isoamylalcohol (25:24:1). After short

spinning, 800 ml of supernatant were mixed with an equal volume

of chloroform:isoamylalcohol (24:1). Then 650 ml of the DNA

containing supernatant were mixed thoroughly. The extracted

DNA was precipitated by spinning for 80 min at 4uC with two

volumes of PEG 6000 and washed in ice-cold 70% ethanol. Finally

it was eluted in 50 ml of EB buffer (QIAGEN GmbH, Hilden,

Germany) and additionally incubated at 37uC for 2 h to enhance

the DNA recovery yield.

PCR Amplification of 16S rRNA Genes
Total DNA (100 ng) was used as a starting material for the

PCR-based amplification of 16S rRNA gene. The used primer set

was: (Ba27f, 59 - AGA GTT TGA TCC TGG CTC AG - 39 and Ba907r, 59

- CCG TCA ATT CCT TTR AGT TT - 39 [23] (Metabion GmbH,

Martinsried, Germany) generated a 900 bp long PCR product

from E. coli DH5a 16S rRNA gene. After initial denaturation at

94uC for 3 min, PCR was performed using 40 cycles of

denaturation at 94uC for 30 s, annealing at 50uC for 45 s, and

extension at 72uC for 1 min and 30 s, followed by a final extension

step at 72uC for 7 min (MyCycler Thermal Cycler, Bio-Rad,

Munich, Germany). Total E. coli DH5a DNA (100 ng) was used as

a positive control and 5 ml of destilled water as a negative control.

PCR was run in duplicate and amplified products were pooled,

purified using with NucleoSpin Extract II kit (MACHEREY-

NAGEL GmbH & Co. KG, Dueren, Germany), and analyzed by

electrophoresis using a 1.5% agarose gel.

T-RFLP Analysis
PCR was performed using a FAM (6-carboxyfluorescein)-Ba27

forward primer (Metabion GmbH, Martinsried, Germany). PCR

products were cut out from the agarose gel, purified, and subjected

to MspI (Promega GmbH, Mannheim, Germany) digestion for 3 h

at 37uC in the dark. Then samples were subjected to capillary

electrophoresis on ABI 310 Genetic Analyzer (Applied Biosystems

Deutschland GmbH, Darmstadt, Germany) using the GeneS-

Table 1. Patient and control individuals characteristics; all individuals were caucasian; FEV1 = forced expiratory volume in 1 s,
VC = vital capacity, FEV1% = FEV1 predicted, PY = pack years, ICS = inhaled corticosteroid, LABA = long acting beta agonist,
LAMA = long acting muscarinic agonist, BAL cells = bronchoalveolar lavage cell number610 5/ml.

Age Sex FEV1/VC FEV1% PY ICS LABA LAMA BAL cells

COPD 1 60 m 62 61 80 – – – 3.5

COPD 2 62 f 47 47 30 – – + 3

COPD 3 57 f 65 69 20 – – – 10.4

COPD 4 73 m 56 51 47 + + – 4.8

COPD 5 67 m 60 58 40 – – + 8

COPD 6 69 f 59 57 98 – – – 3.7

COPD 7 58 m 41 34 70 + + + 6.9

COPD 8 54 f 33 22 60 – – + 17.9

COPD 9 67 m 69 48 40 – – + 2,1

COPD average (+/2 SD) 6366.3 55.6% male 54611 49611 53625 – – – 6.762.3

Healthy average (+/2 SD) 2762.7 55.6% male 8266 98610 0 – – – 0.660.1

doi:10.1371/journal.pone.0068302.t001
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canTM 500 ROXTM XL size standard (Applied Biosystems

Deutschland GmbH, Darmstadt, Germany). Data were analyzed

with GeneMapperH Software (Applied Biosystems Deutschland

GmbH, Darmstadt, Germany). For each sample analysis was done

in duplicate.

Terminal restriction fragments (T-RFs) between 50 and 700 bp

were included in the analysis and differences in TRF length of

61 bp in different profiles were considered as identical in order to

compare T-RFLP profiles between different samples. The relative

abundance of each TRF within a given T-RFLP pattern was

calculated as the peak height of the respective TRF divided by the

total peak height of all TRFs detected. We compared TRFs with

the good quality reference sequences from the RDP database. As

additional control we compared the obtained data with those from

species from the oral cavity. This comparison resulted in

phylogenetic assignment on the genus level of fragments and

was performed using a web - based tool Microbial Community

analysis III (MiCA 3MiCA 3) with the following parameters: T-

RFLP analysis (PAT+), digest sensitivity – 2 mismatches within 2

bases from 59 of forward primer, window size – forward match

61 bp. Some fragments could not be matched and assigned

because of gaps in the database. Some fragments were identified as

‘‘uncultured bacteria’’ and could not be phylogenetically assigned.

