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Abstract

By screening extracts of venom from the Asian scorpion Buthus martensii Karsch (BmK) for their abilities to activate opioid
receptors, we have identified BmK-YA, an amidated peptide containing an enkephalin-like sequence. BmK-YA is encoded by
a precursor that displays a signal sequence and contains four copies of BmK-YA sequences and four of His4-BmK-YA, all
flanked by single amino acid residues. BmK-YA and His4-BmK-YA are amidated and thus fulfill the characteristics expected of
bioactive peptides. BmK-YA can activate mammalian opioid receptors with selectivity for the d subtype while His4-BmK-YA is
inactive at opioid receptors. The discovery of BmK-YA suggests that scorpion venom may represent a novel source of
bioactive molecules targeting G protein-coupled receptors (GPCRs) and reveal additional insights on the evolution of the
opioid precursors.
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Introduction

Animal venoms constitute a vast library of biologically active

peptides that are directed at a variety of membrane proteins. It is

estimated that more than 10 million peptide toxins exist in 1400

species of scorpions, 400 species of snakes, 600 species of sea cone

snails and 35000 species of spiders [1]. However, only a very small

portion (less than 0.02%) of the estimated natural bank has been

identified. It is becoming clear that venom peptides have diverse

pharmacological properties and that several of these peptide toxins

are useful as molecular tools for the study of their receptors [2],

and may represent a unique source of leads and structure

templates for the development of novel therapeutic molecules

and insecticides [3]. Venoms can be used as the natural

equivalents of large combinatorial libraries in drug discovery.

Indeed a number of peptide toxins have been used in vivo for proof-

of-concept studies, and several have undergone preclinical or

clinical development for the treatment of pain, diabetes, multiple

sclerosis and cardiovascular diseases [4–10]. Most venoms are

known to contain peptide toxins that act on ion channels. Only a

few are known to act on GPCRs. Indeed, among the 1800 toxins

described in 2006 [11], less than 30 are known to be active on

GPCRs [12].

The Asian scorpion BmK is widely distributed in Mongolia,

Korea and China where it has been used in Traditional Chinese

Medicines (TCMs) for thousands of years as a source of pain

relieving drugs. Animal study has shown that scorpion venom do

not elicit dependence [13]. This suggests that further exploration

of BmK might provide a potential analgesic medicine without

addictive properties. In recent decades, BmK venom has been

extensively studied and has led to the discovery of more than a

hundred peptides through biochemical purification or deduced

from gene cloning [14–21]. These peptides exhibit a wide range of

physiological and pharmacological activities and have been

developed as biopesticides, vaccines, cancer treatments, and

protein engineering scaffolds [22,23]. These scorpion peptides

are mainly interacting with ion channels [15], but very little is

known about their capacity to modulate GPCR activity.

In this study, we have used BmK scorpion venom as a source of

new ligands for opioid receptors. The opioid receptors are GPCRs

that are activated by endogenously produced opioid peptides that

contain an enkephalin sequence at their N-termini and also by

exogenously administered opiates, such as morphine, a well known

analgesic drug. Pharmacological and biochemical evidence

supports the existence of three major subtypes of opioid receptors,

m, d and k [24]. Herein, we described the purification and

biochemical characterization of a novel peptide, BmK-YA that

displays a sequence related to the enkephalin sequence and is

encoded by a precursor that contains not only four sequences of

BmK-YA but also four of His4-BmK-YA. BmK-YA can activate

mammalian opioid receptors. These data indicate that BmK-YA

and His4-BmK-YA are bioactive peptides and reveal additional

insights on the evolution of opioid precursors.

Materials and Methods

Materials
The crude venom of BmK was collected by electrical stimulation

of the telson of the scorpion and lyophilized in Luoyang city,

Henan Province, China. HPLC-grade water was purified with a
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Milli-Q system (Millipore, Bedford, MA). Acetonitrile (ACN) was

purchased from Fisher Scientific (Fair Lawn, NJ, USA). Trifluor-

oacetic acid (TFA) and ortho-phosphoric acid was from Tedia,

USA. Formic acid was obtained from Acros (Geel, Belgium).

Triethylamine was obtained from Sigma-Aldrich (St.Louis, Mo,

USA). Fluo-4 AM was purchased from Molecular Probes (Eugene,

OR). Lipofectamine was purchased from Invitrogen (Carlsbad,

CA). All other reagents were analytical grade and used without

purification.

