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Abstract

Background: Double-stranded RNA dependent protein kinase (PKR) is a key regulator of the anti-viral innate immune
response in mammalian cells. PKR activity is regulated by a 58 kilo Dalton cellular inhibitor (P58IPK), which is present in
inactive state as a complex with Hsp40 under normal conditions. In case of influenza A virus (IAV) infection, P58IPK is known
to dissociate from Hsp40 and inhibit PKR activation. However the influenza virus component responsible for PKR inhibition
through P58IPK activation was hitherto unknown.

Principal Findings: Human heat shock 40 protein (Hsp40) was identified as an interacting partner of Influenza A virus
nucleoprotein (IAV NP) using a yeast two-hybrid screen. This interaction was confirmed by co-immunoprecipitation studies
from mammalian cells transfected with IAV NP expressing plasmid. Further, the IAV NP-Hsp40 interaction was validated in
mammalian cells infected with various seasonal and pandemic strains of influenza viruses. Cellular localization studies
showed that NP and Hsp40 co-localize primarily in the nucleus. During IAV infection in mammalian cells, expression of NP
coincided with the dissociation of P58IPK from Hsp40 and decrease PKR phosphorylation. We observed that, plasmid based
expression of NP in mammalian cells leads to decrease in PKR phosphorylation. Furthermore, inhibition of NP expression
during influenza virus replication led to PKR activation and concomitant increase in eIF2a phosphorylation. Inhibition of NP
expression also led to reduced IRF3 phosphorylation, enhanced IFN b production and concomitant reduction of virus
replication. Taken together our data suggest that NP is the viral factor responsible for P58IPK activation and subsequent
inhibition of PKR-mediated host response during IAV infection.

Significance: Our findings demonstrate a novel role of IAV NP in inhibiting PKR-mediated anti-viral host response and help
us understand P58IPK mediated inhibition of PKR activity during IAV infection.
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Introduction

Influenza A viruses (IAV) are negative sense segmented RNA

genome viruses [1,2] which can rapidly develop resistance to the

drugs available against them [3]. These viruses pose a continuing

threat of pandemics, thus it is imperative to develop novel strategies

to prevent their infection and spread [4]. Interactions between viral

proteins and host factors are often crucial for successful replication

of the virus in host cells [5]. Many of these interactions are aimed at

overcoming the early innate immune response of infected cells

against the virus [6]. Mammalian cells respond to viral infections

through several innate immune mechanisms [7]. One such crucial

antiviral mechanism is activation of PKR (a dsRNA dependent

protein kinase) which is phosphorylated upon encountering viral

dsRNA [8]. Activated PKR has several downstream substrates, one

of which is the eukaryotic translation initiation factor 2 alpha

subunit (eIF2a) [9–11]. Phosphorylation of eIF2a by activated PKR

renders it unable to participate in translation initiation leading to

translation arrest and inhibition of protein synthesis from viral

mRNAs [12,13]. Another effector function of PKR is activation of

transcription factor IRF3, which leads to the expression of IFN b
and inhibition of virus replication [14,15]. Being such a crucial

component of the host innate immune system, PKR is tightly

regulated by cellular inhibitors [16] and very often targeted by viral

proteins [17–20]. For example, the non-structural protein 1 (NS1) of

influenza virus directly binds to PKR and prevents its activation

[21,22]. Apart from PKR inhibition, NS1 is also involved in the

inhibition of other cellular signaling cascades, which lead to the

activation of anti-viral interferon response [23,24]. PKR activity is

also inhibited by a cellular 58 kDa protein, P58IPK, which promotes

influenza viral replication [25,26]. In naı̈ve cells, P58IPK exists in an

inactive state in a complex with heat shock protein 40 (Hsp40),

which becomes active upon release from this complex [27].

Influenza virus infection leads to the dissociation of P58IPK from
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Hsp40 and suppression of the PKR response [28,29]. However,

neither the viral component nor the mechanism responsible for this

event is known to-date.

Segment 5 of the influenza virus genome encodes for 498 amino

acids Nucleoprotein (NP) whose primary function is viral genome

encapsidation [30]. Apart from that, NP is also known to interact

with several viral and host factors and play additional roles in the

viral life cycle [31–37]. We were interested in identifying new

cellular interactors of NP from a highly virulent A/H5N1 bird-flu

isolate {A/Hatay/2004(H5N1)}, which may facilitate viral

replication. For this a H5N1 NP was used as bait to search for

novel interactors in a yeast two-hybrid system based screen of

human lung cDNA library. In the screen, we identified that IAV

NP interacts with human chaperone heat shock protein 40 (Hsp40)

[38]. Considering the known role of Hsp40 in regulation of PKR

activity during influenza A virus infection [27], we explored the

possibility of NP playing a regulatory role in this process. We

observed that expression of IAV NP in mammalian cells lead to

reduced phosphorylation of PKR and its substrate eIF2a. We thus

hypothesize that influenza NP is the viral factor that facilitates the

inhibition of PKR activation by releasing P58IPK from Hsp40-

P58IPK complex. Consistent with this hypothesis, we observed that

during IAV infection, the association of NP with Hsp40 coincided

with the release of P58IPK from Hsp40. Also, RNAi-mediated

inhibition of NP expression in IAV infected cells enhanced the

phosphorylation of PKR and its downstream substrate eIF2a. NP

inhibition also led to enhanced IRF3 phosphorylation and IFN b
production which may be mediated by PKR activation. Collec-

tively, these findings identify a novel role for influenza A virus NP

in blocking the PKR-dependent antiviral response in influenza A

virus infected cells.

