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Abstract

The dramatic increase in heterogeneous types of biological data—in particular, the abundance of new protein sequences—
requires fast and user-friendly methods for organizing this information in a way that enables functional inference. The most
widely used strategy to link sequence or structure to function, homology-based function prediction, relies on the
fundamental assumption that sequence or structural similarity implies functional similarity. New tools that extend this
approach are still urgently needed to associate sequence data with biological information in ways that accommodate the
real complexity of the problem, while being accessible to experimental as well as computational biologists. To address this,
we have examined the application of sequence similarity networks for visualizing functional trends across protein
superfamilies from the context of sequence similarity. Using three large groups of homologous proteins of varying types of
structural and functional diversity—GPCRs and kinases from humans, and the crotonase superfamily of enzymes—we show
that overlaying networks with orthogonal information is a powerful approach for observing functional themes and
revealing outliers. In comparison to other primary methods, networks provide both a good representation of group-wise
sequence similarity relationships and a strong visual and quantitative correlation with phylogenetic trees, while enabling
analysis and visualization of much larger sets of sequences than trees or multiple sequence alignments can easily
accommodate. We also define important limitations and caveats in the application of these networks. As a broadly
accessible and effective tool for the exploration of protein superfamilies, sequence similarity networks show great potential
for generating testable hypotheses about protein structure-function relationships.
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Introduction

Over the past two decades, there has been a disorderly explosion

of biological data, exponentially increasing in volume with time. To

keep pace with the broad classes of new sequence, structural, and

functional data arising from compilations of genomic and proteomic

data in particular, many powerful approaches have been developed

for unearthing meaningful themes and hypotheses from within the

jumble. Yet there is still a critical need for improved techniques

enabling fast and comprehensive analysis of large sequence data

sets, especially to access the biologically useful context that can be

extracted from this information. There is a particular demand for

easy-to-use techniques to aid experimental biologists in finding

useful starting points for analyzing diverse superfamilies of proteins.

Here we address one of these techniques, sequence similarity

networks (Fig. 1). A relatively new application of methods

commonly used to summarize protein-protein interactions on a

large scale[1], sequence similarity networks—here, in which the

interrelationships between proteins are described as a collection of

independent pairwise alignments between sequences—represent an

attractive adjunct approach to multiple sequence alignments and

phylogenetic trees. Moreover, they offer several important capabil-

ities unavailable to these methods. First, they provide a fast and easy

to compute framework for observing relationships among very large

sets of evolutionarily related proteins; more importantly, when

visualized they also allow the perception of trends in orthogonal

information—viz., function-related information—mapped onto the

context of sequence similarity. Because they provide access to these

relationships in an intuitively accessible manner and are easy to

create and manipulate, these networks fill a need that is not

currently well-addressed by other tools. By enabling the visualiza-

tion of extremely large sets of related sequences, networks provide

advantages unmet by phylogenetic trees, particularly in showing all

relationships that score above a user-defined similarity cut-off rather

than only the small number of optimally scoring connections. Also,

for the same amount of computation, a much larger set of sequences

can be analyzed using a network than could be used to infer a tree.

Furthermore, there are restrictions on the number of sequences that

can be usefully considered in generating a multiple sequence

alignment, in part due to the practical limitations of viewing

alignments of hundreds of sequences. The corresponding benefit of

visualizing a sequence similarity network, rather than analyzing it
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numerically, is that the displayed network can be overlaid with as

many types of derived and orthogonal information as spring to

mind. The network can then be interactively explored to see how

these different features coalesce into trends (or don’t) when viewed

in the context of sequence similarity. Additionally, using interactive

software to visualize the networks (e.g. [1]) and to link to other types

of information such as three-dimensional structures (e.g. [2]) allows

the evaluation of individual and sets of edges, enabling an informed

researcher to decide how much to trust the relationships implied by

the network structure.

There has already been a great deal of interest in generating

sequence similarity networks. Enright and colleagues recognized

that visualizing a network of protein similarity information[3] was

a useful extension to basic protein sequence clustering methods

(e.g. BLASTCLUST[4] and cd-hit[5]). They then used the MCL

algorithm—designed for clustering very large networks—to

identify natural sequence similarity ‘‘families’’ (ideally, rough

functional classes) in a network of the protein universe[6]. A

number of other groups followed with innovative approaches to

cluster all known proteins and visualize them as attractive,

enigmatic maps (e.g. [7]). More recently, there have been efforts

to use sequence similarity networks for more discrete sets of related

proteins[8], and PFAM has released its classification of families

into the more general clans, creating many three-level hierarchies

bundling sequences into families, and families into clans[9]. Work

by Medini et al.[10] began with a sequence similarity network of

the protein universe, but also isolated one small and interesting

region of the network. Using more careful analyses, they made

inferences about the evolution of specific protein families from the

isolated region. In our own work, we have begun to use sequence

similarity networks to provide context for the analysis of individual

proteins that are members of superfamilies[11], to show the

relative outlier status of specific functional classes within a large

superfamily[12,13], and to illustrate the correlation with lineage of

conservation patterns for active site residues in a specific family of

enzymes[14].

But before sequence similarity networks can be adopted for

broad use, it is important to understand their strengths and

weaknesses. In particular, these types of networks need to be

validated in comparison to better-understood approaches. A

primary motivation of this work is to address whether there is a

compelling quantitative argument that sequence similarity net-

works can competently depict sequence similarity relationships,

allowing them to be used as a framework to guide hypotheses

about functional relationships. Although it has long been

recognized that sequence similarity is an imperfect proxy for

functional similarity, a fundamental dogma of structural biology—

that sequence conservation infers structural conservation, which in

turn implies functional conservation—has been extensively and

effectively applied to infer functional properties on every scale.

Consistent with this view, our results demonstrate that visualized

sequence similarity networks perform well in representing

sequence similarity information, and indeed the visualized

relationships correlate well with known functional relationships.

In contrast to the formal network representations of sequence

similarity represented by previous studies describing algorithms for

network generation, we have shown how well the displayed

relationships reflect various measures of sequence and evolution-

ary distance, using relevant examples and quantitative assess-

ments. Additionally, we introduce a concept: the most valuable

feature of sequence similarity networks is not the optimal or most

accurate display of sequence similarity, but rather the flexible

visualization of many alternate protein attributes for all or nearly

all sequences in a superfamily. To illustrate the results, we have

used three well-studied superfamilies with nuanced functional

annotations. This work is especially applicable to the study of

individual superfamilies, and is complementary to previous work

in this area that typically shows that networks can group all known

proteins in agreement with broad definitions of functional

similarity (e.g. [15]).

