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Abstract

Adult stem cells must balance self-renewal and differentiation for tissue homeostasis. The Drosophila ovary has provided a
wealth of information about the extrinsic niche signals and intrinsic molecular processes required to ensure appropriate
germline stem cell renewal and differentiation. The factors controlling behavior of the more recently identified follicle stem
cells of the ovary are less well-understood but equally important for fertility. Here we report that translational regulators
play a critical role in controlling these cells. Specifically, the translational regulator Caprin (Capr) is required in the follicle
stem cell lineage to ensure maintenance of this stem cell population and proper encapsulation of developing germ cells by
follicle stem cell progeny. In addition, reduction of one copy of the gene fmr1, encoding the translational regulator Fragile X
Mental Retardation Protein, exacerbates the Capr encapsulation phenotype, suggesting Capr and fmr1 are regulating a
common process. Caprin was previously characterized in vertebrates as Cytoplasmic Activation/Proliferation-Associated
Protein. Significantly, we find that loss of Caprin alters the dynamics of the cell cycle, and we present evidence that
misregulation of CycB contributes to the disruption in behavior of follicle stem cell progeny. Our findings support the idea
that translational regulators may provide a conserved mechanism for oversight of developmentally critical cell cycles such
as those in stem cell populations.
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Introduction

Distinct stem cell populations within the ovary produce the

different cell types that must act coordinately to create a functional

egg. The Drosophila ovary has proved an extremely fruitful model

system to study this process (reviewed in [1]). Two stem cell

populations have been identified: the germline stem cells (GSCs),

and the follicle stem cells (FSCs), which reside at the anterior of the

ovariole in a structure called the germarium (Figure 1A). The

GSCs give rise to the invariant 15 nurse cells and single oocyte

comprising a cyst. Two FSCs produce all of the different types of

somatic cells that surround the cysts and connect the developing

egg chambers. During development, a cyst progresses through four

morphologically and functionally distinct regions of the germar-

ium: 1, 2a, 2b and 3 ([2] and Figure 1A). Region 1 houses the

GSCs and escort cells [3,4,5]. Here, GSCs divide to produce

another GSC (self renewal) and a cystoblast that undergoes four

synchronous divisions to produce a 16-cell cyst [6]. As cysts

develop, cellular processes from the escort cells surround them in

regions 1 and 2a of the germarium and help move the cysts

through this region [3,7]. Two FSCs reside at the border of regions

2a and 2b and produce the follicle cells, stalk cells, and other

somatic cells associated with a developing egg chamber [8,9,10].

Once a cyst is encapsulated it buds off from the germarium

forming a stage 1 egg chamber. Production of a functional egg

requires proper control of proliferation and differentiation of both

stem cell populations and their progeny.

Stem cell activity is controlled by intrinsic and extrinsic factors,

which operate in the context of specialized microenvironments,

stem cell niches (reviewed in [1,11]). Much is known about the

molecular mechanisms regulating GSCs and their role in

producing a functional egg (reviewed in [1]). For example, GSCs

are found in a cellular niche at the anterior of the germarium.

They are anchored to the cap cells via DE-cadherin, and loss of

this adhesion leads to loss of stem cell properties [12]. In their

niche, GSCs receive extrinsic signals, such as Dpp, from cap cells,

that maintain their stem cell identity and prevent differentiation

[13,14]. Numerous intrinsic factors have also been identified that

control GSC proliferation and differentiation and comprise a

variety of molecular mechanisms. Prominent among them are

proteins involved in translational regulation such as the eukaryotic

initiation factor eIF4A and the translational regulators Pumilio,

Nanos, and Vasa, [15,16,17,18,19] and components of the

microRNA pathway [20,21,22,23,24]. In addition, GSC self-

renewal and differentiation rely on chromatin modifiers which

influence transcriptional regulation [25,26]. Both intrinsic and

extrinsic factors ensure that GSCs remain in an undifferentiated

state while in their niche, yet continue to produce daughter cells

that form the invariant 16-germ cells of each cyst.

Significantly less is known about the regulation of the FSCs.