Results

Identification of human Hsp40 as an interacting partner
of H5N1 IAV NP

A human lung cDNA library was screened using IAV NP as

bait, in GAL4 based Matchmaker yeast two-hybrid system

(Clontech). Yeast cells (AH-109) were co-transformed with bait

and prey plasmids, and selected for growth on selective L-T-H-

plates supplemented with 50 mM aminotriazole. b-galactosidase

positive colonies were further analyzed (Fig. S1A). Plasmids from

positive colonies were isolated and subjected to DNA sequencing

followed by BLAST analysis to identify their cDNA insert.

The mammalian chaperone heat shock protein 40 (Hsp40/

DNAJB11) was thus identified as an interacting partner of NP.

The strength of the NP-Hsp40 interaction was determined using a

quantitative b-galactosidase assay, and was found to be compa-

rable to the positive control used in the assay (Fig. S1B, bars 6 and

7 respectively, p-value = 0.0668).

Transiently expressed IAV NP interacts with Hsp40 in
mammalian cells

The NP-Hsp40 interaction in mammalian cells was ascertained

using co-transfection of plasmids coding H5N1 NP and Hsp40 in

the HEK293T cells. Transfected cells were metabolically labeled

with S35, and co-immunoprecipitation was performed using the

lysates with either NP- or Hsp40- specific antibodies. These results

showed that NP co-precipitated with Hsp40 and vice-versa

(Fig. 1A, lane 2 and 4). These results were confirmed using

A549 lung epithelial cells, which were transfected with NP

expressing plasmid, followed by immunoprecipitation. It was

observed that ectopically expressed NP could immunoprecipitate

endogenous cellular Hsp40 and vice-versa (Fig. 1B, panel 1 and 2).

A direct interaction between NP-Hsp40 was further confirmed

using a co-immunoprecipitation assay in which 35S labeled NP

and Hsp40 proteins were expressed from plasmids using in-vitro

coupled transcription-translation rabbit reticulocyte lysate system

(TNT, Promega, Inc) (data not shown). Collectively, these results

showed that IAV NP directly interacts with Hsp40.

IAV NP interacts with Hsp40 in human lung epithelial
cells infected with different pandemic and seasonal
influenza A viruses

To validate the interaction between IAV-NP and Hsp40

in virus-infected cells, we investigated the kinetics of expression

of NP and Hsp40 in A549 cells. A549 cells were infected with a

Figure 1. Detection of IAV NP-Hsp40 interaction in mammalian cells tranfected with NP expressing plasmid by
co-immunoprecipitation. A. HEK293T cells were pcDNA3.1-NP and pcDNA3.1-Hsp40 plasmids alone or in combination, followed by metabolic
labeling with S35. 48 hours post-transfection cells were harvested and IP was setup using anti-NP-specific antibody and anti-Hsp40-specific antibody
followed by autoradiography. Lanes 2 and 4 show co-IP of Hsp40 with NP and vice-versa. Lanes 1 and 3 show anti-NP and anti-Hsp40 antibodies were
not cross reacting with Hsp40 and NP, respectively. B. A549 cells were transfected with pcDNA3.1-NP plasmid or control pcDNA3.1 plasmid. Cells
were harvested 48 hours post-transfection and immunoprecipitation was setup using anti-Myc tag antibody and anti-Hsp40 antibody, followed by
western blotting. Lane 2 of panel 1 shows co-IP of NP with Hsp40 and lane 2 of panel 2 shows co-IP Hsp40 with NP. Lane 1 of panel 1 and 2
represents control samples transfected with empty vector. Panels 3 and 4 show expression levels of NP and Hsp40 in cell lysates.
doi:10.1371/journal.pone.0020215.g001
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laboratory-adapted IAV, A/Puerto Rico/8/1934/A (H1N1)

influenza virus (PR8) at a multiplicity of infection (MOI) of 1.

Although NP expression was maximal at 24 h post-infection,

Hsp40 expression levels remained unchanged throughout the

course of infection (Fig. 2A). Therefore, in subsequent experi-

ments, A549 cells were infected with PR8 at an MOI of 1 for 24 h

and lysates were prepared. A co-immunoprecipitation assay was

performed using infected and control cell extracts. PR8 NP was

able to co-precipitate endogenous Hsp40 (Fig. 2B, panel 2).

Conversely, Hsp40 was able to co-precipitate NP (Fig. 2B, panel

1). The NP-Hsp40 interaction was also observed when A549 cells

were infected with influenza virus isolates belonging to various

subtypes (Table 1). Co-immunoprecipitation of proteins from

A549 cells infected with these select viral isolates showed that NP

co-precipitated with Hsp40 in all cases without exception (Fig. 2C,

panel 1). A phylogenetic analysis of influenza NP genes used in the

experiment was constructed using the Neighbor-Joining method,

nucleotide model Tamura-Nei, in MEGA version 4 (Fig. S2). The

diversity of changes in NP amino-acid sequences of the strains

used in this study are shown in Fig. S3. The NP genes of IAV used

in the study had amino-acid sequence divergence in the range of

1% to 10% from Hatay/H5N1/2004 isolate. These results clearly

indicated that the NP-Hsp40 interaction was conserved among

seasonal human, avian H5N1 and the 2009 H1N1 pandemic

influenza A viruses.

