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Abstract

Genome-wide association studies (GWASs) identify single nucleotide polymorphisms (SNPs) that are enriched in individuals
suffering from a given disease. Most disease-associated SNPs fall into non-coding regions, so that it is not straightforward to
infer phenotype or function; moreover, many SNPs are in tight genetic linkage, so that a SNP identified as associated with
a particular disease may not itself be causal, but rather signify the presence of a linked SNP that is functionally relevant to
disease pathogenesis. Here, we present an analysis method that takes advantage of the recent rapid accumulation of
epigenomics data to address these problems for some SNPs. Using asthma as a prototypic example; we show that non-
coding disease-associated SNPs are enriched in genomic regions that function as regulators of transcription, such as
enhancers and promoters. Identifying enhancers based on the presence of the histone modification marks such as
H3K4me1 in different cell types, we show that the location of enhancers is highly cell-type specific. We use these findings to
predict which SNPs are likely to be directly contributing to disease based on their presence in regulatory regions, and in
which cell types their effect is expected to be detectable. Moreover, we can also predict which cell types contribute to
a disease based on overlap of the disease-associated SNPs with the locations of enhancers present in a given cell type.
Finally, we suggest that it will be possible to re-analyze GWAS studies with much higher power by limiting the SNPs
considered to those in coding or regulatory regions of cell types relevant to a given disease.
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Introduction

Asthma is a chronic inflammatory disease, characterized by

reversible airway obstruction and increased bronchial hyperre-

sponsiveness. This complex disorder is influenced by the

interdependencies between various factors - genetic and environ-

mental being the most important ones. The estimate that 35–80%

of the variation in the risk of asthma can be attributed to genetic

variation has spurred a number of genome-wide association

studies (GWASs) of asthma [1–17], making it one of the best

studied diseases to date. Most of these studies involved genotyping

asthmatic vs. non-asthmatic donors using single nucleotide poly-

morphism (SNP) arrays that can detect the presence or absence of

up to a million SNPs [10]. Using information from studies such as

The 1000 genomes [18] and Hap Map projects [19], the presence

of additional SNPs not present on the genotyping arrays can be

extrapolated by imputation [20,21]. GWASs have led to the

discovery of a large set of SNPs that are significantly more frequent

in patients with asthma compared to individuals without asthma or

healthy controls. However, identifying a functional link between

the presence of an asthma-risk SNP and development of disease

has not been straightforward [22], primarily because the majority

of identified SNPs are located in non-coding regions so that there

is no obvious expected phenotype or function, but also because of

the tight genetic linkage of SNPs in a haploblock, only few of

which will have a functional effect.

Recently, there has been a vast acceleration in the identification

of non-coding genomic elements that regulate gene transcription

[23,24]. This has been enabled by the advent of genome-wide

chromatin analysis, such as profiling of the histone mark

H3K4me1 (histone 3 lysine 4, monomethylation). This mark is

found on histones associated with genomic regions accessible to

regulatory DNA-binding proteins (transcription factors), which

thereby function as enhancers of transcription. Enhancers could

also be marked by other protein modifications, e.g. H3K4me2

(histone 3 lysine 4, dimethylation), H3K27ac (histone 3 lysine 27,

acetylation), as well as histone variant H2A.Z [25–27]. In this

study, we focused on the H3K4me1 and H3K27ac marks as more

data were publicly available for these markers.

Notably, the location of enhancers is highly cell-type specific

[28], supporting the notion that different cell types maintain their

specialized functions by selectively activating different regulatory

regions of the genome [29]. Moreover, several recent studies have

shown that disease-associated SNPs are enriched in enhancers

[29–32].
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Based on these considerations, we tested the hypothesis that

SNPs associated with a specific disease are more frequently found

in enhancers specific to cells that are relevant for the disease. Using

asthma as an example, we document a significant enrichment of

asthma-associated SNPs in genomic regions marked by H3K4me1

in CD4+ T cells, which are known to contribute to asthma

pathogenesis. In contrast, cells from brain, breast and skeletal

muscle tissues unrelated to asthma, are depleted of asthma-

associated SNPs in their enhancer regions. Thus, the methodology

we report here can be utilized to make an unbiased prediction of

which cell types contribute to disease pathogenesis, and which

disease-associated SNPs are likely to be functionally important.