While FSCs also require cell adhesion proteins to maintain their

stem cell identity, in this case DE-cadherin and integrins [12,27],

the cellular nature of the FSC niche is poorly understood. Recent

work has suggested that each FSC may maintain contact with a
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single escort cell [7] however, the full complement of cells that

comprise the FSC niche remains uncertain (reviewed in [1]). Like

GSCs, FSCs also receive extrinsic signals controlling their

proliferation and differentiation. These include long-range Hh

and Wg signals, which emanate from the cap cells, and short-range

signals from escort cells [28,29,30,31,32,33]. Proteins modulating

chromatin structure also appear to affect FSC self-renewal

[25,26,34,35]. To date, however, Dicer-1 is the only translational

regulator identified as necessary for FSC maintenance or function

[22]. Here, we report that the translational regulators Caprin

(CAPR) and the Drosophila ortholog of Fragile X Mental

Retardation Protein (FMRP) function together in regulating the

FSC lineage. In addition, we find that FSC-lineage cells have an

altered cell cycle in Capr mutants, further implicating Capr in

developmental regulation of the cell cycle.

Results

Loss of Capr Produces Defects in Germline Cyst
Packaging and Stalk Morphology

During our previous study [36] it was noted that Capr- females

that were heterozygous for the fmr1 gene (Df(3L)Cat fmr13/Capr2)

had reduced fecundity that decreased further with age (Figure S1).

fmr1 had been previously reported to have an extrinsic role in

ovarian germline stem cell (GSC) maintenance [24,37]. However,

no germline phenotype was observed in heterozygous fmr1 mutant

Figure 1. Loss of Capr disrupts germline cyst development. A) Schematic of the Drosophila germarium with bars below indicating the
numbered germarium regions (1, 2a, 2b, 3) and their cell types: non-proliferating terminal filament (TF) and cap cells (CC), germline stem cells (GSC)
which give rise to the developing 16-cell cysts (cyst), escort cells (EC) which facilitate movement of cysts through regions 1 and 2a, and the follicle
stem cells (FSC) which give rise to the follicle cells (FC) and stalk. Anterior is to the left in all figures. B-C) Immunofluorescence analysis of control +/
Df(3L)Cat (B, B’) or Capr2/Df(3L)Cat (C, C’) germaria stained with antibodies to Slit (green and B’, C’) and TO-PRO-3 iodide (DNA, red). Arrowheads
indicate the position of FSCs and the unencapsulated cysts are numbered in B’ and C’. Scale bar is 30 microns.
doi:10.1371/journal.pone.0035365.g001

Caprin Functions in Ovarian Follicle Stem Cells
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ovaries, suggesting that the reduction of fecundity in Df(3L)Cat

fmr13/Capr2 females was caused by loss of Capr or a combined

requirement for Capr and fmr1 in maintaining ovary function. To

explore this possibility, ovaries from Capr null females were

dissected and examined for morphological defects that could

explain the contribution of Capr to the reduced fecundity. Initial

observations indicated that Capr2/Df(3L)Cat mutant (hereafter

referred to as Capr-) germaria were often swollen-looking and

appeared to contain too many cells in region 2a. This phenotype

could arise through hyperproliferation of cells within each cyst, or

a local overabundance of morphologically normal cysts. Staining

for the extracellular matrix protein Slit, which identifies escort and

follicle cells in regions 2a and 2b of the germarium [10], revealed

that compared to controls (Figure 1B, B’), there are an

inappropriately high number of morphologically normal 16-cell

cysts in 86% of Capr- germaria (Figure 1C, C’, and Table 1). Cyst

production is controlled by proliferation and differentiation of

GSC-lineage cells, while the follicle stem cell lineage is responsible

for encapsulating cysts and mediating their exit from the

germarium. The accumulation of cysts in region 2a of Capr-

germaria could be due, therefore, to defects in either lineage.

Examination of developing egg chambers revealed two

additional defects in Capr mutant ovaries not observed in

heterozygotes. First, a small portion of encapsulated egg chambers

contained an inappropriate number of nuclei (Figure 2B, 2E, and

Table S1). Occasionally, egg chambers were also observed that

displayed heterogeneity in the size and presumed ploidy of the

nuclei (Figure 2E) or portions of two cysts packaged into one egg

chamber (data not shown). Similar defects have been reported for

mutations in genes specifically affecting the FSC lineage

[28,29,30,32,35,38], but also resemble those attributed to GSC

proliferation defects in fmr1 mutants [39,40]. In addition to the

packaging defects, we observed occasional aberrations in cell

number and/or organization of the stalk cells connecting

developing egg chambers of Capr- ovarioles (Figure 2, compare

brackets in A-C). Because stalk cells are exclusively derived from

FSCs this suggests that at a minimum, Capr function is required by

the FSC lineage, but could play a role in both the FSC and GSC

lineages.