IAV NP and Hsp40 co-localize primarily in the nucleus of
mammalian cells

It is known that under stress conditions the expression level of

Hsp40 is enhanced and its cellular localization changes from

cytoplasmic to nuclear [38], however its distribution in influenza

virus infected cells was not studied. Thus we investigated the

cellular localization pattern of IAV NP in context to Hsp40 in

mammalian cells. We transfected A549 cells with IAV NP

expressing plasmid for 24 h, and an immunofluorescence staining

was performed with specific antibodies. Results showed that NP

and cellular Hsp40 colocalize primarily in the nucleus (Fig. 3A,

Lower right panel). Similar results were obtained with A549 cells

infected with PR8 virus. Confocal microscopy revealed that NP

and Hsp40 were present primarily in the nucleus. However there

was significant amount of NP present in the cytoplasm at 24 h

post-infection (Fig. 3C, Lower right panel). We also observed that

Figure 2. Confirmation of Hsp40 interaction with NP of various influenza A viruses by co-immunoprecipitation. A. A time course
expression analysis was done to check levels of Hsp40 and NP in A549 cells infected with PR8 IAV at 1 MOI. Panel 1 shows NP reached its maximum
levels at 12 hours post-infection. Panel 2 shows that Hsp40 levels remained unchanged through the course of infection. B. A549 cells were infected
with PR8 IAV at 1 MOI and harvested 24 hours post-infection. IP was setup using NP-specific antibody and Hsp40-specific antibody. Lane 2 of panel 1
shows co-IP of NP with Hsp40 and lane 2 of panel 2 shows co-IP Hsp40 with NP. Lanes 1 of panel 1 and 2 represents control uninfected samples.
Panels 3 and 4 show expression levels of NP and Hsp40 in cell lysates, as detected by western blotting. C. A549 cells were infected with different
influenza A virus isolates, as indicated at 1 MOI. Cells were harvested 24 hours post-infection and IP was setup using NP specific antibody, followed by
western blotting. Panel 1 shows co-IP of Hsp40 with NP, panels 2, 3 and 4 show levels of NP, Hsp40 and b-Actin in the cell lysates used for IP. Lane 1
of all panels show control uninfected samples.
doi:10.1371/journal.pone.0020215.g002
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Table 1. Influenza A virus strains used in the study.

Lane no. Strain used for infection Genbank ID

1 Control Sham treated _

2 Influenza A/ Wisconsin/ 67/2005 (H3N2) (Seasonal Flu) GenBank: EU097866.1

3 Influenza A/Solomon Islands/3/2006 (H1N1) (Seasonal Flu) NP Sequence unavailable

4 Influenza A/California/08/2009 (H1N1) (Pandemic Flu) GenBank:FJ984366.1

5 Influenza A/Vietnam/1203/04 (H5N1) NP Sequence unavailable

6 Influenza A/Hong Kong/482/97 (H5N1) NP Sequence unavailable

doi:10.1371/journal.pone.0020215.t001

Figure 3. Co-localization of IAV NP and Hsp40 in nucleus of mammalian cells. A and B. A549 cells were transfected with pcDNA3.1-NP or
control pcDNA3.1 plasmid for 24 hours, and cells were fixed and processed for immunostaining. NP was stained using anti-Myc tag specific
primary antibody and Alexa488 conjugated secondary antibody (Green). Hsp40 was stained using Hsp40 specific primary antibody and Alexa
594 conjugated secondary antibody (Red). Nuclei were stained with DAPI. A shows pcDNA3.1-NP transfected cells whereas B shows control
pcDNA3.1 transfected cells. Panels are labeled for their respective staining. Lower right panel shows nuclear colocalization of NP and Hsp40. C
and D. A549 cells were infected with PR8 influenza A virus at 1 MOI for 24 hours, and cells were fixed and processed for immunostaining. NP
was stained using anti-NP monoclonal primary antibody and Alexa488 conjugated secondary antibody (Green). Hsp40 was stained using Hsp40
specific primary antibody and Alexa 594 conjugated secondary antibody (Red). Nuclei were stained with DAPI. Panels are labeled for their
respective staining. C shows PR8 infected cells whereas D shows control uninfected cells. Lower right panel in C shows primarily nuclear
colocalization of NP and Hsp40.
doi:10.1371/journal.pone.0020215.g003

IAV NP Exploits Hsp40 to Inhibit PKR Activation

PLoS ONE | www.plosone.org 4 June 2011 | Volume 6 | Issue 6 | e20215



Hsp40 cellular levels were elevated after IAV infection, as

compared to uninfected cells (Fig. 3 C and D, upper right panels).

NP expression and association with Hsp40 coincides with
Hsp40-P58IPK dissociation and downregulation of PKR
and eIF2a phosphorylation

Hsp40 is known to negatively regulate eIF2a phosphorylation

through PKR (27). Therefore, we next assessed if changes in PKR

and eIF2a phosphorylation occurred during the course of IAV

infection of A549 cells. We found that the phosphorylation of both

PKR and eIF2a increased initially between 1–2 h post-infection

and subsequently declined between 4–8 h post-infection (Fig. 4A,

panel 1,3). However the total PKR and eIF2a levels remained

unchanged (Fig. 4A, panel 2,4). Interestingly, NP expression also

was detected around 4 h post-infection and increased up to 8 h

post-infection (Fig. 4A, panel 5) which coincided with a decline in

p-PKR and p-eIF2a levels.

During IAV infection P58IPK activity was increased as it was

released from Hsp40 binding [27]. We hypothesized that NP

might disrupt the P58IPK-Hsp40 complex too and liberate P58IPK.