Here we demonstrate, using example data sets of G-protein

coupled receptors (GPCRs), kinases, and the crotonase superfam-

ily of enzymes, that sequence similarity networks recapitulate

much of the information present in phylogenetic trees, that the

Figure 1. Sequence similarity network topology changes in a
predictable way with the stringency of the threshold. A.
Thresholded sequence similarity networks represent sequences as
nodes (circles) and all pairwise sequence relationships (alignments)
better than a threshold as edges (lines). The same network, depicting
three simulated protein classes, is shown here at four different
thresholds. At stringent thresholds, the sequences break up into
disconnected groups; within each group the sequences are highly
similar. The relative positioning of disconnected groups has no
meaning, while the lengths of connecting edges tend to correlate
with the relative dissimilarities of each pair of sequences. As the
threshold is relaxed and edges associated with less significant
relationships are added to the network, groups merge together and
eventually become completely interconnected. B. Simulated dendro-
gram for a sequence set that might give rise to the network in A.
doi:10.1371/journal.pone.0004345.g001

Sequence Similarity Networks

PLoS ONE | www.plosone.org 2 February 2009 | Volume 4 | Issue 2 | e4345



relationships implied by networks are in agreement with known

sequence and structural relationships, that networks incorporate a

number of practical benefits that improve on current techniques

for relating sequences, and finally, that visualization of similarity

networks enables the perception of trends from the context of

sequence similarity, initiating fruitful hypotheses. Finally, we

report a new result relevant to the evolution of domain variation

in the crotonase superfamily of enzymes that was obtained from

analysis of sequence similarity networks.

Results and Discussion

Our results provide validation of sequence similarity networks

for establishing family or superfamily context and for illustrating

important applications. The first two sections provide quantitative

evidence to support our claim that two-dimensional distances in

visualized networks correlate well with the underlying distances in

high-dimensional space and with distances depicted by phyloge-

netic trees, indicating that the depictions are mathematically

reasonable and comparable to an accepted standard. The next

sections address the practical benefits we have found for sequence

similarity networks in capturing known (and novel) sequence and

structural relationships, and in providing different and new

information compared to conventional methods for relating

sequences. We also describe some of the important advantages

this view of sequence similarity context provides for hypothesis

generation about structure-function relationships. This latter

application is most powerful when nodes in the network are

painted with structural or functional information that is orthog-

onal to homology-based information. An example is provided by

mapping sequence length and taxonomic information onto the

crotonase superfamily network, leading to the discovery that there

are three major groups within the superfamily that are

differentiated by domain organization and that track with primary

branching across the tree of life. Each section is accompanied by a

brief discussion of the controls and caveats we have found to be

important for effective use of this method.

I. Visualized sequence similarity networks are
satisfactory depictions of high-dimensional similarity
relationships

Graph layout algorithms project the N-1 dimensional data

structure into two (or three) dimensions for visualization, with the

aim being to preserve, as well as possible, the actual pairwise

distances between nodes in high dimensional space. In this case,

the graphs are made up of nodes (sequences) connected by edges

(pairwise similarity relationships). The layout used in this work, the

Organic layout[16,17] available in Cytoscape 2.6[1], uses only

node connectivity to illustrate groups and inter-group relation-

ships. This makes it suitable for visualizing thresholded sequence

similarity networks, where the high-dimensional graph is defined

by all pairwise sequence alignments that are better than a chosen

cut-off. Because mutual sequence similarity within a protein family

and the number of similarity relationships better than a threshold

appear to be highly correlated, the Organic layout is able to

calculate relative distances in two dimensions that are remarkably

close to the underlying, mathematically ideal distances in high

dimensional space, without explicitly incorporating numeric edge

weights into the algorithm. (See Fig. 1 and Table S1.) An

alternative layout algorithm incorporating edge weights performed

slightly worse (Fig. S1). Across all of the test sets used in this work,

the correlation between displayed distances and the mathemati-

cally ideal distances defined by BLAST E-values ranges from a low

of 0.83860.002 to a high of 0.93660.003; the variation in

correlation appears to be associated with variations among the

specific sets of proteins analyzed, data set curation, and the

selected E-value cut-off rather than with the size of the network in

terms of nodes and edges (data not shown). The visually

discernable clusters tend to overlap with sequence clusters as

determined by related approaches, such as the NCBI BLAS-

TCLUST program (See Fig. S2).

Additionally, we found high correlations between a Class A

GPCR network composed of 605 sequences and networks from

this set where 20% of the sequences were removed at random. To

address the impact of missing data on network topology, we

compared the laid-out distances between sequences present in the

full network and these 80% networks (Fig. S3). Here, the average

correlation is 0.892 with a standard deviation of 0.016, indicating

that the observable distances are very similar. The underlying

BLAST-defined distances also remained extremely similar, at

0.99360.004. The observable distances for the 80% network were

also very close to the 80% BLAST-defined distances

(0.90160.010) as well as to the underlying BLAST distances for

the full sequence set (0.89460.014). Thus, the implied sequence

interrelationships do not depend strongly upon the presence of

specific sequences.

II. Sequence similarity networks recapitulate much of
the information present in phylogenetic trees

We examined the similarity relationships implied by phyloge-

netic trees and networks of two small protein families (amine-

binding GPCRs, and the STE and WNK kinases) and the kinase

superfamily. Both sequence families are simple to align—highly

conserved transmembrane helix domains anchor the amine-

binding GPCRs, while the STE and WNK kinases have an

average percent identity of 36% across the alignment. The

distances between sequences in a neighbor-joining tree of the 42

human amine-binding GPCRs and the corresponding sequence

similarity networks are well correlated (R = 0.712; see Table 1);

notably, with this set of proteins annotated by their ligands, the

network does as good a job of grouping functionally-similar

sequences as the tree. As can be seen in the neighbor-joining tree

in Fig. 2A, most of the clades are about equidistant from one

another, with the exception of the muscarinic acetylcholine group,

which is slightly more similar to a pair of histamine-binding

GPCRs (H3 and H4). These comparatively longer branches are

demonstrated in the network, and the intermediate characteristics

of a third histamine-binding GPCR, labeled (a) in Fig. 2, are

captured both in the tree and the network. A fourth histamine-

binding GPCR, labeled (b) in Fig. 2, is closer to the central branch

point of the other amine GPCRs than any other sequence in the

tree. Accordingly, it is embedded in the larger amine group that is

closer to the central branch point relative to the muscarinic

acetylcholine and three histamine class sequences in the network.