Venom pre-treatment and Purification procedures
Solid phase extraction (SPE) cartridges packed with octadecyl

sorbent (30 g sorbent/cartridge) were washed with methanol, 60%

ACN/0.1% TFA and 5% ACN/0.1% TFA sequentially. The

lyophilized crude venom (ca. 4g) was dissolved in 5% ACN/0.1%

TFA aqueous solution and loaded onto the cartridges in batches.

Each cartridge was rinsed with 100 mL 5% ACN/0.1% TFA

aqueous solution to remove some polar substances, and then the

peptides were eluted with 100 mL 60%ACN/0.1%TFA aqueous

solution. In total, 1.3 L eluate was collected, pooled and

lyophilized by the Refrigerated CentriVap Centrifugal Concen-

trator (Labconco, Kansas, USA). Finally, about 1.2 g lyophilized

sample was generated.

BmK-YA was purified by an offline two-dimensional chromato-

graphic strategy,in which reverse phase liquid chromatography

(RPLC) was combined with hydrophilic interaction chromatogra-

phy (HILIC). Briefly, the SPE treated venom was redissolved in

5% ACN/0.05% TFA aqueous solution and fractionated by a

preparative C18 column (XTerra MS C18,100619 mm i.d., 5 mm

particle size, 120 Å pore size, Waters). The sample was loaded on

the column at 100 mg per run. The mobile phase was composed

of 0.05% (v/v) TFA aqueous solution (mobile phase A) and ACN

with 0.05% (v/v) TFA (mobile phase B). The gradient was run

from 5% to 35% mobile phase B over 50 min. The flow rate was

17 mL/min and the elution was monitored by MS (Micromass

ZQ2000). The passive splitter was about 1/3000. Mass Scans were

acquired in positive ion mode from m/z 300–2000.

Fractions were collected automatically at 1 minute interval and

denoted as Fraction 1 to Fraction 50. The fraction with the same

elution time from each round of HPLC was pooled and

evaporated to dryness in the Centrifugal Concentrator.

The fraction of interest (Fraction 17) was further purified on a

homemade Click Maltose column (15064.6 mm, 5 mm). This

stationary phase was prepared through click chemistry as described

earlier [25]. The mobile phase was composed of water (A), ACN (B)

and 100 mM triethylamine phosphate (TEAP) buffer (pH 2.3) (C).

The gradient was from 10%A/85%B/5%C to 45% A/50%B/

5%C in 40 min, then from 45% A/50%B/5%C to 50% A/45%B/

5%C in 20 min. The absorbance was measured at 214 nm.

Peptide de novo sequencing and synthesis
ESI MS and ESI MS/MS were performed using a nano-LC-

MS/MS system (nano-AcquityTM coupled to a Q-TOF pre-

mierTM, Waters, Manchester, UK). Scans were acquired in

positive ion mode from m/z 500–1500 Da for MS analysis and

m/z 50–1000 Da for MS/MS analysis with nanospray voltage at

2.0kV. The source temperature was maintained at 80uC and the

cone voltage was set to 35 kV. The collision energy for MS/MS

analysis of BmK-YA was set at 27 eV. The amino acid sequence of

BmK-YA was analyzed by MassLynx 4.1 software incorporating

the MaxEnt3 deconvolution algorithm and PepSeq tools (Waters,

Manchester, UK).

The BmK-YA peptide was synthesized through solid-phase

synthesis (ChinaPeptides Co., Ltd, Shanghai, China) on an

Applied Biosystems 433A system as described previously [26].

Briefly, the peptide was synthesized in a small reactor, on the 2-

chlorotrityl chloride resin preloaded with Fmoc-L-Ala-OH. Side

chain protecting groups used for tri-functional residues were tert-

butyl for Tyr and trityl (Trt) for Asn. After full assembly was

completed, the resin was treated with TFA/water/ethanedithiol/

thioanisol (94%/2.5%/2.5%/1%) for 120 min. The crude peptide

was extracted with cold diethyl ether six times and dried under a

flow of nitrogen. Finally, the extracted peptide was purified to

homogeneity through a Kromasil 100-5 C18 column

(25064.6 mm, 5 mm) with a linear gradient from 5% to 35%

ACN/0.1%TFA in 30 min.