The copy number of 16S rRNA genes vary between different

species (1 to 15 copies) and thus do not correspond necessarily to

number of bacterial cells [24]. All terminal fragments were

classified as ‘‘of the most frequent occurrence fragment’’ if the

relative fluorescence of peaks was .3%. Microbial diversity was

estimated with the Shannon-Wiener diversity index (H’) and

species richness value using the Excel software (Microsoft, USA).

The Shannon index enables to translate the T-RFLP data (the

number and intensity of bands on a gel) into numerical data points

that can be analyzed, modeled, and evaluated using various

statistical parameters. The species richness value ignores the

relative abundance of each phylotype and instead focuses only on

the total number of unique phylotypes (bands on the gel) for a

particular population [25].

Cloning and Sequence Analysis
To construct the clone libraries from BAL samples from 18

studied participants, amplicon pools were ligated and cloned using

the standard protocol from the pGEMH-T Easy Vector System

(Promega GmbH, Mannheim, Germany). 50610 clones per

clinical sampled were subjected to sequencing. Individual cloned

16S rRNA gene sequences were first amplified using the M13F

and M13R primers and then sequenced with the 27F primer using

an ABI3700 (Applied Biosystems, Inc.). Approximately 900 bp of

the sequence (59–39, with primer ends) were compared with those

available in the GenBank of the National Center for Biotechnol-

ogy Information (NCBI) by BLAST search. Identification of the

species level was defined as $98% similarity of the 16S rRNA

gene sequence to the sequence of its closest bacterial relative in the

GenBank database using online software BlastN (NCBI, USA).

After primer, vector fragments, and chimeric sequences were

removed (using RunVecScreen and Black Box Chimera Check

(B2C2) software respectively), the operational taxonomic units

(OTUs) were defined. OTU cutoff was less than 0.03, which

corresponded to the strain level [26]. To determine the distances

between aligned sequences the distance matrix view was generated

in Ugene (Unipro Ugene, Novosibirsk, Russia). 16S rRNA gene

sequences were aligned using distance neighbor-joining method

(Phylip package) of phylogenetic analysis on Ugene software

(Unipro Novosibirsk, Russia) and uploaded to the Interactive Tree

of Life project for annotation [27]. Bootstrapping was carried out

1000 times to evaluate trees statistically. A web run version of

Sequin program (http://www.ncbi.nlm.nih.gov/projects/Sequin/

) was used to submit the sequences to the GenBank database. A

total of 128 clones were submitted to the GenBank under the

accession numbers ‘‘JN382472’’ to JN382540’’ and ‘‘JN378754’’

to ‘‘JN378814’’.

Statistical Analysis
We used the T-RFLP-analyzed data from BAL samples taken

from all study participants. A total of 326 distinct peaks were

detected. In order to find distinct COPD and healthy microbiome

indicators, we applied supervised learning and cross validation

using both, R [28] and WEKA [29]. R is a computational

environment that provides a broad spectrum of statistical analysis

methods while WEKA is a prominent software tool for machine

learning consisting various classifiers as well as clustering

techniques. Prior to classification, we first removed bands that

are were regularly present from samples from the oral cavity

(possibly correlating with Prevotella, Veillonella, Porphyromonas, and

Fusobacterium). Secondly, bands that were evenly detected in

healthy and COPD samples were also removed. Afterwards, we

used a taxonomic mapping from species to their corresponding

genera. This was done to reduce the feature space. Subsequently, a

principal component analysis (PCA) was applied using a restrictive

variance cutoff of 95%. PCA is generally used for pattern

recognition in a data set and can be applied as a filter prior to

machine learning, also allowing easier visualization of patterns

within high-dimensional data [30]. Finally, significant genera were

extracted for classifier training. We used a Naı̈ve Bayes classifier

model for classification. Classifier training, testing and validation

were done within a cross validation scheme. Two classification

techniques were applied. On the one hand we consistently

optimized classification results based on the entire data set by

iteratively eliminating low significant variables thus creating a

robust classification model. Then we applied a simple K-Means

clustering, which is a clustering technique to separate a set of

observations into clusters based on their means in order to deduce

a core set of distinctive genera [31]. On the other hand we selected

genera beforehand using a PCA. The retained genera were then

used for classifier training.