Results

The Majority of Asthma-associated SNPs is Located in
Non-coding Regions
We retrieved all known asthma-associated SNPs from the

GWAS integrator database [33], resulting in 131 SNPs (Table S1

in File S1). For all these directly disease-associated SNPs, we also

retrieved SNPs in tight genetic linkage (n = 2510, r2 = 0.8) based

on the most recent release of HaploReg [30] (Table S2 in File S1).

As a background control set, we assembled non-asthma-associated

SNPs from DbSNP135Common dataset of the UCSC Browser

[34,35]. The distribution of the three sets of SNPs in coding

regions (cds), 59-untranslated regions (59-UTRs), 39-UTRs, in-

trons, and intergenic regions is shown in Figure 1. As expected,

asthma-associated SNPs were highly enriched in coding sequences

compared to the background set of SNPs, and a significant but

lower enrichment was found for 39- and 59-UTRs. However, the

largest proportion of asthma-associated SNPs was found in introns

and intergenic regions, i.e. non-coding sequences known to

contain enhancers.

Non-coding SNPs are Significantly Enriched in Enhancers
In an elegant study by the Kellis group [36], genomic regions in

CD4+ T cells were comprehensively classified into different

chromatin states using a Hidden Markov Model. We used these

classifications to examine if any chromatin states were enriched for

asthma-associated SNPs. As shown in Table S3 in File S1, we

found enrichment of disease-associated SNPs in promoter states

(state 1–9, and 11), and in some states associated with transcription

(states 12, 14, 21 and 24) - result already anticipated from Figure 1.

In addition, we have detected an enrichment of asthma SNPs in

many active intergenic states (State 29, 30, 34–36).

In contrast, regions with heterochromatin state and repetitive

elements (states 40–42, and 48) showed high depletion for disease-

associated SNPs, as did some states associated with transcription

(states 15, 17–19, 23 and 28).

Notably, we also found significant enrichment in States 9, and

34, which are associated with promoter and enhancer regions,

suggesting that SNPs present in non-coding regions (enhancers

and promoters) contribute to disease pathogenesis by perturbing

the transcriptional regulation of an associated gene.

The Location of Active Enhancers is Primarily a Function
of Cell Type
Enhancers have previously been reported to be tissue and cell-

type specific [37,38]. To determine if the SNP enrichment in

enhancers that we found for CD4+ T cells (which are known

contributors to asthma) was a cell-type specific effect, we

compared the available data on the distribution of the

H3K4me1 modification for human CD4+ T cells and several

other human tissues/organs using published studies. We obtained

all available H3K4me1 Chromain ImmunoPrecipitation (ChIP)-

Seq data from the epigenome atlas [39,40] limiting our analysis to

data for which both IP and control input samples were available. A

total of 37 samples from 19 distinct cell types and 8 tissues were

retrieved, and putative enhancers in each dataset were identified

by H3K4me1 peak calling (Materials and Methods). As an

example of cell type-specific distribution of H3K4me1, Figure 2

shows the extended Th2 cytokine locus. The well-known locus

control region LCR-O and the hypersensitivity site (HS) V, which

both function as enhancers in CD4+ T cells, are marked in red

boxes [41]. Importantly, there are H3K4me1 peaks at these

regions in six CD4+ T cell types (Figure 2), but no peaks were

found in the kidney, liver or brain cells. This result demonstrates

that our method for calling H3K4me1 peaks accurately identifies

known enhancers.