Plasmid construction and stable cell lines
All GPCRs used in this study were amplified from human

cDNA library (Clontech, Palo Alto, CA) and cloned into pcDNA

3.1 (-) (Invitrogen, Carlsbad, CA). The sequences were confirmed

by sequencing from both ends and with internal primers by

Laragen (Los Angeles, CA). Human embryonic kidney-293 T cells

(HEK293T) were cultured in Dulbecco’s Minimum Essential

Medium (DMEM) supplemented with 10% fetal calf serum (FBS).

The stable cell lines expressing human opioid receptors m, d or k
individually were created as previously reported [27]. The

individual human opioid receptors m, d or k DNA plasmid were

cotransfected with Gqai3, a chimeric G protein with which opioid

receptors can be redirected to mediate intracellular calcium

mobilization upon stimulation. Transfection was carried out with

lipofectamine using the protocol provided by the supplier. Stable

cell clones were selected in the presence of 200 mg/mL G418,

200 mg/mL hygromycin and 200 mg/mL zeocin.

Identification of a cDNA clone encoding BmK-YA
Total RNA was extracted from Asian scorpion BmK using

Trizol Reagent (Invitrogen, CA). Messenger RNA was purified

with Qiagen Oligotex mRNA Kit. Based on the information

obtained from direct peptide sequencing, RACE-ready cDNA and

subsequent amplification of 59 and 39 ends were performed using

Smart RACE cDNA kit from Clontech. RACE primers are:59-

GTTTTCACCGCTTTAATTTATCTACATAGAATG-39and

59-CATTCTATGT- AGATAAATTAAAGCGGTGAAAAC-39.

PCR products were cloned into pcDNA3.1/V5-His-TOPO vector

and sequenced by Laragen (Los Angelus, CA).

Ca2+ response monitored by Fluorometric Imaging Plate
Reader Assay (FLIPR)

The assay was performed as reported earlier [28]. Briefly, the

stable cells were seeded into poly-D-lysine-coated black wall, clear-

bottom 96-well plates at a density of 80,000 cells per well. Twenty-

four hours later the medium was removed and replaced with

100 mL of dye loading solution (2 mM Fluo-4 AM dissolved in

FLIPR buffer, which consists of 0.2 mg/mL pluronic acid in

16Hank’s buffer supplemented with 20 mM HEPES, pH 7.4) for

1 h at 37uC. The cells were then washed 3 times with FLIPR

buffer prior being assayed. The samples, which were re-dissolved

in dimethyl sulphoxide (DMSO) and stored in 96-well drug plates,

were diluted with FLIPR buffer and then added into the cells

within 4 sec automatically. The intracellular Ca2+ concentration

was monitored at 520 nm with excitation wavelength at 488 nm

over a period of 4 min.

Data processing
EC50 values and curve fitting were determined using Graphpad

Prism (GraphPad Software, Inc., San Diego, CA). The maximal
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stimulation was determined by the response of the selective ligands

endomorphin-1, deltrophin, and dynorphin A in m-, d- and k-

expressing stable cell lines, respectively. Data from each dose

response curve were normalized to the maximal stimulation of

each cell line. Potency is determined by EC50. Efficacy is

determined by Emax, which is the ratio of the maximal response

of each peptides and the maximal stimulation induced by selective

ligands in corresponding opioid receptor-expressing cells. When

the Emax reaches 100%, the peptide is considered a full agonist.

Results

Identification and characterization of a novel enkephalin-
like peptide from venom

Scorpion venom was fractionated by a preparative C18 column

into 50 fractions. These fractions were screened against three

individual opioid receptors-expressing cell lines and one vector-

expressing HEK293T cell line. Intracellular Ca2+ changes were

monitored using the FLIPR system. A reproducible and robust

change in Ca2+ concentration in d-expressing cells but not in vector-

expressing cells was observed in Fraction 17 (labeled with asterisk in

Fig. 1). Fraction 17 was further purified in an analytical scale Click

Maltose column (Fig. 2A, B), yielding the component of interest

(Fig. 2A, peak labeled with asterisk). HPLC and Mass spectrometry

analysis of this peak revealed a single peptide with 870.3 atomic

mass unit (Fig 2B, C). The amino acid sequence Tyr-Gly-Gly-Tyr-

Met-Asn-Pro-Ala-NH2 (YGGYMNPA) was obtained by nanoLC-

Q-TOF-MS/MS and PepSeq software (Fig. 2 D). Included in the

sequence is a C-terminal amidation, a typical post-translation in

scorpion venom. We have termed this peptide BmK-YA, based on

the genus of the scorpion and its first and last amino acid. By

Figure 1. Fractionation of scorpion venom peptides and their opioid activities. (A) Scorpion venom was fractionated on a prep C18 column
using a preparative HPLC system. One hundred milligrams of peptide samples were loaded per run. Fractions were eluted with a 50 min linear
gradient from 5% B (ACN with 0.05% (v/v) TFA) to 35% B at a flow rate of 17 mL/min. The elution was monitored by MS. The activities of the fractions
were detected in (B) d-expressing cells. (C) m-expressing cells. (D) k-expressing cells. (E) vector-expressing cells (negative control).
doi:10.1371/journal.pone.0040417.g001
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searching NCBI data bank it is revealed that BmK-YA is a fragment