Furthermore, we specifically analyzed how restriction fragments

corresponding to Pseudomonas and Lactobacillus interact using a PCA

but retaining only these fragments. We visualized the PCA results

with an R-biplot [32]. Covariance matrices illustrate dependencies

which can additionally be used to analyze species interaction. A

negative covariance indicates an inverse proportional relationship

between two representatives within a microbial community.

Results

Restriction Profiles Reveal High Interindividual Variation
of the Pulmonary Microbiome

A total number of 18 BALs (nine of healthy volunteers and nine

of stable COPD patients) served as starting material for PCR

amplification of 16S rRNA gene followed by MspI digestion. T-

RFLP revealed a total of 326 bands. The mean number of T-RF

per individual was 17.7 (62.32 SEM) in the COPD group and

18.56 (62.32) in the control group (P = 0.811, two-tailed t test).

The range was 12 to 31 (SD 6.95) bands for the healthy individuals

and 9 to 27 (SD 6.67) for the COPD patients. Several bacterial

species were found consistent with these findings by database

searches. However, as T-RFLP results based on PCR with one

labeled primer cannot exactly determine the species, such

correlations should be viewed with the appropriate caution. All

Pulmonary Microbiome of COPD Patients
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samples showed highly heterogeneous terminal restriction frag-

ment (TRF) patterns (Figure 1).

Matrix tables of the obtained results (data not shown) indicated

that some restriction fragments (possibly representing Bacteroides,

Lactobacillus, Megasphaera, Prevotella, and Streptomyces) were most

common and appeared in two thirds of healthy individual group

samples. In contrast, a different set of restriction bands (possibly

representing Actinomyces, Bacillus, Corynebacterium, Lactococcus, Micro-

coccus, and Peptostreptoocccus) could be found only in certain

individuals.

In COPD patients, 4 restriction fragments were present almost

in all studied samples, while 9 were distributed irregularly between

patients. No COPD-specific pattern could be identified based on

restriction fragment analysis. COPD patients with ID numbers 4

and 9 showed very low microbial diversity.

Statistical Learning Analysis Shows Distinctive
Distribution of Restriction Fragments

We detected multiple T-RFPs in each sample group. To

determine if any of them are correlated with disease status, a

principal component analysis was performed. Classification

optimization yielded the results as shown in Table 2. Several

specific fragments were used to build a classifier model based on a

data set consisting of 9 T-RFLP analyzed BAL samples taken from

healthy individuals and COPD patients respectively, correlated

with Neisseria, Corynebacterium, Staphylococcus, Bacillus, Mesorhizobium,

Flavobacterium, Lysinibacillus, Lachnospiraceae, Streptomyces, Acinetobacter,

Megasphaera, Pseudomonas, Clostridium, Sphingomonadales and Clostridia-

ceae. 16 patients (88.9%) out of 18 were correctly classified into the

healthy or COPD group without any false negatives (COPD

classified as healthy).

With the application of simple K-Means clustering, we could

further reduce the selected fragments (retaining bands correlated

with Bacillus, Mesorhizobium, Flavobacterium, Streptomyces, Megasphaera,

and Clostridiaceae). Given the TN (true negative) and FN (false

negative) rates of 0.222 and zero respectively, this set of bands is

reliably distinguishing between COPD patients and healthy

individuals. One fragment (possibly representing Mesorhizobium)

was only detected in samples of healthy individuals. Classifier

training solely based on a prior feature selection via PCA

(including retransformation) did not yield a good learning model

and classification performance was non-distinctive. Different

variance proportion cutoffs did not significantly change the results.

Two bands consistent with the presence of Pseudomonas and

Lactobacillus were used in the PCA analysis to create a biplot using

the R library (Figure 2) that revealed the presence of clusters

representing data sets from healthy individuals and COPD

patients.

In order to quantify the differences in community structures of

the two studied groups, the fragment richness and Shannon

diversity index were calculated. No difference between COPD

patients and healthy individuals could be seen (Figure 3).