A similar level of correlation was found between trees and

displayed distances (0.714) in 51 human STE and WNK kinases,

and qualitative features were mirrored as well. Both the tree and

the network clearly demonstrate the outlier status of the STE20:

STLK kinase domains (labeled (a) in Fig. S4). See Table S2 for

statistics on these kinases.

In order to assess the correspondence between a very large

phylogenetic tree and sequence similarity networks, we used a

dendrogram of the human kinome[18], which uses sequence

similarity to classify all of the kinase domains in the human

genome into a number of broad classes. This tree depicting the

classification of each kinase has been enormously useful to

researchers since being published; in particular, it gives a sense

of how a kinase of interest relates to all others. Although the

Sequence Similarity Networks
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pairwise relationships between the CK1 kinase class and the other

canonical kinase domains are not significant enough to be

connected at the E-value threshold chosen for Fig. 3, the pairwise

distances between the large connected group are still strongly

correlated with the distances in the seminal Manning kinase

tree[18] (R is 0.628 when comparing the laid out distances in the

connected cluster in Fig. 3 to the tree distances for the 419

sequences in common from the full Manning tree, which contains

491 kinase domains; see Table 2 for more statistics).

Note that while there are many similarities between the

interpretations that can be made from the information provided

in a network and a tree, phylogenetic trees are based on an explicit

evolutionary model that is missing from sequence similarity

networks. Thus, networks are not an adequate alternative to a

tree, as the interrelationships they depict cannot be used as a basis

for inferring evolutionary history. Indeed, there is a fundamental

difference between the network composed of nodes representing

contemporary protein sequences that may be connected with

cycles, and the acyclic Steiner tree with introduced ancestral nodes

that can be used to describe a phylogenetic tree. Despite this, and

particularly in the case of large networks with many edges, we

have found anecdotally that the composition of many independent

alignments as a graph projected into two dimensions enables a

visual estimate of confidence in a displayed group-wise similarity

relationship—a single edge representing a pairwise alignment at

22% identity may look like noise, but a large number of edges

representing slightly different 22% identity alignments between

different members of the same two discrete groups can be more

convincing, particularly when there are known structural and

functional relationships between the groups, as in the GPCR

networks depicted in Fig. 4. Thus, by including many more

relationships than are possible in a tree, we speculate that networks

can assist in separating sequence similarity signal from noise.

III. The relationships implied by sequence similarity
network topology agree with known sequence and
structural relationships

The structural relationships between different functional classes

of GPCRs can be extremely distant. At the low stringency

threshold at which inter-group relationships can be visualized

using networks, many of the displayed edges represent poor

alignments. In Fig. 4A, all of the human ‘‘Class A: Rhodopsin-

like’’ GPCRs are shown at an E-value cut-off chosen to

demonstrate the relationships between the major subgroups of

this class. The largest known mammalian gene family[19], the

olfactory receptors (OR), clearly forms a distinct group of its own.

There are 252 edges linking the ORs to the other Class A

sequences, representing inter-group pairwise alignments ranging

from E-values of 1610216 (24% identity across 305 residues) to

9610212 (31% identity over 121 residues). None of these

alignments can be expected to be error-free, but the fact that

there are so many between the same two groups, and that

sequence and functional relationships have been established for

decades[20] implies that the existence of the edges—if not the

details of the alignment underlying each individual edge—is

reliable. The absence of edges between the Class A GPCRs and a

number of decoy ‘‘non-GPCRs’’ is a further check to help evaluate

whether or not to trust the implied similarity relationship. Note

that this data set is too large to use in generating a phylogenetic

tree using conventional methods.

One important application of sequence similarity networks is

using them to form general functional hypotheses for sequences

whose molecular functions are unknown. A typical protein

superfamily sequence set contains a number of well-known

families or characterized groups, as well as other groups that can

be confidently classified to the superfamily but which are

uncharacterized or for which the evidence for annotation with a

more specific family label does not exist. In Fig. 4A, those

sequences are represented as the red ‘‘Class A: Rhodopsin-like’’

sequences; in 4B, they are represented as the orange ‘‘Putative/

unclassified GPCRs.’’ Clearly, the visualized network gives more

information about how these sequences fit into the larger context

of the superfamily than can be conveyed by a listing of scores or

even a multiple alignment or tree. One relatively well-character-

ized Class A GPCR, Cannabinoid receptor 1 (CB1), is not

associated with a more specific ligand class label in this data set,

but is nestled in among a number of ‘‘Lysosphingolipid and LPA’’

sequences; this group is unsurprisingly involved in lipid signaling.

As the literature shows that endogenous ligands for CB1 are also

involved in lipid signaling[21], if CB1 had been uncharacterized,

the network topology would have given hints about which sort of

ligand class might lead to activation of the protein.

Table 1. Comparison of mathematically ideal and displayed pairwise network distances between 42 human amine-binding GPCRs.

A. BLAST E-values (from pairwise alignments) A. BLAST E-values

B. Organic layout R: 0.90660.034

Z: 11.87

P: 8.04610233 B. Organic layout

C. Neighbor Joining tree R: 0.75860.034 R: 0.71260.034

Z: 9.91 Z: 9.43

P: 1.95610223 P: 2.14610221 C. NJ tree

D. Distances from multiple sequence alignment R: 0.71560.034 R: 0.64560.034 R: 0.94460.034

Z: 9.11 Z: 8.24 Z: 13.07

P: 4.14610220 P: 8.47610217 P: 2.29610239

Pearson’s correlations (R) and associated Z-scores (Z) and P-values (P) describing the similarity between the relative pairwise distances between 42 amine-binding GPCR
domain sequences as assessed by (A) all shortest paths between 2log10(BLAST E-values), (B) the shortest paths between sequences as displayed by a two-dimensional
graph layout algorithm, (C) the shortest paths between sequences in a Neighbor-Joining tree, and (D) the relative pairwise distances calculated from a multiple
sequence alignment. Additionally, pairwise BLAST E-values and the graph layout algorithm correspond to a network thresholded at an E-value of 1610233. Note that
the network layout (B) is a visual representation of the underlying distances in (A), while the tree (C) is a visual representation of the underlying distances in (D). A and D
cannot be visualized exactly in fewer than N-1 dimensions.
doi:10.1371/journal.pone.0004345.t001
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Another feature accessible from the network representation is so