Capr is Specifically Required for Maintenance of Follicle
Stem Cells

Caprin protein is found throughout all cells in the germarium.

Using preabsorbed anti CAPR serum under conditions where

staining is undetectable in Capr mutant ovaries (Figure S2) we

observed relatively high CAPR expression in wild type ovaries in

the GSC lineage, FSC lineage, and terminal filament compared to

the cap cells and escort cells, where CAPR is barely detectable

(Figure 3 and data not shown). To determine which lineage

requires Capr function, we initially used the heat-shock-induced

FLP/FRT method to generate marked homozygous Capr mutant

clones in a heterozygous mutant female [41]. Mutant clones from

either lineage showed no gross defects in size, morphology, or

polarity as determined by immunostaining for Actin or the ß-

catenin ortholog Armadillo (data not shown), suggesting that Capr

is not required for anchoring FSC cells to their niche. During

oogenesis, cells that are directly derived from an FSC division

remain in the ovary for seven days. Following generation of Capr

mutant clones, any Capr mutant cells detected in the ovary after

seven days must be derived from a stem cell population that

persisted after clone induction, while a reduction or absence of

clones after seven days indicates a loss of the mitotically active

stem cells [8]. The percentage of ovarioles containing either an

FSC lineage clone or a GSC lineage clone was determined at

various time points after clone induction. We found a statistically

significant decrease in Capr mutant FSC-derived clones compared

to the control (Figure 4A), and this difference increased with time

after clone induction, indicating a progressive loss of mutant FSCs

over time. In contrast, we observed no change in the frequency of

Capr mutant GSC-derived clones compared to the control

(Figure 4B). These results demonstrate that Capr is intrinsically

required for FSC, but not GSC, maintenance. Since stalk cells and

the follicle cells that encapsulate each cyst are derived from FSCs,

all of the observed phenotypes are consistent with a role for Capr in

both FSC maintenance and appropriate function of FSC progeny.

Capr Specifically Regulates the Cell Cycle in the Follicle
Stem Cell Lineage

The fates of stem cells and their progeny can be dramatically

altered through changes in cell proliferation and cell cycle

regulation [32,42] and reviewed in [43]. FSC proliferation and

differentiation are regulated by both wg and hh signals emanating

from the cap cells at the tip of the germarium [28,29,32,33]. We

tested whether modulation of these signaling pathways could

enhance or ameliorate the cyst packaging defects observed in Capr

null germaria. A reduction in wg gene dosage, and consequent wg

signaling, in a Capr mutant background caused a strong

enhancement of the Capr- phenotype, such that all germaria

contained supernumerary cysts in region 2a (Table 1). A similar

reduction in ptc, which is expected to increase hh signaling and

FSC proliferation [33], led to a reduction in supernumerary cysts

in region 2a of Capr- germaria (Table 1). These results suggest that

alterations in cell proliferation in the FSC lineage can specifically

enhance or suppress the Capr- phenotype.

Because Capr has been implicated in cell cycle regulation in both

Drosophila and vertebrate cells [36,44,45], we considered the

possibility that Capr might directly regulate the cell cycle in ovarian

stem cells and their progeny. We used two approaches to

determine whether loss of Capr alters the cell cycle in the FSC

lineage: phospho-histone H3 staining and BrdU incorporation.

Phospho-histone H3 specifically labels mitotic chromosomes [46],

and is generally used to identify cells that are undergoing mitosis.

We observed a statistically significant increase in the percentage of

Table 1. Loss of Capr increases the number of
unencapsulated germline cysts.