of a large predicted protein (accession number: AAD39510).

Chemical synthesis of BmK-YA
BmK-YA was synthesized chemically. The synthesized material

was found to have the same retention time as the native peptide

(Fig. 2B) and the same monoisotopic mass [M+H] (MW

871.3032). The synthesized peptide was tested in d-expressing

cells and shown to exhibit a reproducible d receptor agonist

response indicating that the synthesized peptide is the same as the

native one found in scorpion venom. Because of this, the

synthesized peptide was used for further pharmacological charac-

terization.

cDNA Cloning and sequencing
Degenerate oligonucleotides synthesized according to the amino

acid sequence of BmK-YA were used to screen a cDNA library.

This procedure allowed the identification of a long DNA segment

corresponding to the majority of the BmK-YA gene. The full DNA

sequence was obtained using the nucleotides indicated in Material

and Methods. Fig. 3A shows that ther BmK-YA cDNA precursor

encodes a 200-residue protein containing a 23-residue signal

peptide, followed by 177-residues. Aspartic acid cleavage at C-

terminal has been reported in murine [29,30]. The single arginine

cleavage found at N-terminal of the BmK-YA occurs in a number

of other mammalian neuropeptide presursors. The cDNA

encoding the mature peptides contained 4 copies of the repeated

sequence ‘‘YGGYMNPA’’, the BmK-YA, and 4 copies of the

sequence ‘‘YGGHMNPA’’, predicted to be a novel peptide named

His4-BmK-YA. The glycine residues at the C-terminals of BmK-

YA or His4-BmK-YA are expected to be coverted into amide

groups. The sequences of the cDNA and the purified peptide

demonstrate that BmK-YA is a natural peptide in scorpion.

Pharmacological characterization of BmK-YA
BmK-YA acted as a full agonist when tested in d-expressing cells

as shown in Fig. 4A. No response was observed in vector-

expressing cells (data not shown). BmK-YA has a similar efficacy

but exhibited lower potency (2.5 mM) when compared with

deltorphin, a selective d opioid receptor agonist, (potency

3.1 nM [27]). We also tested the effects of BmK-YA on m- and

k-expressing cells. As shown in Fig. 4A, at concentrations up to

100 mM, BmK-YA does not reach a maximal effect and exhibit

lower potencies (approximately17 mM and 30 mM, respectively).

The d-activity of BmK-YA was inhibited by naloxone, in a dose-

dependent manner (Fig. 4A, insert) (IC50 539 nM), providing

additional evidence that BmK-YA can interact with opioid

receptors.

Synthesis and activities of His4-BmK-YA and Phe4-BmK-YA
His4-BmK-YA was synthesized and tested for its ability to

activate opioid receptors. As shown in Fig. 4B, no activity was

detected in the concentration range from 1 nM to 50 mM.

According to the typical opioid peptide sequence, Phe4-BmK-

YA was synthesized in which phenylalanine (F) was substituted for

tyrosine in the fourth position. As shown in Fig. 4B, this

substitution dramatically increased the activity of the peptide

which then has potencies of 157 nM, 60 nM and 77 nM, in m-, d-,

and k-expressing cells, respectively.