basic that it is easy to overlook—networks enable the conversion of

lists of labeled protein sequences to a visually intuitive display of

the entire data set. Thus, even given the caveats, the network

shown in Fig. 4A provides a view of broad relationships across the

rhodopsin-like GPCRs that is informative in a way not accessible

from multiple alignments or trees. Of added interest, this view

shows how the well-characterized rhodopsin sequence—one of the

scant handful of GPCRs associated with a high resolution

structure[22], along with the beta-1 and beta-2 adrenocep-

tors[23–25] and A2A adenosine receptor[26]—fits into the context

of the entire class, helping to illustrate its relative usefulness for

making inferences about other subgroups in this network. (The

other existing GPCR structure—rhodopsin from squid[27]—is

distant from the human rhodopsins and is not shown in Fig. 4.) In

Fig. 4B, six additional classes from the multiple GPCR

superfamilies have been added to the analysis, and in order to

observe group-wise connections, the threshold has been scaled

back to a statistically insignificant E-value of 161022. While the

different classes have long been known to be functionally and

structurally related, as recently as 1999 the different groups were

described as having no sequence similarity[28]. Even more than in

4A, the most distant alignments in 4B are expected to have errors;

in particular, the single edge between the Class A and Class C

sequences in 4B, representing a 22% identity alignment over 135

amino acids, potentially represents a specious connection that

should be undetectable from sequence information alone.

However, despite the serious limitations in using such low

significance sequence similarity scores for prediction of functional

properties, other evidence exists to suggest that this is a useful

representation of the GPCR superfamily. Except for the Class C

group, the group-wise clustering is in line with the PFAM clan

grouping. PFAM clans represent higher-order groupings of PFAM

family models[9]: the GPCR_A clan includes ‘‘Class A: Rhodop-

sin’’, ‘‘Taste receptors T2R’’, and ‘‘Vomeronasal receptors’’; the

FOCS clan includes ‘‘Class B: Secretin-like’’ and the ‘‘Frizzled/

Smoothened family’’; and the ‘‘Metabotropic glutamate’’ group is

not included in a clan. This example suggests an important rule of

Figure 2. Comparison of trees and networks: amine-binding GPCRs. A. Neighbor-Joining tree describing the interrelationships of 42 amine-
binding human GPCR domains. Sequences are labeled according to the common name for their class (e.g., the sequence labeled a1D is adrenoceptor
a1D; see additional data file 5 for all sequence database identifiers). B. Sequence similarity network including the same 42 sequences as in (A). This
network was thresholded at a BLAST E-value of 1610233: only edges associated with E-values more significant than 1610233 are included in the
network. This network contains 324 edges; the worst edges displayed correspond to a median of 30% identity over an alignment length of 280 amino
acids. See Table I for a quantitative comparison of the two representations. The sequences labeled (a) and (b) are discussed in the text.
doi:10.1371/journal.pone.0004345.g002
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thumb for the use of sequence similarity networks: connections

among distant sequence groups based on statistically insignificant

scores should not be used for functional prediction without expert

knowledge of a system; however, when expert knowledge is

available, even poor significance networks may provide useful

information for understanding the distribution of a large related

sequence set.

IV. Sequence similarity networks incorporate practical
benefits that improve on current techniques for relating
sequences

Not only do sequence similarity networks retain the basic

clustering and topology information present in phylogenetic trees,

but they may also be a better representation—for the purposes of

developing hypotheses about protein family sequence and

structural interrelationships—than phylogenetic trees. Whereas a

phylogenetic tree requires the complexity of all of the pairwise

relationships in a multiple sequence alignment to be projected

down into one dimension, a sequence similarity network can show

multiple neighbors for a given sequence. In so doing, the network

can reveal sequences that may have sequence characteristics useful

for linking divergent clusters in multiple alignments.

Additionally, it is not necessarily appropriate to include a

sequence in a multiple sequence alignment that is firmly in the

twilight zone of sequence similarity relative to most of the other

sequences in the alignment[29]. A thresholded sequence similarity

network allows the researcher to define the minimal level of

similarity that is acceptable for use in analysis, and transitive

relationships still allow the observation of group-wise similarity

without diluting the signal from other more significant relation-

ships. The fact that similarity networks are not based on a single

multiple sequence alignment is an important advantage: a good

multiple sequence alignment can be very difficult to construct in

the case of a large or diverse sequence set. And from a practical

standpoint, while it can take weeks or months to curate a global

multiple sequence alignment and then wait for phylogenetic

inference software to converge on a tree of reasonable quality, all

of the networks discussed in this work took between a couple of

Figure 3. Sequence similarity networks are useful tools for exploration of the kinase superfamily. Two ways of coloring the same
network of 513 human kinase domains are shown. The network is thresholded at a BLAST E-value of 1610225. The worst edges displayed correspond
to a median of 29% identity over alignments of 260 residues. A. Network colored by kinase class. B. Network colored by the presence of a catalytic
Lys in the ‘‘VAIK’’ motif: Each of the 513 sequences was aligned to a sequence model of the kinase domain, and the identity of the residue at the
catalytic Lys position is mapped to the network. *Note that MAP2K1 and MAP2K2 registered a Lys to Arg substitution due to a sequence alignment
error. The other labeled kinases truly do not contain a homologous catalytic K, but only the WNK kinases have been shown to have kinase activity.
See Table II for statistics.
doi:10.1371/journal.pone.0004345.g003
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minutes and a couple of hours to generate on a laptop computer.

Researchers can also take advantage of existing resources that

facilitate the mapping and interactive visualization of large

collections of annotations and protein descriptors used to color

network displays (ref. [1]). This level of flexibility is unavailable in

any commonly used tree viewing software.

V. Visualized sequence similarity networks enable the
perception of trends from the context of sequence
similarity, leading to fruitful hypotheses

The context provided by the similarity network can be exploited

in many ways. For example, the kinase networks shown in Figs. 3A

and 3B differ only in the functional properties by which they are

colored. By coloring nodes according to the identity of an

important catalytic or specificity position, sequence similarity

networks show a clear utility in tracking functional changes with a

protein subfamily. In Figure 3B, the coloring exposes functional

outliers; nodes in the kinase superfamily are colored blue-green if a

lysine is present at the appropriate position for binding and

orienting the alpha and beta phosphates of ATP within the kinase

domain (the ‘‘VAIK’’ motif lysine). While the vast majority of

kinase domains clearly demonstrate the expected presence of this

important catalytic position, there are a number of salient

exceptions—in particular the catalytically active With No Lysine

(WNK) kinase, in which the catalytic lysine accomplishes its role

using a different subdomain[30,31]. The other kinases without the

catalytic lysine were recently described as pseudokinases[32].