Next, we compared the enhancers identified in different

datasets by calculating pair-wise Matthews correlation coeffi-

cients (MCC), which quantify the overlap of enhancers on a per

nucleotide basis (see Materials and Methods). Figure 3 depicts

a MCC heatmap for all studied datasets, which fell into 10

distinct clusters using a cutoff for pairwise MCC values above

0.55. Two samples formed isolated clusters, and were consid-

ered outliers (sample 7, Adipose Nuclei, and sample 28, Brain

Figure 1. Distribution of the SNPs in coding, 59-UTR, 39-UTR, introns and intergenic regions. Three sets of SNPs are shown. SNPs
identified as being significantly associated with asthma according to the GWAS Integrator database [33] are shown on the left. The middle shows the
same set of SNPs extended by those that are in tight genetic linkage (r2 = 0.8) according to HaploReg [30]. On the right, the distribution of common
SNPs that are not associated with asthma is shown. The distribution of SNPs into coding, 59-UTR, 39-UTR, introns, and intergenic regions was done
using RefSeq datasets from the UCSC Genome Browser [34,35].
doi:10.1371/journal.pone.0054359.g001
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Germinal). Apart from these exceptions, all datasets from the

same cell types but different laboratories or different donors fell

into the same cluster. For example, all nine datasets of CD4+ T

cell-types were in one cluster, as were all dataset from different

brain regions. This demonstrated that the genomic location of

enhancers marked by H3K4me1 was primarily determined by

cell type, and donor-to-donor variability was not a significant

factor.

Non-coding SNPs Associated with Asthma are Enriched
in CD4+ T Cell Specific Enhancers
To determine if there was differential enrichment of asthma-

associated SNPs in the enhancers of different cell types, we

merged the enhancers identified in each of the eight cell/tissue

type specific clusters displayed in Figure 3 to obtain a single set

of enhancers per cell/tissue type. In each of these eight sets, we

determined how many asthma-associated SNPs were found in

enhancers, and calculated enrichment over the background SNP

distribution. As shown in Table 1, we saw the biggest

enrichment (2.11) of asthma-associated SNPs in CD4+ T cells,

and we also detected some enrichment of asthma SNPs in liver,

adipose nuclei and adipose stem cells. However, for cells from

skeletal muscle, breast myoepithelial or brain, asthma-associated

SNPs were depleted in enhancer regions. This depletion makes

intuitive sense, as these cell types are thought not to be major

contributors to asthma. As a control, we also calculated the

enrichment of asthma SNPs using different background distri-

bution, namely the SNP panels present on the most commonly

used typing arrays (Affymetrix 6.0, Illumina 550, Illumina 650

and Illumina 1MDuo). As was expected, we consistently found

the highest enrichment of asthma SNPs in enhancers of CD4+
T cells, and also determined enrichment in four tissues

considered significant in our original analysis (CD4+ T, liver,

adipose nuclei, and adipose derived mesenchymal stem cells),

while finding lesser enrichment in the remaining tissues (kidney,

brain, skeletal muscle and breast myoepitethelial cells, Table S4

in File S1).

Next, we performed a similar analysis using a second enhancer

marker, H3K27ac (Table 2). H3K27ac is known to distinguish

active enhancers from inactive/poised enhancer elements contain-

ing H3K4me1 alone [38]. Due to the more selective nature of this

marker, we expected to find a higher enrichment of disease

associated SNPs. However, we found that asthma- SNPs

enrichment in CD4+ T cell H3K27ac peaks was essentially the

same as in CD4+ T cell H3K4me1 peaks. (2.12 and 2.11

respectively). Additionally, almost all asthma SNPs that belong to

CD4+ T cell H3K27ac peaks were also located in CD4+ T cell

Figure 2. Asthma-associated SNPs and H3K4me1-enriched regions (enhancers) in the human Th2 cytokine locus of different cells
and tissue types. From top to bottom, using the UCSC genome browser, are displayed: the conserved DNAse hypersensitivity regions identified in
mouse T cells (HS regions), the gene track (genes), all the SNPs not associated with asthma, the SNPs associated with asthma, the species
conservation track, the H3K4me1 ChIP-seq track (green) for the different cell and tissue types (named on the left) underlined by corresponding peak
calling track (black boxes). For the blood CD4+ T cells, peak calling tracks from seven samples/cell-types are displayed. The red boxes show H3K4me1
peaks that are present only in CD4+ T cells (LCRO and HSV).
doi:10.1371/journal.pone.0054359.g002
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H3K4me1 peaks (230 out of 254). Notably, by focusing on