Genotype #5 cysts .5 cysts n

Df/+ 71.9% 28.1% 82

Capr2/Df 14.4% 85.6% 104

ptcS2/+ 91.9% 8.1% 62

ptcS2/+; Capr2/Df 52.0% 48.0% 120

wg1–12/+ 91.2% 8.8% 57

wg1–12/+; Capr2/Df 0.0% 100.0% 111

CycB2/+; Capr2/Df 49.5% 50.5% 95

Act5C-GAL4; UAS-CycB 21.6% 78.4% 88

fmr13/Df(3R)Exel6265 81.4% 18.6% 59

Df, fmr13/Capr2 0.0% 100.0% 91

The percent of total germaria scored (n) containing the normal number of Slit-
stained 16-cell cysts (#5 cysts), or supernumerary 16-cell cysts (.5 cysts), is
shown for each genotype. Df refers to the Capr deficiency, Df(3L)Cat.
doi:10.1371/journal.pone.0035365.t001

Caprin Functions in Ovarian Follicle Stem Cells
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Figure 2. Characterization of egg chamber and stalk defects in Capr- ovaries. A-C) Germarium, budding egg chamber, and stalk (white
bracket) of the indicated genotypes stained with antibodies to the follicle cell marker, FASIII (green), and with TO-PRO-3 iodide (red). A) Df(3L)Cat/+
(Control), B) Capr- showing a reduced primary stalk, and an aberrantly packaging egg chamber displaying an absence of stalk (dashed bracket) and
misencapsulation of a single germline cell (arrow), and C) Capr- containing a disorganized stalk. D-E) Egg chambers stained for TO-PRO-3 (red). Optical
sectioning revealed 16 nuclei in the control egg chamber (D), but fewer cells in a Capr- egg chamber (E) including nuclei of inappropriate size for this
stage (arrowhead). Scale bar is 30 microns.
doi:10.1371/journal.pone.0035365.g002

Figure 3. CAPR is present in both somatic and germline cells of the germarium. Immunofluorescence analysis of wild type germaria
indicates CAPR is present in cells identified by the germline marker VASA (A-C) including the GSCs (arrowheads in A, B), and in some of the somatic
cells identified by the nuclear protein Traffic Jam (TJ) (D-F). CAPR is present in the FSC-derived follicle cells (open arrowhead, D, E), and as bright
cytoplasmic puncta in differentiated terminal filament cells (bracket in D), but is barely visible in the cap cells (arrows in D, E), and escort cells (closed
arrowheads in D, E). Scale bar is 30 microns.
doi:10.1371/journal.pone.0035365.g003

Caprin Functions in Ovarian Follicle Stem Cells
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fixed Capr- germaria containing FSC-lineage cells in mitosis

compared to the control germaria (Figure 5A). These results

indicate that FSC-lineage cells in Capr mutant germaria are either

undergoing more cell divisions or they are spending more time in

mitosis. If the FSC-derived cells are undergoing more divisions

there should be an equivalent increase in the number of cells in

other phases of the cell cycle. We identified cells in S-phase by

pulse labeling with BrdU, a thymidine analog incorporated into

DNA during S-phase [47]. The percentage of Capr- germaria

containing FSC-lineage cells in S-phase was not increased relative

to controls (Figure 5D), and was in fact slightly reduced, although

this difference was not statistically significant (p = 0.09). This

suggests that the defects found in Capr mutant ovaries are not due

to alterations in overall proliferation rates, but are due to an

alteration in lineage-specific cell cycle dynamics. Consistent with

this interpretation, we did not find any striking differences in the

overall size of the Capr- clones induced in heterozygotes compared

to the simultaneously generated adjacent wild type clones (twin

spots). This was true for clones observed in late stage egg chambers

(Figure 5E) or recently induced within the germarium (data not

shown). Together these data demonstrate that loss of Capr alters

the cell cycle dynamics in the FSC lineage in a specific way,

leading to prolonged mitosis but not an overall change in cycle

length.

Capr may Regulate CYCB Levels in the Follicle Stem Cell
Lineage

CAPR is believed to act as a signal-dependent regulator of

specific target mRNAs [36,44,48,49]. In Drosophila, Capr modulates

the translation of two mRNAs encoding cell cycle regulators

during the mid-blastula transition: CycB and frs [36]. Of these

known targets frs is not expressed in the germarium [50,51],

however, CycB is expressed in both the GSC and FSC lineage and

is required for GSC divisions [52]. CYCB is a mitotic cyclin whose

destruction is required to exit mitosis [53], making it a good

candidate to mediate the alterations in the cell cycle we observe in

Capr- ovarioles. Since CYCB levels oscillate during the cell cycle,

we were unable to accurately compare CYCB levels directly by

immunofluorescence. However, genetic manipulation of CYCB

levels produced results consistent with a role for CYCB as an

effector of the Capr- phenotype. Reducing the genetic dose of CycB

in a Capr mutant background partially rescued the supernumerary

cyst phenotype seen in Capr- germaria (Table 1) indicating that a

critical level of CYCB is necessary to generate this phenotype.