To investigate this possibility, we monitored changes in the cellular

levels of P58IPK and NP associated with Hsp40 during IAV

infection. A549 cells were infected with the PR8 virus, harvested at

different time points after infection and immunoprecipitation was

conducted using equal amounts of total protein and anti-Hsp40

antibody. Western blot analysis revealed that between 4 and 8 h

post-infection, the levels of NP associated with Hsp40 continued to

rise (Fig. 4B, panel 1) with a concomitant decline in P58IPK

associated with Hsp40 (Fig. 4B, panel 2). During this period, total

amounts of Hsp40 and P58IPK remained constant (Fig. 4B, panel

5, 6). These results were consistent with the hypothesis of replace-

ment of P58IPK from Hsp40, by NP. These findings indicate that

the dissociation of P58IPK-Hsp40 complex occurs around 4 to 8 h

post-infection, and is associated with downregulation of eIF2a
phosphorylation. Taken together, these results suggest that during

IAV infection, NP induces the dissociation of the P58IPK-Hsp40

complex leading to an inhibition of PKR activation and

downregulation of eIF2a phosphorylation.

IAV NP expression leads to an inhibition of PKR activity
and downregulation of eIF2a phosphorylation

During IAV infection, the NS1 protein inhibits PKR activation

by directly interacting with it, and thereby ensuring continued

viral mRNA translation [21,22]. Results from our study indicated

that NP may also play a role in inhibiting PKR activity by

intercepting this pathway at the level of Hsp40. To examine this

aspect, we performed a time course study in HEK293T cells

transfected with the plasmid expressing IAV H5N1 NP by

monitoring p-eIF2a and p-PKR levels. Western blot analysis of

transfected cell lysate showed downregulation of both PKR and

eIF2a phosphorylation, which began as early as 12 h and was

most prominent at 36 h post-transfection (Fig. S4 A, B). The 36 h

time-point was selected to confirm this action of NP, and Western

blot analysis results from 3 independent experiments showed

significant reduction in the levels of p-PKR (Fig. 5A, panel 2 and

Fig. 5B) and p-eIF2a (Fig. 5C, panel 2 and Fig. 5D). To confirm

the PKR inhibitory action of NP, we transfected HEK293T cells

with NP-GFP expressing plasmid and inhibited NP expression

using specific siRNA (Table 2) against it (Fig. S5A). Inhibition of

NP expression led to an increase in p-PKR and p-eIF2a levels as

compared to control NP-GFP transfected cells (Fig. S5B). These

results suggest that the expression of NP leads to inhibition of PKR

activity in a NS1 independent manner. This action of IAV NP is

likely to be mediated through its interaction with Hsp40.

Figure 4. NP expression in IAV infected cells coincides with p-PKR and p-eIF2a downregulation and P58IPK-Hsp40 dissociation.
A. A549 cells were infected with PR8 IAV at 1 MOI and cells were harvested at indicated time points post-infection. Western blotting was done to
check the expression levels of PKR, p-PKR, eIF2a, p-eIF2a, NP and NS1. Panel 7 shows equal loading trough b-Actin control. This experiment was
repeated thrice with similar results. B. A549 cells were infected with PR8 IAV at 1 MOI and cells were harvested at indicated time points. Protein
concentration was measured by Bradford method and equal amount of protein sample from each time point was used to set up IP with anti-Hsp40
antibody. Panel 1 shows the amount of NP co-immunoprecipitated with Hsp40. Panel 2 shows amount of P58IPK co-immunoprecipitated with Hsp40.
Panel 3 shows amount of Hsp40 immunoprecipitated at different time points. Lanes 4, 5, and 6 show the levels of NP, Hsp40 and P58IPK respectively,
in cell lysates at the indicated time points as detected by western blotting using antibodies specific to NP, Hsp40 and P58IPK. Panel 7 shows equal
loading trough b-Actin control.
doi:10.1371/journal.pone.0020215.g004
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siRNA mediated inhibition of NP expression in IAV
infected cells, leads to the upregulation of PKR, eIF2a and
IRF3 phosphorylation

We suppressed NP expression PR8 IAV infected A549 cells,

using a pool of gene specific siRNAs (Table 2), and determined its

effect on PKR activity. Expression of NS1 was also blocked using

siRNA against NS1 alone and in combination with NP siRNA to

establish their exclusive and combined contribution to PKR-

inhibition. A549 cells were first transfected with the indicated

siRNAs, and 6 hours later were infected with PR8 influenza virus.

Infected cells were harvested 24 h post-infection and cell lysates

were subjected to western blot analysis. We observed that

inhibition of NP expression led to upregulation of PKR

phosphorylation, as compared to the control (Fig. 6A, panel 1,

Fig. 6B). Increased PKR activity resulted in enhanced phosphor-

ylation of eIF2a and IRF3 (Fig. 6A, panel 2, 4, Fig. 6C, D).

Inhibition of NS1 had a similar effect, whereas inhibition of both

NP and NS1 had a cumulative effect on upregulation of PKR,

eIF2a, and IRF3 phosphorylation (Fig. 6B, C, D).

Inhibition of NP expression during IAV infection leads to
enhanced IFNb production and reduced virus replication

PKR mediated activation of IRF3 should lead to an increased

IFN response. Previous results confirmed the involvement of NP in

the inhibition of PKR and IRF3. To check the further

downstream effect of NP, we suppressed the expression of NP

using siRNAs as mentioned earlier. 24 hours post-infection, the

cells were harvested and RNA was isolated to determine IFNb and

Figure 5. NP expression in mammalian cells leads to downreglation of PKR and eIF2a phosphorylation. HEK293T cells were transfected
with NP expressing plasmid (pcDNA3.1-NP) or control plasmid (pcDNA3.1). Cells were harvested at 36 hours post-transfection and cell lysates were
subjected to western blotting analysis. A. Lane 1 of panel 2 shows significant downregulation of pPKR levels in NP transfected cells. Panel 1 shows NP
expression level, whereas panel 3 shows equal loading trough b-Actin control. B. Figure shows graphical representation of relative pPKR levels as
measured by western blotting followed by densitometric measurement in 3 independent experiments. Error bars represent standard deviation.
C. Lane 1 of panel 2 shows significant downregulation of p-eIF2a levels in NP transfected cells. Panel 1 shows NP expression level, whereas panel 3
shows equal loading trough b-Actin control. D. Figure shows graphical representation of relative p-eIF2a levels as measured by western blotting
followed by densitometric measurement in 3 independent experiments. Error bars represent standard deviation.
doi:10.1371/journal.pone.0020215.g005
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viral RNA levels by real-time PCR using gene-specific primers.