H3K27ac mark we not only fail to obtain higher enrichment of

disease associated SNPs, but we also lose about 40% of possible

functionally important SNPs. Overall, the analysis if H3K27ac

marks supports the findings we had for H3K4me1, and suggests

that an analysis of a single marker H3K4me1 might be sufficient to

obtain all information.

We asked whether the enrichment for asthma-associated

SNPs could be increased by excluding ubiquitous enhancers

found in many cell types/tissues. Figure 4 shows for each tissue

the number of asthma-associated SNPs located in cell type-

specific enhancers (black boxes show asthma-associated SNPs in

which an enhancer is present in that cell type whereas open

boxes show SNPs with no enhancer). Of the 884 SNPs that fell

into enhancers in one or more of the eight tissues, the by far

largest number (443) was found exclusively in a single tissue. A

much smaller number (39) was found in all eight tissues.

Figure 5 shows that the enrichment of asthma-associated SNPs

compared to background SNPs in enhancers of CD4+ T cells

increased moderately when enhancers found in many other cell

types were excluded.

The highest enrichment was determined by considering either

the SNPs unique to CD4+ T cells, or SNPs found in up to two

other cell types. By contrast, enhancers in skeletal muscle cells

were clearly depleted of asthma-associated SNPs, and such

depletion became increasingly pronounced when excluding

enhancers also found in other cell types. A similar, but less

pronounced, trend was found for cells from breast and brain

Figure 3. The location of enhancers is cell-type specific. The plot depicts pairwise comparisons of the location of enhancers in different
datasets using Matthew Correlation Coefficients (MCC). Black indicates a high correlation between enhancers in two cell types. The 37 studied
datasets form distinct clusters that correspond to different cell- or tissue types.
doi:10.1371/journal.pone.0054359.g003

Table 1. Asthma SNPs enrichment in enhancers of different tissues.

Cell type
asthma SNPs (out of
2,510)

non-asthma SNPs (out of 11.3
million) enrichment

p-value for chi-square
test

CD4+ T Cells 430 921,179 2.11 ,0.0001

Liver 282 970,466 1.31 ,0.0001

Adipose Nuclei 376 1,402,437 1.21 ,0.0001

Adipose Stem Cells 378 1,478,423 1.15 0.0028

Kidney 177 755,135 1.06 0.4386

Breast Myoepithelial Cells 182 978,214 0.84 0.0135

Skeletal Muscle 192 1,047,059 0.83 0.0058

Brain 202 1,190,305 0.77 ,0.0001

doi:10.1371/journal.pone.0054359.t001
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tissues (Table S5 in File S1), whose enhancers are depleted of

asthma-associated SNPs and become more depleted when

eliminating enhancers shared with other cell types. For the

remaining cell types (liver and adipose tissues), which showed an

enrichment of asthma SNPs in their enhancers, the enrichment

increased further when considering subsets of enhancers unique

to these cells.

To examine the putative functional mechanism of asthma SNPs

in enhancers, we were interested if might modulate in Transcrip-

tion Factor Binding Sites (TFBSs). Figure 6 shows the distribution

of asthma-associated SNPs in TFBSs determined by ChIP-seq

experiments. Strikingly, asthma-associated SNPs located in en-

hancers overlap with TFBSs four times more often than those not

located in enhancers. This finding supports our hypothesis that

non-coding disease-associated SNPs in enhancers are more likely

to be functional, and may do so by disrupting binding of

transcription factors.