Discussion

The toxins found in venomous animals have been optimized

over time to aid in prey capture and digestion and also to help the

animals defend themselves. While venomous animals receive their

fair share of notoriety for the painful (and often deadly) effects of

their bites and stings, their venoms have been harnessed for the

treatment of human diseases for thousands of years. In recent

years, venoms have been subjected to more rigorous scientific

Figure 2. Purification of BmK-YA from Fraction 17. (A) Chromatographic profile of F17 separated by Click Maltose column using HILIC mode.
The mobile phase was composed of water (A), ACN (B) and 100 mM TEAP buffer (pH 2.3) (C). The gradient was from 10% A to 45% A over 40 min,
then from 45% A to 50% A over 20 min under a constant 5% C. (B) RPLC analysis and comparison of the purified natural BmK-YA and the synthetic
one. The mobile phase B (ACN with 0.1%TFA) was from 5% to 35% in 25 min on a Xterra MS C18 column at a flow rate of 0.2 mL/min. Absorbance was
measured at 220 nm. (C) Q-TOF mass spectra of the natural BmK-YA with a [M+H]+ monoisotopic mass of 871.3088. (D) Single charged and
deconvoluted (MaxEnt3 processed spectra) CID spectra and amino acid sequence of BmK-YA.
doi:10.1371/journal.pone.0040417.g002

Figure 3. (A) Amino acid sequence of the BmK-YA precursor. The signal peptide is underlined. The amino acid in grey indicates cleavage sites
(R, D). The glycine residues expected to serve as amide donors are shown in italic. The sequences of BmK-YA and His4-BmK-YA (italic) are framed in
bold. (B) Comparison of BmK-YA and His4-BmK-YA to the opioid peptides. Identical amino acid residues are shown in bold.
doi:10.1371/journal.pone.0040417.g003
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investigation as a potential source of new therapeutic entities.

Currently, five venom-derived peptide drugs are on the market,

and many more are in pre-clinical or clinical development for

indications such as cancer, pain, heart disease, stroke, and diabetes

[31]. Animal venoms represent a valuable source of untested

bioactive molecules, as the venoms of only a few hundred species

have been studied to date.

Animal venom peptides that are active at GPCRs can be

divided into two families [12]. The members of the first family

mimic the natural agonist at the target receptor. Peptides

belonging to this family are snake sarafotoxins, which are

functional analogs of the endogenous endothelins [32], the cone

snail toxin conopressin, which is similar to the arginine-vasopressin

peptide [33], and the cone snail toxin contulakin-G, which is

similar to the neurotensin peptide [34]. The second family of

GPCR toxins consists of highly reticulated peptides with folds

unrelated to those of natural ligands [1,35–40]. We have

discovered BmK-YA, the first scorpion venom peptide that displays

a primary structure resembling that of the enkephalin-like

peptides. BmK-YA thus belongs to the family of venom peptides

that mimic the natural agonists and suggests that scorpion venom

may represent a novel source of GPCRs ligands.

By analyzing the sequence of the protein encoding BmK-YA, we

found a polyprotein containing four BmK-YA (YGGYMNPA) and

four His4-BmK-YA (YGGHMNPA). This polyprotein contains a

typical signal sequence, which indicates that it is secreted.

Furthermore BmK-YA and His4-BmK-YA can be amidated

suggesting that they are bioactive. The organization of this

precursor is reminiscent to that of the mammalian opioid peptide

precursors where multiple sequence-related peptides within a

single genomic transcript. Excluding the endomorphins, the

classical opioid peptides are derived from three larger precursors:

proopiomelanocortin (POMC), proenkephalin (PENK) and pro-

dynorphin (PDYN), which encodes for one, seven and three

enkephalin-containing sequences (YGGFM or YGGFL). Com-

pared to these, the precursor encoding BmK-YA, contains eight

copies of enkephalin-like sequences (YGGYM or YGGHM).

Interestingly the core BmK-YA enkephalin-like sequences are

followed by four conserved residues (NPAG), of which the glycine

residue serves as amide donor. This amidation is thought to be

mediated by a specific amidation enzyme [41,42]. Indeed, two

amidated enkephalin-like peptides, amidorphin and metorpha-

mide, have been reported in mammals [43,44]. A data base search

did not yield any significant hits in mammalian genomes although

eight repeats of the sequence (…RGGYVNPAG…) are found as

part of the TBC1 domain family member 14 protein. This is

however a non secreted protein.

We show that BmK-YA in vitro interacts with the three subtypes

of opioid receptors, m, d and k, but with preference to the d
subtype. Its selectivity to the d-subtype is 6.8 times higher than that

to the m, and 12 times higher than that to the k subtype. It

therefore displays a pharmacological profile that is different from

morphine. BmK-YA is a full agonist at the d receptor with an EC50

of 2.5 mM while morphine is only a partial agonist with an EC50 of

15 mM [27]. Although both molecules can activate d receptors

with low potency, morphine cannot stimulate d receptors as

effectively as BmK-YA at high concentrations. On the other hand,

morphine is a full agonist at the m receptor with an EC50 of

180 nM [27], while BmK-YA is only a partial agonist with an

EC50 of 17 mM. Thus BmK-YA might induce fewer of the side

effects associated with m receptors. This may serve as a starting

point for structure-function relationship studies leading to design

specific antinociceptive drugs.