The inhibition of NP expression led to increased IFNb production

as compared to control (Fig. 7A, bar 2, 3). Furthermore, the

inhibition of NS1 had greater impact on IFNb production as

compared to that of NP, and there was a synergistic effect when

both NS1 and NP were inhibited (Fig. 7A, bar 4, 5). Increased

IFNb production should lead to reduced virus replication and

reduced production of Influenza vRNA. To confirm this, influenza

vRNA levels in the above mentioned samples were measured by

real-time PCR. Inhibition of NP or NS1 led to reduced vRNA

production as compared to control (Fig. 7A, bar 2, 3, 4), and

inhibition of both NP and NS1 together had greater synergistic

effect (Fig. 7B, bar 5).

Discussion

Heat shock proteins are stress response factors which also

regulate several cellular processes [39]. The Hsp40 family

chaperones are known to play important roles in protein folding,

translocation, cell signaling and apoptosis [40–42]. Very often they

are targeted by viral components for successful virus replication.

For example, Hsp40 is known to interact with HIV type 2 Vpx

protein and facilitate nuclear import of the pre-integration

complex [43]. HIV type 1 Nef protein interacts with Hsp40 to

enhance viral gene expression [44]. Hsp40 is also known to

interact with the HBV core protein and affect viral turnover [45].

Heat shock proteins are known to affect the viral replication of

influenza viruses also. For example Hsp90 is known to interact

with influenza virus polymerase components and aid in viral RNA

synthesis [46]. Hsp70 is also known to be involved in the nuclear

export of the RNP complex and play a role in temperature

dependence of IAV replication [47,48]. Likewise, Hsp40 is also

known to regulate PKR signaling in influenza virus infected cells

[25]. Similarly, the IAV NP is also a multifunctional protein that

interacts with a wide variety of viral and cellular macromolecules,

including RNA, PB1 and PB2 subunits of the viral RNA-

dependent RNA polymerase and the viral matrix protein [30–

33]. It also binds to several host factors which include CRM1,

UAP56, Alpha-importin 1 and NF90 [33–37]. Through these

interactions, IAV-NP is known to encapsidate the viral genome,

regulate virus transcription and replication, contribute towards

pathogenicity of virus, and help in interspecies transmission of the

virus [30]. However, so far IAV NP is not reported to play any role

in modulating the host antiviral response.

A key component of mammalian antiviral response mechanism is

dsRNA dependent protein kinase PKR, which is activated by viral

dsRNA [8]. Upon activation, PKR gets dimerized and autopho-

sphorylated at multiple serine and threonine residues. Activated

PKR phosphorylates eukaryotic translation initiation factor eIF2a,

which in phosphorylated state cannot participate in mRNA

translation [12]. This is an important strategy of the host to arrest

translation of viral mRNAs thereby limiting viral replication [9,13].

Another crucial host pathway which is activated by PKR is IRF3-

mediated IFNb production. Activation of PKR is known to enhance

IRF3 phosphorylation and nuclear movement where it drives

expression of Interferon b production and built up of antiviral host

response [14]. Similarly, PKR also has other substrates such as

MAPK and iKKß which upon phosphorylation trigger various

signaling pathways leading to apoptosis or interferon response

[10,11]. Being such a crucial molecule, PKR is very often the target

of viral factors [15–18]. In case of influenza virus infection, viral

NS1 protein is known to bind directly to PKR and inhibit its

activation [20,21]. NS1 also inhibits the function of retinoic acid

inducible gene-I (RIG-I), a cytosolic pathogen sensor involved in the

antiviral response [49]. Apart from that, PKR activity is controlled

by another mechanism where P58IPK, the cellular inhibitor of PKR

is activated in influenza virus infected cells [25,28]. Further, P58IPK

itself is inhibited by Hsp40 and is present as P58IPK-Hsp40 complex

under normal conditions. However upon influenza virus infection, it

is released from the Hsp40 complex and inhibits PKR activation

[24]. In a recent report, it was shown that M2 protein of influenza A

virus stabilizes the P58IPK-Hsp40 complex and activates PKR

phosphorylation, probably during later stage of infection [50].

However the mechanism of dissociation of Hsp40-P58IPK complex

and concomitant PKR inhibition during influenza virus infection

remain unknown.

Here, we report that IAV NP interacts with the human

chaperone Hsp40 and employs this interaction to mitigate PKR-

mediated antiviral response of the host. NP-Hsp40 interaction

was identified through a yeast two-hybrid screen and confirmed

in a cell-free translation system, in transfected cells and in

influenza virus infected cells. The interaction was found to be

conserved across different influenza A viruses, ranging from

seasonal, avian H5N1 virus and the 2009 H1N1 pandemic virus

despite substantial amino acid differences that range from 0–5%

within a subtype/group and 6–10% between the subgroups

in NP amino-acid sequence. Our findings demonstrate that IAV

NP is the viral component that dissociates P58IPK from the

P58IPK-Hsp40 complex during influenza virus infection in

mammalian cells. It was observed that during the course of

influenza virus infection in lung epithelial cells, a gradual

increase in the association of NP with Hsp40 coincided with a

concomitant decrease in P58IPK association with Hsp40.