In summary, our analysis demonstrates that focusing on

enhancers present in a few cell types further enriched asthma-

associated SNPs compared to background SNPs. Since by far the

greatest enrichment was observed at enhancers of CD4+ T cells

which are known to contribute to asthma, our approach is capable

of simultaneously prioritizing those SNPs that are more likely to

contribute to a given disease, and identifying the cell types

involved.

Prediction of Putative Functionally Important SNPs
Based on the reasoning that functional disease-associated non-

coding SNPs are likely to dysregulate gene expression by

disrupting function of key cis-regulatory elements (enhancers)

present in cell types that drive disease pathogenesis such as CD4+
T cells, we predict that SNPs present in such cell-type-specific

enhancer regions (marked as red dotted line, Figure 2) are more

likely to be biologically important than SNPs present in common

enhancer regions or in non-enhancer regions. Thus we speculate

that the non-coding SNPs (red boxes) present in the LCR-O and

HS-V enhancers of the Th2 cytokine locus (Figure 2), the 59 end of

the IL18R1 gene in the IL1RL1/IL18R1 locus (Figure 7), and

IKZF3 locus (Figure S1 in File S1) are likely to modulate the

function of the corresponding cell-type-specific enhancers in

CD4+ T cells. Therefore, this enhancer and the risk-SNPs it

bears are likely to the most relevant to asthma pathogenesis and

experimental studies that seek to validate function of disease-

associated SNPs should prioritize these.

Discussion

Unraveling how common genetic variations contribute to

disease development is complicated, as the effect of a genetic

variation may be limited to a certain developmental stage and/or

cell type, and may be dependent on the presence of additional

Table 2. Asthma SNPs enrichment in H3K27Ac of different tissues.

Cell type
asthma SNPs
(out of 2,510)

non-asthma SNPs (out of 11.3
million) enrichment p-value for chi-square test

CD4+ T Cells 254 539,868 2.12 ,0.0001

Adipose Nuclei (1 sample) 155 478,155 1.46 ,0.0001

Skeletal Muscle (1 sample) 128 499,663 1.16 0.0931

Brain (1 sample) 69 519,313 0.6 ,0.0001

doi:10.1371/journal.pone.0054359.t002

Figure 4. Distribution of enhancers in asthma-associated SNPs for different cell types. For each SNP and cell type, a black bar indicates
that an enhancer is overlapping the SNP in that cell type. Cell types are ordered by their enrichment for asthma-associated SNPs in enhancers from
breast tissue with low enrichment at the top to CD4+ T cells with high enrichment at the bottom. SNPs are ordered by how commonly they overlap
with enhancers in different cell types from those with enhancers present in all 8 cell types on the left to with enhancers in just 1 cell type on the right.
Asthma-associated SNPs with no enhancer in any cell type are left out from the graph.
doi:10.1371/journal.pone.0054359.g004
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environmental factors. Our analysis of asthma-associated SNPs

demonstrates how this problem can be tackled by the use of

epigenetic information, which identifies which genomic regions

are active in different cell types.

Previously, Pham and colleagues explored the association

between potential enhancers and disease-associated variants

extracted from a comprehensive GWAS catalogue [42]. Their

primary focus was on promoter-distal regions marked by

H3K4me1 and/or H3K27ac. Specifically, the authors have

validated a novel macrophage-specific enhancer signature encom-

passing ETS, CEBP, bZIP, EGR, E-Box and NFkB motifs by

ChIP-sequencing, which confirmed their associations with epige-

netic changes related to differentiation. Another, recent study by

Maurano et al. [43] examined the distribution of 5,654 noncoding

significant associations (5,134 SNPs) for 207 diseases and 447

quantitative traits. By combining with the deep genome-scale

maps of regulatory DNA marked by DNase I hypersensitive sites

(DHSs), their study has revealed a collective 40% enrichment of

GWAS SNPs in DHSs. For externally replicated non-coding

SNPs, 69.8% reside within a DHS. Of GWAS SNPs in DHSs,

93.2% (2,874) overlap a transcription factor recognition site.