In the course of considering the effect on network topology from

using full-length sequences or only single domains, new groupings

for the enoyl-CoA hydratase family were revealed, based on

changes in domain architecture. (The enoyl-CoA hydratase family

(ECH) is the constituent family for which the larger ECH

superfamily was named.) Most proteins are composed of two or

more domains, and the combination of multiple domains may

modify the function of a multidomain protein relative to its single

domain homologue[33]. A comparison of full-length and single

domain sequences is especially relevant for highly divergent

superfamilies in which domain organization may vary across

different subgroups and influence network topology. Using the

ECH superfamily (also known as the crotonase superfamily)[34] for

these tests, we found that there can be a large degree of qualitative

and quantitative correspondence between full-length sequence

networks and domain-only networks when BLAST is used as a

similarity metric, thanks to the fact that it calculates local

alignments. Since the edges are representations of the local regions

of similarity between sequences, as demonstrated in the agreement

between Fig. 5A and 5C, the topology information does not change

dramatically, whether the domain in common is isolated, or is

embedded in a larger, multi-domain sequence (the correlation in

displayed distances between the two networks is 0.868; see Table S3

for full statistics). However, in the domain-only network, the

alignments leading to a similar topology are shorter and have higher

sequence similarity, leading to differences in the associated E-values.

Importantly, the sequence region defined as the crotonase domain

by a hidden Markov model (HMM) and the region covered by the

BLAST alignment are largely overlapping; see Fig. 5D for an

illustration of selected alignments used to define edges from the full-

length crotonase network. At significant BLAST alignment E-

values—in particular, within the range included in the network in

Fig. 5A, 5B, and 5D—the BLAST alignments tend to extend slightly

beyond the crotonase domain. For the crotonase and GPCR

superfamilies, the families of network topologies across a range of

different E-value thresholds do not change substantially whether or

not the domain-only sequence is used to construct a network with

BLAST (data not shown).

While network topology is not strongly affected by sequence

similarity outside the domain of interest in the ECH and GPCR

superfamilies, this may not be the case with all superfamilies. In

practice, we have found that better resolution can be achieved

using networks of full-length sequences, as the greater variation in

lengths of alignment and corresponding similarity scores allows a

more nuanced discrimination between different groups of proteins.

Yet this comes at a risk of including relationships that can be

mistakenly attributed to the domain of interest. If an additional

domain in common happens to be more conserved than the

domain of interest, unexpected edges will link groups that the

investigator would expect to find distant from one another.

Investigators should weigh these issues and consider their

familiarity with the superfamily before interpreting a full-length

sequence network in the absence of a comparable single domain

network. A useful control we use is to generate networks of each

domain in a multidomain set and contrast the results with the

network for the full-length proteins. Here, mapping lengths onto

the network visualization clearly indicates the existence of domain

differences in the ECH family (Fig. 5B); the general crotonase

domain tends to be about 250 residues long, and there are a

number of families whose full-length sequences are significantly

longer, including a subset of ECHs (see the dashed ovals in Fig. 5B

and 5C), 3-hydroxyisobutyryl-CoA hydrolases (3HCH), and

histone acetyltransferases (HAT).

Exploration of the domain differences in the enoyl-coA

hydratases—by mapping species categories onto the network—

leads to new observations that have not previously been reported.

We discern three major groups of ECHs: bifunctional two-domain

proteins (including an ECH domain) found in bacteria, metazoans,

and plants; these are variously known as multifunctional enzyme

MFE-1, peroxisomal bifunctional enzyme, and the alpha subunit

of mitochondrial trifunctional protein[35] (here, bECH). A second

group of bifunctional proteins is found in archaebacteria (archaeal

bECH), and the third group of single domain ECHs (sECH) is

found in all branches of the tree of life (also known as hydratase-1).

The bifunctional proteins are all more than twice the length of the

general ECH domain, because they contain the N- and C-terminal

domains associated with 3-hydroxyacyl-CoA dehydrogenase

activity (3HCDH_N, and 3HCDH, respectively[36]); this reaction

Table 2. Comparison of network and phylogenetic tree
distances between 419 kinase domains.

A. BLAST E-values A. BLAST E-values

B. Organic layout R: 0.93460.003

Z: 41.2

P: 0.0 B. Organic layout

C. Manning et al. 2002 human
kinome tree

R: 0.68360.003 R: 0.62860.003

Z: 39.5 Z: 40.0

P: 0.0 P: 0.0

Pearson’s correlations (R) and associated Z-scores (Z) and P-values (P) describing
the similarity between the relative pairwise distances between 419 human
kinase domain sequences in common as assessed by (A) all shortest paths
between 2log10(BLAST E-values), (B) the shortest paths between sequences as
displayed by a two-dimensional graph layout algorithm, and (C) the shortest
paths between sequences in the phylogenetic tree published in Manning et al.
2002[18]. The pairwise BLAST E-values and the graph layout algorithm
correspond to a network thresholded at an E-value of 1610225.
doi:10.1371/journal.pone.0004345.t002
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is the third step in fatty acid degradation, while ECH catalyzes the

second step. The network topology in Fig. 6A and 6B indicates

that the ECH domain in the archaeal bifunctional proteins is more

similar to the sECH ECH domain than either of these two

domains is to the ECH in the other bifunctional protein cluster; a

look at the underlying alignments indicates that the domain

ordering between archaeal and non-archaeal bECH sequences has

been reversed (Fig. 5D, Fig. 6C). A pair of phylogenetic trees—one

using full-length sequences and the other just the ECH domain

from representative sequences—implies that the archaeal bECH

ECH domain is most similar to the sECH domain (see Fig. S5);

additionally, the significant sequence similarity between each type

of ECH domain indicates that the three domain structures most

likely arose through an evolutionary mechanism other than

convergent evolution.