Increased activity of P58IPK, promoted by NP, should lead to

the inhibition of PKR activation and subsequent downstream

effects (Fig. 8). In accordance with the above hypothesis, we

observed that ectopic expression of IAV NP in mammalian cells

substantially reduced the phosphorylation levels of PKR and

eIF2a. Furthermore, siRNA-mediated inhibition of NP expres-

sion during influenza virus infection led to increased phosphor-

ylation of PKR and eIF2a, confirming the role of NP in the

negative regulation of PKR. Although eIF2a is phosphorylated

by other kinases also, namely, HRI, GCN2 and PERK which are

activated during stress condition, only PKR is known to be

targeted by viral inhibitors [12]. In line with this, NP and NS1

had similar effects on PKR mediated eIF2a phosphorylation;

however their synergistic effect was higher than their individual

effects (Fig. 6 B).

Table 2. Sequences of siRNAs used in the study.

NPsiRNA1 59AAGCAGGGUAGAUAAUCACUU39

59GUGAUUAUCUACCCUGCUUUU39

NPsiRNA2 59GCAGGGUAGAUAAUCACUCUU39

59GAGUGAUUAUCUACCCUGCUU39

NPsiRNA3 59UCACUCACUGAGUGACAUCUU39

59GAUGUCACUCAGUGAGUGAUU39

NS1siRNA1 59AAGCAGGGUGACAAAGACAUU39

59UGUCUUUGUCACCCUGCUUUU39

NS1siRNA2 59GCAGGGUGACAAAGACAUAUU39

59UAUGUCUUUGUCACCCUGCUU39

NS1siRNA3 59AGACAUAAUGGAUCCAAACUU39

59GUUUGGAUCCAUUAUGUCUUU39

NP-GFP siRNA 59GAGCAGAAAUCCAGGGAAUUU39

59AUUCCCUGGAUUUCUGCUCUU39

doi:10.1371/journal.pone.0020215.t002
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Activation of PKR signaling during virus infections is known to

result in IRF3 phosphorylation and concomitant IFNb produc-

tion. However IRF3 is not a direct substrate of PKR and it can get

activated by the RIG I pathway, NFkB pathway and other

unknown mechanisms [14,15]. Influenza NS1 protein is known to

inhibit PKR, RIG I and NFkB pathways, thus it is expected to

have greater impact on IRF3 phosphorylation as compared to NP,

which may inhibit only PKR mediated IRF3 phosphorylation

[23,24]. In line with this, we observed that NP inhibition during

IAV infection led to enhanced IRF3 phosphorylation, IFNb
production and reduced viral replication; however inhibition of

NS1 had greater impact on these events. As expected the

synergistic effect of NP and NS1 inhibition on IRF3 activity was

higher than their individual effects. The effect of NP on IFNb

production is also reflected on virus replication as siRNA-mediated

inhibition of NP led to reduced vRNA production. This effect may

also be attributed to the essential requirement of NP for proper

functioning of influenza virus polymerase. However the inhibitory

action of NP on PKR-mediated host response may also contribute

to the reduced virus replication in case of siRNA-mediated

inhibition of NP.

Based on our findings, we proposed a model for PKR inhibition

by influenza virus nucleoprotein as shown in Fig. 7. According to

this model, IAV NP interacts with Hsp40 and facilitates the release

of P58IPK from it, which in turn inhibits PKR activation (Fig. 8).

Reduced PKR activity, on one hand leads to reduced eIF2a
phosphorylation and ensures continued translation from viral

mRNAs and on the other hand leads to reduced IRF3 mediated

Figure 6. Inhibition of NP expression IAV infected cells upregulates phosphorylation of PKR, eIF2a and IRF3. A549 cells were treated
with siRNA against NP, NS1 or NP andNS1 or control siRNA for 6 hours. Cells were then infected with PR8 virus at an MOI of 1. Cells were harvested at
24 hours post-infection and equal amounts of protein from control and treated cell extracts were subjected to western blot analysis. A. Lane 1 of
panels 1, 2 and 4 show control levels of p-PKR, p-eIF2a and p-IRF3, and lane 2 shows the effect of control siRNA on the same. Lane 3 in panel 1, 2 and
4 shows levels of p-PKR, p-eIF2a and p-IRF3 levels in case of NP inhibition. Lane 4 shows effect of NS1 inhibition. Lane 5 shows a synergistic effect of
NP+NS1 silencing on p-PKR, p-eIF2a and p-IRF3 levels. Lanes 3 and 5 of panel 6 show the silencing efficacy of NP siRNA and lanes 4 and 5 of panel 7
shows the silencing efficacy of NS1 siRNA. Panel 8 shows equal loading through b-Actin control. B, C and D. Graphs shows relative p-PKR, p-eIF2a and
p-IRF3 levels in virus infected cells pretreated with siRNAs, as measured by western blot followed by densitometric analysis of the protein bands. Plots
represent the mean and standard deviation of of three independent experiments.
doi:10.1371/journal.pone.0020215.g006
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IFNb production. Therefore, apart from the NS1 protein which is

already known to inhibit PKR activation and IRF3 phosphory-

lation [21,24], NP also participates in this process, but through a

different mechanism involving Hsp40. With structure information

of both NP and Hsp40 being available [30,42], it would be

interesting to see which domains and key amino-acid residues are

involved in this interaction. Since the NP-Hsp40 interaction is

conserved across influenza viruses of various subtypes including

the 2009 pandemic H1N1 virus, it serves as an important target

for developing anti-viral strategies.