Sequencing Data Revealed the Presence of Distinct Core
Genera in Health and Disease

A total of 806 clones from all individuals were sequenced and

the obtained results were used for database searches. Most of the

sequences matched with the phyla Firmicutes and Proteobacteria

(Figures 4, 5) that represented 40 and 35% of the sequences in

healthy individuals and COPD patients, respectively. Other

sequences matched to the phyla Fusobacteria, Bacteroidetes, and

Actinobacteria. The phylum Cyanobacteria was characteristic for the

COPD patient group. Interestingly, anaerobic representatives of

the standard microbiota made up 40% of total community in

healthy individuals, and about 34% in COPD patients. Almost

20% of identified bacteria can tolerate oxygen in both sample

Figure 1. T-RFLP profiles revealed highly interindividual variation of detected bands. Band sizes were correlated with bacterial general,
keeping in mind that T-FRLP only allows a prediction but not a determination of the microbial taxa.
doi:10.1371/journal.pone.0068302.g001

Table 2. Confusion matrix of the classification results using a
NaiveBayes classifier and cross validation.

COPD Healthy

COPD 9 0

Healthy 2 7

doi:10.1371/journal.pone.0068302.t002

Pulmonary Microbiome of COPD Patients
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Figure 2. Biplot of the principal component analysis of the bacterial communities from bronchoalveolar lavages samples of the
chronic obstructive pulmonary disease patients and healthy individuals. The terminal restriction fragment lengths (in base pairs)
corresponding to the correlated bacterial genera are specified in the brackets.
doi:10.1371/journal.pone.0068302.g002

Figure 3. Sample richness (a) and Shannon diversity index (b) based on fragment lengths. Terminal restriction fragments shorter than
50 bp were excluded from the analysis. Empty squares correspond to healthy individuals, filled squares to COPD patients.
doi:10.1371/journal.pone.0068302.g003

Pulmonary Microbiome of COPD Patients

PLOS ONE | www.plosone.org 5 July 2013 | Volume 8 | Issue 7 | e68302



types. One third of bacterial representatives have a Gram-negative

type of cell wall.

Phylogenetic trees were constructed using the clustering

neighbor-joining method. After construction, the reliability of

trees was estimated by nonparametric bootstrapping. The genera

Figure 4. A phylogenetic tree obtained from sequencing analysis illustrates the standard microbiota present in healthy lungs
containing 75 leafs. Different genera are denoted with different colors with one exception: the family Sphingomonadaceae represents the taxon of
higher rank. Bacteria marked with green circles were detected only in healthy individuals, but not in COPD patients.
doi:10.1371/journal.pone.0068302.g004
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Prevotella, Streptococcus, and Acinetobacter were more diverse, repre-

senting multiple species and strains. Three representatives of this

genus were detected only in healthy individuals. Haemophilus

parainfluenzae, Propionibacterium acnes, Micrococcus luteus, Terrahaemo-

philus sp., Eubacterium saburreum, Selenomonas sp., Centipeda periodontii,

and Lactobacillus sakei made up 24% of total microbial community

and were characteristic for healthy individuals (Figure 4).

Figure 5. A phylogenetic tree obtained from sequencing analysis illustrates the microbial community of lungs of patients with
stable COPD and contains 76 leafs. Different genera are denoted with different colors with two exceptions: the families Rhodocyclaceae and
Lachnospiraceae represent the taxa of higher rank. Bacteria marked with red circles were detected only in COPD patients, whereas other microbes are
the part of a core lung microbiome.
doi:10.1371/journal.pone.0068302.g005

Pulmonary Microbiome of COPD Patients

PLOS ONE | www.plosone.org 7 July 2013 | Volume 8 | Issue 7 | e68302



Table 3. An overview of the bacterial genera detected by sequencing and terminal restriction fragment length polymorphism
analysis in COPD patients and healthy individuals.