VI. Concluding remarks
We expect that the use of sequence similarity networks may

soon become as common in laboratories as the use of multiple

sequence alignments. As shown here, these networks can be used

to display distances that are accurate from a mathematical

perspective, as well as comparing favorably to an accepted

Figure 4. Visualizing very distant interrelationships between GPCRs. A. 605 human Class A: Rhodopsin-like GPCR domains. This sequence
set includes the 42 amine-binding sequences from Table II and Fig. 2. This network was thresholded at a BLAST E-value of 1610211; the worst edges
displayed correspond to a median of 24% identity over an alignment length of 210 amino acids. Sequences colored red for ‘‘Class A: Rhodopsin-like’’
were not classified to a specific subgroup within the class. B. 766 human GPCR domains. This sequence set includes all of the 605 Class A sequences
from (A), now colored dark grey. This network was thresholded at an E-value of 161022, and the worst edges displayed correspond to a median of
22% identity over an alignment length of 120 amino acids. Also included in both networks is a set of 17 sequences in light grey. These sequences
were used here as negative controls, and were randomly drawn from the human proteome and not annotated as GPCRs. The red and green clan
labels correspond to PFAM clans[9]. The sequences that are associated with or that are extremely similar to high resolution structures are noted [PDB
identifiers 1F88[22], 2VT4[23], 3EML[26], 2RH1[24], and 2R4R[25]]. See Table S1 for network statistics.
doi:10.1371/journal.pone.0004345.g004
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method for establishing molecular similarity, the phylogenetic tree.

Sequence similarity networks reiterate known structural and

functional relationships, and can be used to analyze very large

data sets in a timely manner, allowing many different networks to

be explored in the time required to generate a single phylogenetic

tree of reasonable quality. However, we see the real promise of this

technique as allowing a knowledgeable scientist to observe basic

connections and clustering in a protein superfamily of interest in

the context of orthogonal information. Thus, a good framework

for visualizing networks performs well in recapitulating known

group-wise connections and clustering. More critically, it should

provide a clear view of all of the proteins in the dataset, and

flexibility in mapping different features to the visual display so that

large-scale and group-wise trends as well as outlier status can be

discerned-the particular network layout algorithm used is not

important as long as it adequately represents similarity; there are

many ways a layout algorithm can be optimized to correspond

more closely to some numerical ideal. Networks can be generated

from protein distance data derived from many types of analyses,

but for simplicity and because of the advantages of speed and the

ability to use very large sets of proteins, we have used BLAST in

this paper. Moreover, clustering of proteins can also be obtained in

many ways. In this paper, we have used a simple method to

underline the value of protein similarity networks when tagged

with functional information. While we argue that coming to a final

conclusion based on a pairwise BLAST alignment is generally not

supportable, visualization of sequence similarity networks pro-

vides—using even such a simple metric as BLAST—an environ-

ment for exploring complex protein data sets and the straightfor-

ward generation of hypotheses to be tested using more rigorous

methods. The developers of Cytoscape are actively working on

extending the application to facilitate analysis of sequence

similarity networks[37]; some of the features under development

are automated calculation of BLAST-based similarity networks

given a list of sequences, clustering algorithms for semi-automated

detection of protein groups, and speed and cosmetic improvements

to open-source network layout algorithms. Keeping in mind the

quality of the underlying data and the caveats discussed here, we

encourage the use of sequence similarity networks as a first step in

analyzing diverse sequence data sets because of their potential to

reveal new and unexpected relationships.

Materials and Methods

I. Data set sources
The human GPCR sequences and ligand-based annotations

were extracted from the GPCR NaVa Database[38] on Jan. 22,

2008. This database is focused on naturally occurring variants of

GPCRs; the sequences used in this work were only those

associated with the 773 SwissProt identifiers corresponding to

the unique gene used to group each NaVa DB set of variants.

The kinase sequences and annotations were drawn from the

base set of 621 human kinase domains in Kinbase (available at

http://kinase.com/kinbase)[18] on Mar. 5, 2008. The Newick-

format eukaryotic kinase tree is also available at http://kinase.

com/human/kinome/groups/ePK.ph)[18]. This tree was chosen

for use because of its previous use in providing context for

investigations of the structure-function relationship in kinases—

when a researcher wishes to select some number of representative

kinases, the structure of the kinome tree is often used in order to

guide sampling of distinct classes, or even to show how one kinase

class relates to another (e.g. [39]).

The crotonase superfamily sequences and annotations came

from the 1,330 publicly available sequences in this superfamily in

the Structure-Function Linkage Database[40] on Jan. 16, 2008

from http://sfld.rbvi.ucsf.edu. The crotonase superfamily repre-

sents a diverse set of homologous enzymes diverged to catalyze a

range of different overall reactions using different substrates and

leading to different products. Many of the member proteins have

been well-characterized functionally and structurally[34,41],

making it a useful set of proteins for this analysis.

II. Data set curation
GPCRs: To remove duplicate and highly similar sequences, the

773 GPCR sequences were winnowed to 766 by filtering to a

maximum of 99% identity using cd-hit[5]. The GPCR domain—

effectively the seven transmembrane helices and connecting

loops—was then isolated from each sequence by extracting the

region of each sequence that aligned to a hidden Markov model

(HMM) of the domain. A library of three GPCR domain models

was used in this step; only the best model of the three was used to

define the domain. The first domain model was based on the

GPCR_A PFAM clan alignment[9]; the alignment was used to

train an HMM. The second domain model was based on the

FOCS PFAM clan alignment, corresponding to Class B GPCRs;

the alignment was clipped to isolate just the region beginning with

transmembrane helix 1 and ending with transmembrane helix 7.

The third model was trained on the PFAM 7tm_1 family

alignment[36], corresponding to the Class C: Metabotropic

glutamate group. Each PFAM alignment was downloaded on

Jan. 30, 2008. All HMMs were constructed using the HMMER

package hmmbuild and hmmcalibrate commands, and sequences

aligned to the HMMs were extracted from the output of the

hmmpfam command (package available at http://hmmer.janelia.