Whether BmK-YA acts at opioid receptors in the scorpion is not

known but not expected. The fact that BmK-YA is encoded in a

precursor that also contains His4-BmK-YA leads us to hypothesize

that both peptides should act at the same receptors. However,

His4-BmK-YA is inactive at the opiod receptors. Indeed, it is the

specific His4 substitution that is responsible for the lack of activity

since Phe4-BmK-YA (YGGFMNPA), which contains a copy of

Met-enkephalin, exhibits high affinity for the opioid receptors.

Figure 4. BmK-YA and related peptides activity at opioid
receptors. (A) Dose response curves of intracellular Ca2+ mobilization
induced by BmK-YA in opioid receptors-expressing HEK293T cells. The
EC50 was 1760.6 mM, 2.560.04 mM and 3060.5 mM (mean6SE, n = 3) in
m-, d- and k-expressing HEK293T cells, respectively. The insert shows the
inhibitory effect of naloxone on BmK-YA-induced Ca2+ release in d-
expressing cells (IC50: 539613 nM (mean6SE, n = 3)); BmK-YA concen-
tration of used in this experiment was 2.5 mM. (B) Dose response curves
of intracellular Ca2+ mobilization induced by Phe4-BmK-YA and His4-
BmK-YA in m-, d- and k-expressing HEK293T cells, respectively. The EC50

of Phe4-BmK-YA was 15763.8 nM, 6061.1 nM, and 7760.5 nM
(mean6SE, n = 3) in m-, d- and k-expressing HEK293T cells, respectively.
doi:10.1371/journal.pone.0040417.g004
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Several lines of evidence indicate that BmK-YA is the first

member of a new bioactive peptide family in scorpions. First,

BmK-YA is encoded by a precursor that can be secreted. Second,

the organization of this precursor is similar to that of the

mammalian opioid peptide precursors with multiple sequence-

related peptides within a single genomic transcript. Third, BmK-

YA and His4-BmK-YA are flanked by processing cleavage sites and

can be amidated. Fourth, the NH2- tripeptide YGG sequence of

BmK-YA and His4-BmK-YA is identical to the core sequence

YGGF of the opioid peptides (Fig. 3B) and thus suggest

evolutionary conservation. Whether they act as bioactive peptides

in vivo will however await the identification of their receptor(s).

The discovery of BmK-YA and its identification as an

enkephalin-like peptide demonstrates that relatively ‘‘primitive’’

organisms may possess opioid-like systems. The present study

supports previous work that have characterized opioid peptides

(enkephalin-containing) in invertebrate, for example, the mussel

Mytilus edulis [45] and the digestive system of the scallop Chalmys

farreri [46]. It has also been reported on the basis of binding and

immunocytochemical analyses that d opioid receptors subtypes

may exist in invertebrates [47,48]. BmK-YA is the first invertebrate

peptide that displays a similar but not identical enkephalin

sequence. Because enkephalin sequences are found in inverte-

brates and vertebrates while the BmK sequence is not, it is

reasonable to assume that enkephalins served as templates for

BmK-YA. Since the BmK-YA gene is not found in other species by

database bank search it may be unique to the scorpion. The final

appearance of BmK-YA gene may be the result of a genome

duplication [49] which started with PENK. Over time one copy of

a duplicated PENK gene may retain the PENK organization

scheme and the function of the ancestral gene, while the other

copy would accumulate amino acid substitution and diverge into a

unique member of the BmK-YA gene family. Because we did not,

in our purification, identify other enkephalin-containing peptides

such as true opioid peptides (N terminus:YGGF), we expect that

they do not exist in scorpion. Thus BmK-YA might have evolved

to carry role(s) distinct from classical opioid function. This is

reinforced by the coexistence of His4-BmK-YA, which does not

exhibit activity at mammalian opioid receptors. Also, the presence

of these peptides in the venom of the scorpion is counterintuitive to

them displaying an analgesic activity. Consequently we propose

that these peptides must interact with receptors that are divergent

of the mammalian opioid receptors and that, in the venom, BmK-

YA and His4-BmK-YA may have evolved for specialized use, such

as prey capture, defense or immune response.
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