Common variants associated with specific diseases or trait classes

were systematically enriched in the recognition sequences of

transcription factors governing physiological processes relevant to

the same classes. Our studies are in agreement with these findings,

and suggest that the combined analysis of GWAS and epigenetic

information predicts which SNPs are more likely to be functionally

contributing to disease and in which cell types these effects will be

Figure 5. Distribution of enhancers in asthma-associated SNPs for different cell types. Plotted is the enrichment of asthma-associated
SNPs compared to background SNPs in genomic regions in which there are CD4+ T enhancers, and anywhere from –0 to 7 additional cell types that
also have a peak in that region.
doi:10.1371/journal.pone.0054359.g005

Figure 6. Distribution of the asthma-associated SNPs in TFBSs. Two sets of asthma-associated SNPs are shown. Asthma-associated SNPs that
belong to any of H3K4me1 peaks called in this study are shown on the left. On the right, the distribution of asthma-associated SNPs that are located
in any of H3K4me1 peaks. The distribution of SNPs into overlapping and non-overlapping TFBSs was done using TFBSs by ChIP-seq dataset from the
ENCODE (Release 2) [55]. The TFBSs ChIP-seq data were obtained from UCSC Genome Browser [34,35].
doi:10.1371/journal.pone.0054359.g006

Predicting Cell Types and SNPs Relevant to Disease

PLOS ONE | www.plosone.org 6 January 2013 | Volume 8 | Issue 1 | e54359



noticeable. With the rapidly increasing amount of epigenetic data

for different human tissues in different developmental stages, such

analysis will become increasingly powerful.

Significant progress has been made with respect to the

ENCyclopedia Of DNA Elements (ENCODE) project after our

initial results were submitted for publication [44–45]. Multiple

types of ENCODE data can now be linked with disease-associated

SNPs, that could help pinpointing regulatory regions with

significant enrichment for functional SNPs [46]. Researchers have

employed ENCODE epigenetic data as a guide to unveil

regulatory regions in which genetic variants could affect a given

complex trait. For instance, Farrell et al. [47] applied ENCODE

data to uncover the function of a DNA fragment encompassing a 3-

bp deletion polymorphism, which is shown to have enhancer-like

activity. The 3-bp deletion polymorphism could possibly represent

the most significant functional motif accounting for HBS1L-MYB

intergenic polymorphism associated with the trait of interest, fetal

hemoglobin.

Our present analysis is meant more as a proof of concept than

an optimized, definitive study; there are multiple ways in which it

can be significantly improved. First, the amount of published

asthma-associated SNPs is continuously increasing, with a gain of

65% from January to October 2012, and additional SNPs will

continue to be discovered. Moreover, rather than relying on SNPs

that reach statistical significance in whole genome studies, our

approach would be even more powerful when GWAS data is re-

analyzed from scratch, limiting the SNPs considered to those in

active genomic regions of the cells of interest.

Second, the peak-calling algorithm used (MACS) is not optimal

for identifying histone modifications, but was designed for

identifying much better-defined transcription factor binding sites.

Preliminary analysis showed that we obtained a higher enrichment

with other algorithms, such as SICER [48] and ZINBA [49].

Moreover, rather than calling peaks, it may be preferable to

identify enhancers based on the profiles of H3K4me1 enrichment

together with other chromatin marks as implemented in

ChromaSig [50]. The more sophisticated analysis of active

genomic regions by the Kellis group, which combined multiple

chromatin markers in CD4+ T cells, gave a higher enrichment of

disease associated SNPs than our approach of relying solely on

H3K4me1 peaks to identify enhancers. We assume that this is

both because other cis-regulatory elements such as suppressors or

isolators may well have similar importance to enhancers, and

because even for enhancers, H3K4me1 in combination with other

markers may provide a more accurate identification. We expect

classifications such as those by the Kellis group to become

available for multiple cell types in the near future. Also, the

chromatin state classifications could be further tailored to our type

of analysis by focusing on those states that show the highest

correlation with disease-associated SNPs, and identifying the

optimal set of chromatin marks that identifies these regions.