org). An additional 20 sequences were drawn at random from the

human proteome to serve as non-GPCR controls; three of these

were already annotated as GPCRs and discarded. The remaining

17 non-GPCR sequences were clipped to a length of 289

Figure 5. Crotonase superfamily: sequence similarity network from full-length sequences and from just the domain in common. The
displayed networks all describe the pairwise relationships between 1,170 sequences from the crotonase superfamily. A. Network colored by family
annotation, involving full-length sequences, thresholded at an E-value of 1610230. The worst edges displayed correspond to a median of 33%
identity over alignments of 250 residues. B. The full-length network from A with nodes colored by sequence length and edges colored by alignment
length. The same bifunctional enoyl-CoA hydratases (bECH) are marked with a dashed oval in B and C. C. Network colored by family annotation,
involving just the crotonase domain, thresholded at 1610229. The worst edges displayed correspond to a median of 38% identity over alignments of
180 residues. D. 17 selected edges from the network in A and B. In the left panel, for each pair of sequences participating in an alignment, the log E-
value versus the HMM used to define the crotonase domain is shown for each sequence—the single domain ECH (sECH) is on the bottom, and the
second member of the pair is on the top—and the log BLAST E-value for the alignment between the two is in the middle. Two example bECH and
sECH sequences (not alignments) are shown at the bottom of the left and middle panels. In the middle panel, each amino acid in each sequence from
the 17 alignments is colored according to whether it was aligned to the crotonase domain defined by the HMM, and/or was paired to the other
sequence in the BLAST alignment used to define an edge. Locations of six of these edges are marked in the enlarged view of the network in A in the
right panel. The locations of the example bECH and sECH sequences are marked in the right panel using stars. See Tables S1 and S3 for quantitative
comparisons.
doi:10.1371/journal.pone.0004345.g005
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residues—the median length of the GPCR domains in the 766-

domain sequence set—and included in the network analysis of the

two larger GPCR data sets.

Kinases: Beginning with the 621 human kinase domains, all

sequences labeled as pseudogenes were removed, leaving 517

domains. The 517 domains were then filtered to a maximum of

99% identity as described above, leaving 513 sequences.

Crotonases: The initial 1,330 crotonase superfamily sequences

were filtered to a maximum of 99% identity as described above,

leaving 1,170 sequences. In order to define a general crotonase

domain, the best-resolution structure from each applicable SFLD

crotonase family[40]—1mj3, 1q52, 1nzy, 1dci, 1sg4, 1pjh, 1hzd,

1ef8—were aligned and used to generate a structure-based

sequence alignment using the Chimera MatchMaker and

Match-.Align commands[42]. Two diverse sequences from the

remote member family, the 3-hydroxyisobutyryl-CoA hydrolases,

for which no experimentally determined structure is available—

were themselves aligned to the structure-based alignment using the

profile alignment option in MUSCLE[43]. The closely overlap-

ping regions from the structural alignment were then used to

define the borders of the crotonase domain; this region was clipped

out of the combined alignment and used to construct an HMM

model and isolate domain sequences from each of the 1,330

crotonase sequences as described above.

III. Construction of networks; internal network statistics;
decoys

The sequence similarity networks consist of a collection of edges

corresponding to pairwise relationships that are better than a

defined threshold. For this work, pairwise relationships correspond

to BLAST alignments associated with an E-value[4]. The fastest

way to construct the network is to use formatdb to create a custom

BLAST database of a sequence set of interest, search the database

with each individual sequence in the set using blastall, and treat hits

to each sequence better than a threshold E-value as edges. However,

by using a set of related proteins as a database, the background

model assumption that similarity hits will follow an extreme value

distribution is violated. Thus, while we use the BLAST E-value

rather than the BLAST score to define similarity between sequences

because it includes a number of helpful corrections[44], it must be

considered as a type of score, rather than a true expectation value.

Additionally, BLAST E-values and scores are not symmetric—

for a given comparison between two sequences, the alignment,

score, and E-value can vary depending on which sequence is used

as the query. In tests we performed to adjudicate this issue, we

found that 74% of the comparisons in a large network have

‘‘backward’’ and ‘‘forward’’ E-values within 5 log units—regarding

the other 26%, the median average log E-values begin at 246.5

and decrease as the score asymmetry increases; for our data set,

alignments corresponding to log E-values of 246.5 had a median

percent identity of 35% over 290 amino acids (see Fig. S6). This

indicates that the greatest asymmetry is found in the better-scoring

comparisons. The networks in this work use the best E-value

associated with each pairwise comparison.

To aid in evaluating the networks, we create quartile plots of

alignment percent identity, alignment length, and edge count

versus edges binned by associated E-value (see Fig. S7). This gives

a sense of how the alignments change with the E-values, and can

assist in picking an informative E-value threshold. For instance,

only networks based on alignments that cover at least the length of

the domain in common and have greater than 30% sequence

identity may be of interest. Another simple control we suggest is to

add sequences known to be unrelated to the sequence data set to

the network (see the discussion in Results Section III). If the

Figure 6. Domain shuffling in the enoyl-CoA hydratase family.
The displayed networks contain all 410 enoyl-CoA hydratases from the
crotonase superfamily network in Fig. 5A. The network is thresholded at
a BLAST E-value of 1610250; the worst edges displayed correspond to a
median of 40% identity over alignments of 260 amino acids. A. Network
nodes colored by sequence length and edges colored by alignment
length. B. Network nodes colored by species kingdom (Fungi, Metazoa,
Viridplantae) or superkingdom (Bacteria, Eukaryota, Archaea). The same
archaebacterial bifunctional enzymes are marked with a dashed oval in
both A and B. C. Representative domain structures for the three major
classes of enoyl-CoA hydratase-containing sequences, with domains
defined using PFAM HMMs[36].
doi:10.1371/journal.pone.0004345.g006
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selected threshold results in edges between sequences of interest

and the sequences known to be unrelated, this is a clear indication

that some of the edges at that threshold are at the same level of

sequence similarity as background noise.

Sequence similarity networks in this work are visualized using

the Organic layout[16,17] in Cytoscape 2.6[1], with the exception

of the comparison between the Organic layout and the Cytoscape

force-directed layout weighted by BLAST E-value shown in Fig.

S1. The Organic layout is also based on a force-directed layout

algorithm; see the supplementary data website for a movie that

illustrates how force-directed layouts work.

IV. Construction of phylogenetic trees
The amine-binding GPCR tree was constructed from all 42

sequences in the ‘‘Amine’’ class (a subclass within the Class A

GPCRs, which are themselves a subclass within the 766 human

GPCR domain data set). The 51-sequence kinase tree included

each sequence from the 513 human kinase domain sequence set

that was annotated as an STE or WNK class kinase. Both trees

were constructed using the same protocol: The sequences were

aligned with MUSCLE[43]; the amine-binding GPCRs were on

average 29% identical across the alignment, and the STE/WNK

kinases had an average percent identity of 36%. A Neighbor-

joining phylogenetic tree[45] was then inferred from the alignment

using the PHYLIP 3.6 package (available at http://evolution.

genetics.washington.edu/phylip.html): we used PROTDIST and

the JTT substitution model to generate the distance matrix based

on the alignment, NEIGHBOR to infer the tree from the distance

matrix, and SEQBOOT (1000 replicates) and CONSENSE to

calculate the associated bootstrap values.