Materials and Methods

Yeast Two-Hybrid Screening
GAL4 based Matchmaker (Clontech) yeast two-hybrid system

was used for screening human lung cDNA library, as described

previously [51]. H5N1 NP (A/Hatay/2004) gene cloned in pGBK

vector (Clontech) was used as bait and a mammalian cDNA

library cloned in pGAD (Clontech) vector was used as prey. The

AH109 strain of yeast was used for co-transformation of bait and

prey plasmids. The full-length Hsp40 gene was cloned into pGAD

vector and used in yeast two-hybrid assays. Colonies which grew

on L-T-H- plates (Leucine, Tyrosine and Histidine dropout

standard dextrose media) supplemented with 50 mM Aminotria-

zole were considered positive. ß-Gal assays (liquid and filter) were

performed as per manufacturer’s protocols.

Cell culture and Plasmids
HEK 293T (human embryonic kidney) and A549 (adenocarci-

nomic human alveolar basal epithelial) cells were used for

transfection and infection experiments respectively. All cells were

grown in DMEM medium (Hyclone) supplemented with 10% FCS

(Hyclone), 100 units/ml Penicillin Streptomycin solution (Invitro-

gen). NP gene of A/ Hatay/ 2004 (H5N1) influenza virus was

cloned in pCDNA3.1 myc his vector (Invitrogen), pEGFPN1

vector (Clontech) and pGBKT7 vectors (Clontech) to generate

myc-tagged, GFP-tagged and GAL4 DNA BD fused NP,

respectively. Full-length human Hsp40 gene cloned in the

pCDNA3.1 myc his vector was kindly provided by M. D. Amaral

(Centri de Genetica Humana Instituto Nacional de Saude Dr.

Ricardo Jorge, Lisboa, Portugal).

Transfection and virus infection assays
All DNA transfections were done using Lipofectamine 2000

(Invitrogen) and cells were maintained in DMEM medium devoid of

serum and antibiotics. Six hours post-transfection, culture medium

was supplemented with 5% FCS and 24 h post-transfection the

medium was replaced with fresh culture medium. All virus infections

were done at multiplicity of infection (MOI) of 1 for 1 h in DMEM

medium supplemented with 2% BSA (GIBCO). After 1 h incuba-

tion, the cells were washed with DMEM once and then grown with

DMEM supplemented with 0.2% BSA and 1 mg/ml N-p-tosyl-1-

phenyl alanine chloromethyl ketone (TPCK) (Sigma Aldrich). The

virus strains used in infection experiments are listed in Table 1.

Western blotting and antibodies
Cells were lysed using a buffer (20 mM HEPES, pH 7.5, 150 mM

NaCl, 1 mM EDTA, 10% glycerol, 1% Triton X-100) supplement-

ed with protease-inhibitors (Roche Diagnostics) and the lysates were

subject to SDS PAGE. Anti-NP antibodies were obtained from

Abcam and the Immunology and Pathogenesis Branch, Influenza

Division, Centres for Disease Control and Prevention, Atlanta, GA,

USA. Antibodies against PKR, p-PKR, eIF2a, p-eIF2a, P58IPK and

Hsp40 were obtained from Cell Signaling. Anti-ß-actin antibody was

purchased from Sigma-Aldrich. Anti-myc tag and anti-NS1

antibodies were purchased from Santa Cruz.

Immunoprecipitation assays
Cellular lysates were incubated with primary antibody overnight

followed by incubation with protein A Dyna beads (Invitrogen) for

2 hours. Beads were washed thrice and the IP products were

subjected to Western blotting. NP was immunoprecipitated using

Figure 7. Inhibition of NP expression in IAV infected cells leads to reduced IFNb production and virus replication. A549 cells were
treated with siRNA against NP, NS1 or NP and NS1 together or control siRNA for 6 hours. Cells were then infected with PR8 virus at an MOI of 1. Cells
were harvested at 24 hours post-infection, RNA was isolated, cDNA was synthesized and real-time PCR was set up using primer specific for IFNb and
influenza NP vRNA. mRNA levels were normalized against b actin, and the result from triplicate experiments were plotted with standard deviation.
A. Graph shows the effect of NP and/or NS1 inhibition on IFNb production. B. Graph shows the effect of NP and/or NS1 silencing on NP vRNA
production, which is a measure of virus replication.
doi:10.1371/journal.pone.0020215.g007
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anti-NP monoclonal antibody (Immunology and Pathogenesis

Branch/IPB, CDC, Atlanta) in case of infection or anti-myc tag

antibody in case of transfection. Hsp40 was immunoprecipitated

using anti-Hsp40 monoclonal antibody (Cell Signaling).

Immunofluorescence microscopy
After infection or transfection for 24 h, A549 cells were fixed with

2% paraformaldehyde for 30 min at room temperature. They were

permeabilized with 0.5% Triton X-100 for 5 min at room

temperature and blocked with PBS containing 2% bovine albumin.

Immunostaining was performed using rabbit anti-Hsp40 (Cell

Signaling) and mouse anti-NP (IPB, CDC, Atlanta) antibodies.

Unbound antibodies were washed away with PBS and cells were

incubated with Alexa488 tagged Goat anti-rabbit antibodies and

Alexa594 tagged Goat anti-mouse. Nuclei were stained with DAPI.

Photomicrographs were captured at 1006 magnification using a

Leica DM6000B confocal microscope. Images were processed using

NIS Elements AR 3.0 software (Nikon).

RNAi
Control (non-targeting) and NP- and NS1- specific siRNAs of

PR8 were purchased from Dharmacon and the cells were

transfected using the Dharmafect 1 transfection reagent (Dhar-

macon). In each case, a pool of three specific siRNAs capable of

targeting different regions of NP or NS1 were used (Table 2). A549

cells at a density of 106/well of a 6-well plate were transfected with

90 nM of the indicated siRNA for 6 h prior to infection with A/

PR/8/34 at a MOI of 1. Lysates were prepared 24 h post-

infection and analyzed for the expression of NP, NS1 and other

cellular proteins by Western blotting.