COPD Healthy

T-RFLP Sequencing T-RFLP Sequencing

Acinetobacter X Acinetobacter Acinetobacter X Acinetobacter

Actinomyces Actinomyces

Abiotrophia

Afipia

Alkaliphilus Alkaliphilus

Bacillus Bacillus X Bacillus

Bacteroides Bacteroides

Brevundimonas

Capnocytophaga

Centipeda

Clostridium Clostridium X X Clostridium

Corynebacterium Corynebacterium Corynebacterium

Curvibacter

Eubacterium

Flavobacterium Flavobacterium

Fusobacterium X Fusobacterium Fusobacterium X Fusobacterium

Gemella Gemella X Gemella

Granulicatella

Haemophilus

Lactobacillus X Lactobacillus Lactobacillus

Lactococcus

Legionella Legionella

Leptolyngbya

Lysinibacillus Lysinibacillus

Megasphaera X Megasphaera Megasphaera X Megasphaera

Mesorhizobium

Methylophilus

Methylobacterium

Micrococcus X Micrococcus

Moraxella

Mycobacterium Mycobacterium

Mycoplasma Mycoplasma

Neisseria Neisseria X Neisseria

Peptostreptococcus Peptostreptococcus

Porphyromonas X Porphyromonas Porphyromonas

Prevotella X Prevotella Prevotella X Prevotella

Propionibacterium

Pseudomonas X Pseudomonas Pseudomonas X Pseudomonas

Ralstonia Ralstonia X Ralstonia

Rhizobium X Rhizobium

Rhodocyclaceae

Selenomonas X Selenomonas Selenomonas

Sphingobacterium Sphingobacterium

Sphingomonas X Sphingomonadaceae Sphingomonadaceae X Sphingomonas

Staphylococcus X Staphylococcus Staphylococcus X Staphylococcus

Stenotrophomonas

Streptobacillus Streptobacillus

Pulmonary Microbiome of COPD Patients
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A second distance-based neighbor-joining tree was constructed

with 76 phylotypes detected in COPD patient group (Figure 5).

Twenty nine distinct phylotypes were detected in the COPD

patients. The genera Streptococcus, Veillonella, and Prevotella were

most common and had the highest diversity. The diagram depicts

that there were more than 20 unique species (composing 36.8% of

total community) characteristic for COPD state. Unique genera

included Afipia, Brevundimonas, Curvibacter, Moraxella, Neisseria,

Undibacterium, Corynebacterium, Capnocytophaga, and Leptolyngbia.

A common core microbial community of 9 bacterial genera was

identified in all samples analyzed. It included members of

Acinetobacter, Fusobacterium, Megasphaera, Prevotella, Pseudomonas, Sphin-

gomonas, Staphylococcus, Streptococcus, and Veillonella. We also exam-

ined sequencing data for the presence of atypical bacteria

(Mycoplasma pneumoniae, Legionella pneumophila, and Chlamydophila

pneumoniae), which are associated with COPD exacerbations [33].

Neither was detected by this method, although Mycoplasma and

Legionella related species were identified in several samples using T-

RFLP approach. The results from the RFLP analysis were

correlated with the data from sequencing and showed that the

results from both methods correlate partly (Table 3).

Discussion

The results of the present study reveal the presence of highly

diverse bacterial communities in the lungs of healthy individuals

and COPD patients. The microbiome present in the lungs of

COPD patients differs from healthy individuals in the prevalence

of genera Afipia, Brevundimonas, Curvibacter, Moraxella, Neisseria,

Undibacterium, Corynebacterium, Capnocytophaga, and Leptolyngbia. In

two COPD patients, we observed a decrease of the bacterial

diversity associated with a band possibly correlated with P.

aeruginosa.

The core microbiome reported here compares well with those

reported by other investigators [14–18]. The core microbiome in

the lower respiratory tract in the present study comprises Prevotella,

Sphingomonas, Pseudomonas, Acinetobacter, Fusobacterium, Megasphaera,

Veillonella, Staphylococcus, and Streptococcus comparable to the study of

Erb-Downward et al. that included the genera Pseudomonas,

Streptococcus, Prevotella, Fusobacterium, Haemophilus, Veillonella, and

Porphyromonas [14]. In the study of Hilty et al., Bacteroidetes

(particularly Prevotella spp.) was more common in control subjects

[15]. Huang et al. emphasized the pathogenic potential of newly

identified B. diminuta, A. cryaerophilus, and L. interrogans in

exacerbated COPD patients [16]. Moreover, they identified two

gastrointestinal-associated species namely H. cetorum and C.