The ECH trees (Fig. S5) were calculated using Bayesian

phylogenetic inference via MrBayes[46], given alignments calcu-

lated using MUSCLE. Both trees were calculated from four runs

after 300,000 generations, with trees from the first 50,000

generations excluded from the estimation of the final tree.

All trees were visualized in Dendroscope[47].

V. Extraction of distance matrices from networks, trees,
and multiple sequence alignments

The central quantitative analysis in this work is the direct

comparison of pairwise distance matrices between N-1 dimensional

BLAST networks, two-dimensional displayed distances calculated

by the Cytoscape 2.6[1] Organic layout, phylogenetic trees, and

multiple sequence alignments. Here, BLAST E-values are the ideal

distances that are indirectly captured by the Organic layout (this

algorithm takes only node connectivity into account, not edge

weights), while pairwise distances from a multiple sequence

alignment are the ideal distances that are captured by phylogenetic

trees. In order to compare a network, which contains cycles and

many edges, to a tree, which has no cycles and few edges, we treat

both networks and trees as graphs and calculate the shortest paths

between each pair of sequences through the graph, using the 2log10

edge E-values (BLAST), displayed edge lengths (Organic layout),

and edge lengths from the Neighbor-Joining algorithm (trees) as

edge weights. The shortest-paths matrix is calculated via the Floyd-

Warshall algorithm, with the undirected networks represented as

sets of pairs of opposite directed edges. Additionally, in a

thresholded sequence similarity network, the distances between

disconnected nodes are undefined; thus, analysis is only performed

on the largest connected group of nodes for a given E-value

threshold. In each of the figures associated with these calculations,

the great majority of sequences are in the largest connected group of

nodes. The multiple sequence alignment distances are calculated

using the PHYLIP PROTDIST utility as described above.

VI. Comparison of distance matrices and evaluation of
statistical significance

The approach for comparing the above distance matrices and

calculating the significance of their correlations is taken directly from

Goh et al. 2000[48], which includes a detailed protocol. The reported

statistics for each pair of matrices are R, Pearson’s correlation

coefficient; the estimated error, or bootstrap estimate of the standard

deviation of the observed correlation; and the Z-score and

corresponding P-value estimating the probability that a particular

correlation between two matrices was obtained by chance.

VII. Estimate of the effect of missing data
To evaluate how much sequence similarity networks change

when some sequences are left out of the network, we removed 20%

of the sequences at random from the Class A GPCR sequence set,

and calculated Pearson’s correlation between corresponding

displayed distances based on the full 605-sequence set versus the

80% (484 sequences) set, as well as the underlying BLAST E-

values. (The same Class A GPCR sequences are featured in

Results Section III.) We used an E-value threshold of 1610211 to

define the network. Derived statistics are based on ten replicates.

VIII. Estimate of catalytic lysine in kinases
Each of the 513 human kinase domain sequences was aligned to

either the PFAM Pkinase or Pkinase_Tyr family HMM[36]. If the

best alignment had an E-value better than 1610250, indicating

that the alignment was likely to be high quality, the amino acid

aligning to the catalytic Lys in the model was identified. (The

catalytic lysine is part of the ‘‘VAIK’’ motif in subdomain II of the

kinase domain.) Whether this amino acid is the expected Lys or a

different residue is mapped to the kinase superfamily network

discussed in Results Section V.

IX. Mapping taxonomic information to a sequence
similarity network

NCBI maintains a hierarchical taxonomy database[49]; the

database tables can be accessed at ftp.ncbi.nih.gov/pub/taxono-

my/taxdump.tar.gz. These tables, which associate species names

within a hierarchical taxonomic structure, were used to label

network nodes with their species’ taxonomic classification at

various levels of a Tree of Life. This is illustrated at the end of

Results Section V, in which each enoyl-CoA hydratase family

sequence is colored according to its kingdom classification, or the

superkingdom classification if there is no kingdom label. (For

example, many parasites like P. falciparum are eukaryotes that have

no kingdom classification.)

X. External supplementary data
All data files generated in the analysis, including sequence files,

HMMs, and network files, are available online at http://www.cgl.

ucsf.edu/Research/cytoscape/SeqSimNet/. This website also

includes a movie demonstrating how network topology changes

with threshold, as well as IDs and accessions for all sequences

specifically labeled in figures.
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Table S1 Summary of network statistics: Correlation between

organic laid-out network distances and the mathematically ideal

BLAST E-value distances

Found at: doi:10.1371/journal.pone.0004345.s001 (0.04 MB

DOC)
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Table S2 Comparison of mathematically ideal and displayed

pairwise network distances between 51 human STE and WNK

kinases

Found at: doi:10.1371/journal.pone.0004345.s002 (0.05 MB

DOC)

Table S3 Comparison of mathematically ideal and displayed

pairwise distances between networks of the crotonase superfamily,

using either full-length sequences or just the crotonase domain

Found at: doi:10.1371/journal.pone.0004345.s003 (0.03 MB

DOC)

Figure S1 Network distances are similar between the Organic

and Cytoscape force-directed layout weighted by E-value

Found at: doi:10.1371/journal.pone.0004345.s004 (2.13 MB

PDF)

Figure S2 Comparison of network layout and clustering with

BLASTCLUST

Found at: doi:10.1371/journal.pone.0004345.s005 (3.85 MB

PDF)

Figure S3 Graphic showing how network topology is affected by

missing data. The correlation is high between the topology of the

Class A GPCR network and networks with 20% of the sequences

removed at random.

Found at: doi:10.1371/journal.pone.0004345.s006 (0.75 MB

PDF)

Figure S4 Comparison of trees and networks: STE and WNK

kinases

Found at: doi:10.1371/journal.pone.0004345.s007 (0.38 MB

PDF)

Figure S5 The archaeal bECH ECH domain is more similar to

the sECH domain than the non-archaeal bECH ECH domain

Found at: doi:10.1371/journal.pone.0004345.s008 (1.11 MB

PDF)

Figure S6 Asymmetery in BLAST E-values: How large is the

difference between the E-values calculated between sequence pair

A,B when A is used as query, or B is used as query?

Found at: doi:10.1371/journal.pone.0004345.s009 (0.43 MB

PDF)

Figure S7 Example percent identity and length of alignment

quartile plots

Found at: doi:10.1371/journal.pone.0004345.s010 (0.22 MB

PDF)
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