RNA isolation, cDNA preparation and Real time PCR
Total RNA was isolated from cells using the RNAeasy kit

(Qiagen, Valencia, CA, USA) and real-time RT-PCR was

conducted using a Stratagene Q3005 PCR machine for expression

of IFNb, b-actin mRNA and NP vRNA. For each sample, 2 mg of

RNA was reverse transcribed using Superscript II Reverse

Transcriptase (Invitrogen, Carlsbad, CA, USA) according to the

manufacturer’s directions. Oligo dT primers were used for IFNb
and b-Actin cDNA synthesis. For NP vRNA, cDNA was

synthesized as described by Ge et al [52]. (Parallel reactions without

reverse transcriptase were included as negative controls. Reverse

transcription reactions (1/50th of each reaction) were analyzed in

using syber green Q-PCR reagents (Stratagene, La Jolla, CA, USA).

Figure 8. Proposed model for inhibition of PKR mediated host response by influenza nucleoprotein. During influenza virus infection, NP
interacts with Hsp40, thereby displacing P58IPK from the Hsp40-P58IPK complex. As a result, there is an increased amount of free P58IPK available in
the cell which prevents PKR activation. Downregulation in PKR activity ensures less eIF2a phosphorylation and continued translation from viral
mRNAs. On the other hand reduced PKR activity also leads to reduced IRF3 activation and subsequent IFNb production.
doi:10.1371/journal.pone.0020215.g008
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PCR condition was kept as 94uC for 15 s, annealing at 56uC for

30 s, and extension at 72uC for 30 s for a total of 45 cycles. The

threshold cycle number for cDNA was normalized to that of b-actin

mRNA, and the resulting value was converted to a linear scale. Data

from three independent experiments were taken account for

analysis. All data points fell into a normal distribution and there

were no outliers. Primer sets used for these studies are provided in

Table 3.

Supporting Information

Figure S1 Human heat shock protein 40 was found to
interact with Influenza A nucleoprotein in yeast two-
hybrid system. A. Yeast two-hybrid screen was performed to

find the host interacting partners for H5N1 IAV NP. Results with

one of the positive co-transformants (later found to be Hsp40 by

BLAST analysis) are shown. Ah109 yeast strain cotransformed

with NP-GBK bait plasmid and Hsp40-GAD prey plasmid grew in

minimal synthetic YPD media devoid of Leucine, Tryptophan and

Histidine amino-acids. Positive colonies grew on plates supple-

mented with up to 50 mM aminotriazole (AT). A filter b-gal assay

was performed to confirm the interaction. Blue colored colonies

indicate positive clones. B. NP-Hsp40 interaction was confirmed

by liquid ß-gal assay and was found to be statistically comparable

to the positive control used (p-value = 0.0668). In the bar-graph,

bar 1 represents untransformed AH109 yeast cells; bars 2 and 3

represent control prey plasmids, bars 4 and 5 represent prey

plasmids expressing full-length Hsp40 and NP, respectively; bar 6

represents the co-transformation of Hsp40 and NP plasmids; bar 7

is a positive control (SARS Coronavirus NP both as bait and prey

self-associating to form oligomers) [53].

(TIF)

Figure S2 Phylogenetic analysis of NP sequence used in
the study. A phylogenetic tree was constructed using Neighbor-

Joining method, nucleotide model Tamura-Nei, in MEGA version

4 [54]. NP gene sequences from selected human seasonal, avian,

swine and 2009 pandemic influenza viral isolates were used. The

tree shows evolutionary distances between various strains of

influenza. The 2009 pandemic H1N1 NP belongs to the classical

swine lineage which had previous limited introductions into

humans and is more distantly related to the NP of seasonal or H5

influenza viruses. The H5N1 virus used in this study is shown in

red and other IAVs used in infection assays are boxed.

(TIF)

Figure S3 Amino acid sequence comparison of NP
sequence used in the study. The number and percent

difference in amino acids of the IAV subtypes used in the

infection assays including seasonal H1N1 and H3N2, avian H5N1

and 2009 H1N1 pandemic are compared to A/Puerto Rico/8/1934

(H1N1) virus. Analyses were conducted using the Dayhoff matrix

based method in MEGA4 [48].

(TIF)

Figure S4 NP expression leads to decreased PKR and
eIF2a phosphorylation. A and B. Time-course analysis of p-

PKR and p-eIF2a levels in NP expressing plasmid transfected cells.

HEK 293T cells were transfected with pcDNA3.1-NP plasmid and

harvested at different time points. Protein amount was estimated by

Bradford method and equal amounts of protein from different time

points was analyzed on SDS-PAGE and subjected to western blot

analysis. Panel 1 of A and B shows, downregulation of p-PKR and p-

eIF2a levels as early as 12 hours (lanes 3 and 4), and was most

apparent at 36 hours post-transfection (lanes 7 and 8).

(TIF)

Figure S5 Inhibition of NP expression leads to in-
creased PKR and eIF2a phosphorylation. A. The effect of

siRNA-mediated inhibition of NP expression on PKR and eIF2a
phosphorylation in NP-transfected HEK293 T cells was checked.

Upper panel shows that a 30 nM concentration of siRNA was

optimum for silencing. B. Lower panel shows that when NP

expression was silenced, the levels of p-PKR and p-eIF2a went up

(lanes 4 and 3) which were otherwise downregulated (lane 1). Lane

2 shows mock transfected cells.

(TIF)
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