Furthermore, if the Capr- phenotype we observe is primarily due to

an increase in CYCB, then overexpression of CYCB in a wild type

ovary should also produce this phenotype. We tested this using

Act5C-GAL4 and UAS-CycB transgenes to drive CycB expression in

all FSC lineage cells (data not shown). Overexpression of CYCB

led to a specific increase in the number of cysts present in region

2a (Table 1) as was seen in Capr- germaria. Furthermore, a small

percentage of ovarioles had stalk cell defects when CYCB was

overexpressed (data not shown) suggesting that most if not all

aspects of the Capr mutant phenotype can be explained by

misregulation of CycB.

fmr1 and Capr Coordinately Regulate the Follicle Stem
Cell Lineage

Previously, our lab showed that CAPR and dFMRP bind and

regulate expression of some of the same mRNAs, including CycB,

and that loss of Capr in a fmr1 heterozygous background results in a

more severe phenotype than loss of either gene alone ([36] and

Figure S1). To date, fmr1 has been implicated only in the

maintenance and differentiation of GSCs, but not FSCs

[37,39,40,54]. However, the reported effects of fmr1 on GSCs

are not intrinsic, and dFMRP is expressed in somatic tissues, with

the exception of the terminal filament cells which lack detectable

dFMRP (data not shown, consistent with [37,39]). We asked

whether fmr1 might also play a role in the FSC-dependent

packaging of cysts. Complete loss of fmr1 alone produced a

minimal increase in unencapsulated cysts (18.6% of germaria

showing .5 cysts in region 2a) compared to the 85.6% seen in

Capr null germaria (Table 1). In a Capr mutant, however, even

partial reduction of fmr1 generated unencapsulated cysts in 100%

of the germaria (Table 1). Because loss of fmr1 has no effect on cyst

production by GSCs [37] the genetic interaction between Capr and

fmr1 suggests that Capr and fmr1 coordinately regulate cyst

encapsulation by the FSC lineage.

Figure 4. Loss of Capr leads to loss of follicle stem cells but not germline stem cells. The heat shock-FLP system was used to generate
clones homozygous for the FRT80B (control) or for the FRT80B Capr2 (Capr2) chromosome. Percent germaria containing follicle stem cell clones (A), or
germline stem cell clones (B) were quantified at 9 and 15 days after heat shock (AHS). The number of germaria analysed for 9 day and 15 day data
respectively was 106 and 166 for control and 78 and 166 for Capr2.
doi:10.1371/journal.pone.0035365.g004

Caprin Functions in Ovarian Follicle Stem Cells
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Discussion

Stem cells are influenced by a combination of intrinsic and

extrinsic factors instructing them to produce more stem cells and/

or differentiating progeny (reviewed in [1,11,55]). Translational

regulation has proven to be of fundamental importance in control

of GSC identity and behavior, but surprisingly little is known

about the relative importance of this mode of regulation in

controlling the fate of FSCs. Here we report that the translational

regulator Capr functions as an intrinsic factor required for the

proper maintenance of FSCs, and that loss of Capr disrupts cell

cycle dynamics within the FSC lineage. We propose that Capr is

required for proper execution of the cell cycle in the FSC-lineage,

in part through modulation of CYCB protein levels. In this model

misregulation of the Capr-dependent cell cycle leads to defects in

somatic cell differentiation, with a concomitant disruption of the

ability to correctly package developing cysts into egg chambers.

The ability of fmr1 mutation to enhance the encapsulation defects

implicates these two translational regulatory factors in coordinate

control of this aspect of ovary function.