mucosalis in respiratory samples. Anaerobes such as Prevotella and

Veillonella are a component of commensal microbiota of the lung

[15]. The core genera pool reported by Huang et al. by

application of a high-density microarray [16] was much more

diverse (27 classified bacterial families) as compared to the results

of the present study. Disease status appears to be associated with

reduction of the microbial diversity together with the overrepre-

sentation of specific species. In the present study, two patients with

low diversity revealed a restriction fragment correlated with

Pseudomonas sp. A limited bacterial diversity was generally found for

COPD patients [14]. Abundance of Proteobacteria was found in

asthmatics [15], and members of the Pseudomonadaceae, Enterobac-

teriaceae, and Helicobacteraceae seemed to play the crucial role in

severe exacerbations of COPD [16]. Members of the Comamona-

daceae, Sphingomonadaceae, Oxalobacteraceae and other bacterial fam-

ilies were correlated with bronchial hypersensitivity [34]. The

differences of age between the two groups studies in the present

study might have be a factor that contributed to differences

between the microbiomes. Taken together, several studies show

that the microbiome of the lung can be analyzed by novel

methodologies and is altered in patients with obstructive and

inflammatory lung disease, such as asthma, COPD, and CF.

Despite the progress in the field of culture independent analysis

of the microbiome, data on the respiratory tract are still limited

and the published studies comprise a relatively low number of

studied individuals. Different methods are currently being used

developed to study the microbiome of the human body. The

PhyloChip microarray contains more than 1 million oligoprobes

and can differentiate about 60 000 bacterial taxa [6]. Studies using

microarray technologies could demonstrate a significant complex-

ity of the pulmonary microbiome (1200 bacterial taxa representing

140 distinct families) [16]. Hilty et al. used 454-pyrosequencing, a

method of high-throughput DNA sequencing that allows the

analysis of statistically reliable number of reads simultaneously

[15]. Analysis of T-RFLPs is commonly used in soil and marine

microbiology to evaluate changes in bacterial composition in

particular ecological niches. The resolution power of T-RFLP is

dependent in the labeling of the primers and the analysis process.

As the respiratory microbiome is much more restricted in species

diversity as compared to soil or intestinal microbiomes, we used

one labeled primer, one restriction nuclease, and the length

standard ROX1000 for analysis. Similar approaches were used in

Table 3. Cont.

COPD Healthy

T-RFLP Sequencing T-RFLP Sequencing

Streptococcus X Streptococcus Streptococcus X Streptococcus

Streptomyces Streptomyces

Terrahaemophilus

Treponema Treponema

Variovorax

Veillonella X Veillonella Veillonella X Veillonella

Xanthomonas Xanthomonas

Undibacterium

Due to technical limitation of T-RFLP analysis with one labeled primer, this method can only predict the phylogenetic ID. Identification of a specific genera by both
methods is marked by an ‘‘X’’.
doi:10.1371/journal.pone.0068302.t003
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related studies using material from patients with cystic fibrosis

[35,36]. The resolution of T-RFLP chromatograms is around 2–

5 bp, causing that sometimes separate organisms have similar

fragment sizes. Sequencing data showed the prevalence of

Lactobacillus sp. only in healthy individuals. In the present study,

T-FRLP based analysis allowed the identification of bacteria in

BAL samples and core community data and the results correlated

well with those obtained by Sanger sequencing and database

analysis. Based on the multiple methods that are presently used, it

is not easy to compare the data from different studies.

The lung microbiome contains a large number of oral

microorganisms. Representatives of the common oral microbiome

were found in COPD patients and less in healthy individuals

[14,15]. Different reasons might account for this observation: 1)

Contamination during the sampling procedure might contribute to

the results as the bronchoscope is passed through the oro/

nasopharynx. 2) The microbiome of the lung might be related to

the microbiome of the upper airways and the oropharynx as small

volumes of secretions are continuously microaspirated. This later

concept is supported by data that indicate an association of lung

disease with oral hygiene [37]. A number of factors could have

impacted on the results and limited some aspects of the study. The

number of patients in this and other studies on microbiome

analysis is still small. Also the age difference between the study and

control groups could have caused different results on the

pulmonary microbiome. While it is currently not clear how age

impacts in the composition of the pulmonary microbiome, the gut

microbiome is dependent on age [38,39].

In conclusion, the microbiome of the healthy lung is complex

and differs from the microbiome of the respiratory tracts of COPD

patients. Two different methods revealed partly diverse microbial

spectra. Increasing knowledge about the pulmonary microbiome

will provide the opportunity to understand the role of microor-

ganisms in lung diseases.
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