Is Capr solely Required in the FSC Lineage?
Given the similarities between the Capr mutant phenotype and

the mutant phenotype of genes involved in FSC proliferation,

maintenance, and differentiation, it is possible that Capr is only

required in the FSC lineage. Our data, however, cannot rule out

the possibility that Capr is additionally required in non-FSC lineage

cells to send extrinsic signals that impact the encapsulation

process. For example, our clonal analysis demonstrated that Capr is

not required for GSC maintenance. However this technique

cannot rule out a requirement for Capr in the GSC lineage for

other functions such as cell-cell communication. Similarly, because

Capr protein was barely detectable in the cap cells or the escort

cells it seems less likely that Capr has a critical function in these

populations, but not impossible. A more appealing candidate

population might be the terminal filament cells based on their

prominent CAPR-containing puncta. Terminal filament cells are

known to function along with the cap cells as niche cells for both

the GSCs and FSCs (reviewed in [1]). It will be interesting to

determine whether the bright puncta of CAPR we observe in the

terminal filament cells represent ribonucleoprotein structures

Figure 5. Loss of Capr alters cell cycle dynamics but not proliferation rates in the FSC lineage. A-C) Fixed Df(3L)Cat/+ (control), or
Df(3L)Cat/Capr2 (Capr-) germaria were stained with antibodies to phospho-histone H3 (red), and FasIII (green), and with TO-PRO-3 iodide (blue). A)
Quantification of the % of germaria scored that showed any phospho-histone H3-positive staining in cells of the FSC lineage. The number of germaria
analysed was 81 control, 82 Capr-. B-C) Examples of stained germaria of the indicated genotypes. Size bar is 30 microns. D) Quantification of the % of
pulse labeled germaria scored that incorporated BrdU in cells of the FSC lineage. The difference between Df(3L)Cat/+ (control), or Df(3L)Cat/Capr2

(Capr-) was not significant (P = 0.09). The number of germaria analysed was 80 control, 86 Capr-. E) Tangential section of a fixed stage-10 egg
chamber stained for GFP (green) and FasIII (red). The Capr- follicle cell clone (no GFP staining) and its adjacent wild-type twin-spot (bright green) are
of similar size. Size bar is 60 microns.
doi:10.1371/journal.pone.0035365.g005

Caprin Functions in Ovarian Follicle Stem Cells
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involved in signal-responsive translational regulation similar to the

CAPR-containing neuronal and stress granules of vertebrates

[44,49,56]. Ultimately, because the clonal removal of Capr

specifically from the FSC’s alone disrupted stem cell maintenance,

the simplest interpretation of the current data is that an intrinsic

role for Capr in the FSC’s can account for all the phenotypes

observed. Further study will be required to determine whether

Capr has additional roles in other ovarian cells.

fmr1 Collaborates with Capr in the Ovary
During Drosophila embryogenesis, Capr is known to functionally

collaborate with fmr1 to regulate the timing of the mid-blastula

transition [36]. The functional interaction of these two transla-

tional regulators is further supported by evidence that CAPR and

dFMRP coimmunoprecipitate from Drosophila embryos [36] and

associate with common ribonucleoprotein structures such as

neuronal granules [48,56,57,58], stress granules [44,59,60,61],

Drosophila lipid droplets [62], and the 5’ cap structure of mRNAs in

the ovary [63]. In the ovary Capr and fmr1 are expressed in both

the germline and somatic cells (this work and [39]). A role for fmr1

in somatic cells and encapsulation was initially considered unlikely

because fmr1 mutant egg chambers displaying germ cell prolifer-

ation defects are surrounded by apparently normal follicle cells,

and are typically flanked by appropriately packaged egg chambers

[39,40]. The maintenance of GSCs, however, relies on fmr1

function outside the GSCs [37,40] leaving open the possibility that

fmr1 functions in the germline cysts and somatic cells of the ovary.

Our data indicate that fmr1 and Capr genetically interact to

regulate cyst encapsulation and female fecundity. One possible

interpretation of our data is that CAPR and dFMRP co-regulate

translation of a set of transcripts in FSCs or their progeny

important for cyst encapsulation. Alternatively, CAPR and

dFMRP could individually regulate distinct transcripts required

for proper FSC function. In either case both translational

regulators are necessary for proper encapsulation of developing

cysts and generation of a functional egg chamber.

Intriguingly recent studies have indicated that FMRP is

required for normal functioning of the human ovary as well.

Although the mechanism has yet to be determined, FMR1

premutation carriers with no neuro/psychiatric symptoms never-

theless show reduced fecundity due to aberrant control of follicular

recruitment and ovarian reserves [64]. In addition to its role in the

ovary, dFMRP is reported to affect proliferation of Sertoli cells,

the niche cells of the male gonad [65,66], and to regulate stem cell

behavior in the nervous system (reviewed in [67]) and it will be

interesting to determine whether CAPR also participates in these

processes.

Capr may Act as a Cell Cycle-specific Translational
Regulator in the Ovary

In stem cells control of the cell cycle may be uniquely linked to

cell fate. For example, in mouse neuroepithelial cells, simply

altering the length of G1 using cyclin-dependent kinase inhibitors

induces differentiation [68]. Likewise in the ovary, as cells

produced by FSCs proceed through successive divisions they

acquire longer S-phases and increased epigenetic stability,

conditions which promote the differentiated state [69]. Further-

more, elevated levels of CYCE are required in the FSC’s

themselves, to promote the adherence of these stem cells to their

niche [42]. It is therefore plausible that even subtle modulation of

the cell cycle by Capr could have profound consequences for

production of a functional egg chamber.

Translational control of cell cycle regulation is a specific

mechanism reported to affect behavior of both GSCs and FSCs

[21,22]. Although CAPR is reported to be a signal-dependent

regulator of translation in the vertebrate nervous system [48,49,56]

it has been equally implicated in developmental regulation of

proliferation: Caprin-1 levels correlate with cell proliferation states

in many vertebrate tissues, and caprin-1 deficient cells show a

specific delay in G1-S progression [45,70]. Similarly, FMRP has

been predominantly studied because of its role in the nervous

system where loss of FMRP causes mental retardation and autism

(reviewed in [71]). However, loss of FMRP also generates

significant aberrations in proliferation in both the ovary and testis

[40,66]. The encapsulation defects we see, therefore, could be due

entirely to a Capr- or Capr and fmr1-dependent alteration of the cell

cycle in the FSC lineage.

CAPR is a sequence-specific RNA-binding protein believed to

function by altering translation and/or localization of specific

mRNA targets [36,44,48,49,56]. However, despite our genetic

evidence that CycB misregulation underlies the defects we

observed, CAPR may regulate other mRNAs, and the phenotype

we see could be due to a cumulative misexpression of mRNAs

involved in cell cycle control and other processes. In this regard

there is still much to learn about how CAPR or FMRP achieve

temporal and target specificity. For example, both Capr and CycB

are expressed in GSCs and numerous other tissues but Capr does

not appear to regulate CycB in all of these. Future determination of

all relevant mRNA targets in the ovary, and the mechanism for

regulating CAPR function and specificity would be constructive

steps towards understanding the role of translational regulation in

the control of stem cell behavior.

Materials and Methods

Fly Stocks
Stocks were reared on standard cornmeal media. Df(3L)Cat ri

fmr13 and Capr2 were previously described [36]. The FRT80B

Capr2 stock was generated for this paper. Df(3L)Cat ri sbd1 e,

Df(3R)Exel6265, P[+mC] = XP-U}Exel6265, FRT80B, hsFLP;

FRT80B arm-lacZ, FRT80B ubi-GFP, wgl–12, ptcS2, CycB2, UAS-

CycB, and Act5C-GAL4 stocks were obtained from the Bloomington

Stock Center (Bloomington, IN).

Immunofluorescence
Ovaries were from females fed fresh yeast paste for a minimum

of two days. Ovaries were dissected into PBS on ice and broken up

by pipeting. Samples were fixed 20 minutes in 4% formaldehyde

in PBS, followed by four 15 minute washes in PBST (PBS + 0.1%

Triton-X 100). Fixed samples were blocked with PBTA (PBST +
1% BSA) for 1–2 hours at room temperature, incubated with

primary antibody in PBTA overnight at 4uC, washed with PBST

as above, and incubated 2 hours with secondary antibody.

Samples were washed with PBST as above and mounted in

Vectashield (Vector Laboratories). Anti-Caprin polyclonal serum

was preabsorbed against Oregon-R ovaries in PBTA prior to use.

Primary Antibodies: mouse anti-FasIII (1:50, 7G10) and mouse

anti-Slit (1:25 C555.6D) were from the Developmental Studies

Hybridoma Bank, guinea pig anti-Traffic Jam (1:3000, [72]),

rabbit anti-phospho-Histone H3 (Ser10) (1:500, Millipore 06–570),

mouse anti-BrdU (1:20, Becton Dickinson 347580), and rabbit

anti-Caprin (1:500, [36]).

Secondary Antibodies: Alexa Fluor 488 goat anti-rabbit IgG

(1:500), Alexa Fluor 488 goat anti-mouse IgG (1:500), Alexa Fluor

546 goat anti-rat IgG (1:500), Alexa Fluor 633 goat anti-rabbit

IgG (1:500), Alexa Fluor 633 goat anti-mouse IgG (1:500), and

Alexa Fluor 546 goat anti-rabbit IgG (1:500) were from
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Invitrogen. DNA was visualized with TO-PRO-3 iodide (1:2000,

Invitrogen).

Clonal Analysis
hsFLP; FRT80B ubi-GFP/FRT80B Capr2 or hsFLP; FRT80B arm-

lacA/FRT80B Capr2 flies were transferred to well yeasted vials each

day for at least two days before heat-shock treatment. Flies were

then heat-shocked in a 38uC running water bath for 1 hour (twin-

spot analysis) or for 1 hour on three consecutive days (FSC and

GSC clonal analysis). Flies were then transferred to well-yeasted

vials every day until ovaries were dissected and prepared for

immunofluorescence.

BrdU labeling
Flies were labeled essentially as described [47]. Briefly, ovaries

from well-fed flies were dissected into room temperature

Schneider’s Insect Medium (Sigma S0146). Medium was replaced

with Schneider’s Insect Medium containing 10 mM 5-Bromo-2-

Deoxy-Uridine (Roche 10280879001), and the ovaries were

incubated for 1 hour on a nutator at room temperature. Ovaries

were washed in Schneider’s Insect Medium twice for three

minutes each, and fixed 20 minutes in 1:1:4 37% formaldehyde:

Buffer B (100 mM KH2PO4/K2HPO4 pH 6.8, 450 mM KCl,

150 mM NaCl, 20 mM MgCl2): H2O. Fixed samples were washed

twice in PBST and twice in DNase buffer (66 mM Tris-HCl pH

7.5, 5 mM MgCl2, 1 mM 2-mercaptoethanol) for 15 minutes

each, incubated in DNase buffer with 12.5 U/ml DNaseI

(Fermentas EN0521) at 37uC for 30 minutes, and washed three

times with PBST for 10 minutes each. Samples were blocked in

PBTA for 30–60 minutes, incubated in PBTA containing anti-

BrdU antibody overnight at 4uC, and washed four times for 15

minutes each in PBTA. Secondary antibody incubation and

subsequent steps were as for immunofluorescence.
Statistics. X2 analysis (http://graphpad.com/quickcalcs/

chisquared2.cfm) was performed using 1 degree of freedom where

a two-tailed P value of , .05 was deemed significant. For clonal

analyses at 9 days values for GSCs were X2 = 0.06, P = 0.81 and

for FSCs X2 = 10.70, P = 0.001. For clonal analyses at 15 days

values for GSCs were X2 = 0.10, P = 0.75 and for FSCs

X2 = 36.67, P , 0.0001. For phopho-Histone H3 staining values

were X2 = 17.09, P , 0.0001. For BrdU incorporation values were

X2 = 2.79, P = 0.09.

Supporting Information

Figure S1 Capr null flies with reduced fmr1 show
reduced fecundity over time. Well fed females of the

indicated genotypes were mated to Oregon R males and eggs

were collected from females of the indicated age range. Df refers to

the Capr deficiency, Df(3L)Cat. n = total eggs collected. A) Graph

showing eggs laid per unit time per female. B) Graph of the

percent of eggs that hatched. Error bars depict standard deviation.

Note the dramatic decrease in egg production and viability in 9–11

day old Df, fmr13/Capr2 females.

(TIF)

Figure S2 Polyclonal anti-CAPR antibodies used in this
study show no background staining in the germarium.
Representative germaria from A) Oregon R (control) or B) Capr2/

Df(3L)Cat (Capr-) flies stained with preabsorbed anti-Caprin

antibodies (top panels, CAPR, green) and TO-PRO-3 iodide

(bottom panels, DNA, red). Scale bar is 30 microns.

(TIF)

Table S1 Data are shown for the percent of ovarioles
containing an egg chamber with the indicated number of
nurse cells. Df refers to the Capr deficiency, Df(3L)Cat. n =

number of ovarioles scored.

(DOCX)
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