Finally, we want to reiterate that asthma-associated SNPs are

significantly enriched not only in enhancers and promoters, but

also in coding and untranslated regions. The transcription of these

regions could further depend on both genetic and epigenetic

factors.

Figure 7. Asthma-associated SNPs and H3K4me1 (enhancer) enriched regions in the human IL-33R locus of different cell/tissue
types. From top to bottom, using the UCSC genome browser, are displayed: the gene track (genes), all the SNPs not associated with asthma, the
SNPs associated with asthma (red are GWAS-identified SNPs, blue are SNPs in linkage disequilibrium), H3K4me1 ChIP-seq track (green) for different
cell/tissue types (named on the left) underlined by the corresponding peak-calling track (black boxes). For the blood CD4+ T cells, peak calling tracks
from seven samples/cell-types are displayed. The red box shows an H3K4me1 peak that is present only in CD4+ T cells.
doi:10.1371/journal.pone.0054359.g007
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In conclusion, we have demonstrated a novel approach to

GWAS data analysis that integrates epigenomic information to

identify SNPs and cell types contributing to disease. We expect our

approach to be broadly applicable, and to further enhance the

value of the accumulating information from GWAS of disease.

Future work needs to experimentally confirm the functional role of

the identified SNPs.

Materials and Methods

SNP Datasets
To create a collection of asthma related SNPs, we had all

asthma-associated variants (SNPs) downloaded from GWAS

Integrator [33] in October 2012. To ensure the completeness of

this collection, we then calculated the linked (i.e., in linkage

disequilibrium) SNPs for each asthma-associated SNP using

HaploReg tool with default parameters [30]. The total number

of asthma-associated SNPs in the combined set was 2,510. As

a control dataset, we used a common SNPs 135 (uniquely mapped

variants that appear in at least 1% of the population) dataset, and

subtracted our asthma SNPs collection. Common SNPs 135 were

obtained from UCSC Genome Browser [34]. A total number of

non-asthma SNPs was determined as 11,327,391. For calculating

asthma SNPs enrichment per GWA SNP panel, the SNPs arrays

for Affymetrix 6.0, Illumina 550, Illumina 650 and Illumina

1MDuo were downloaded from UCSC Genome Browser [34].

SNP Enrichment Calculation
To estimate distribution of asthma SNPs in different chromatin

states we used chromatin state prediction for CD4+ T-cells by

Ernst and Kellis [36]. The predictions were done for hg18 genome

assembly. To convert coordinates of our asthma and non-asthma

SNPs from hg19 to hg18 assembly we used the lift genome

annotations tools from the UCSC genome browser [http://

genome.ucsc.edu/cgi-bin/hgLiftOver]. Some non-asthma SNPs

where un-mappable by this tool, and discarded from that

calculation. For a given chromatin state, we determined the

fraction of asthma-associated SNPs located in the corresponding

genomic region, and compared it to the fraction of background

SNPs to calculate enrichments. Significance was assessed using the

chi-square test.

Identification of H3K4me1 and H3K27Ac Peaks
(enhancers)
ChIP-seq H3K4me1 data together with the input data for 37

datasets were obtained from Human Epigenome Atlas, release 5.

[http://www.genboree.org/epigenomeatlas/

edaccGridViewerPublic.rhtml].

The samples analyzed came from the following cell types. CD4+
T cells: three samples of CD4+ memory T cells, two samples of

CD4+ naive T cells, one sample of CD4+ CD25- IL17- T cells,

CD4+ CD25- T cells, CD4+ CD25- IL17+ Th17 cells, CD4+
CD25+ CD127- Treg cells; brain: brain germinal cells, brain mid

frontal and inferior temporal lobe, two samples of brain

hippocampus middle, two samples of brain anterior caudate, two

samples of brain substantia nigra and brain cingulate gyrus; three

samples of adipose derived mesenchymal (ADM) stem cells; three

samples of liver cells; two samples of kidney cells; five samples of

adipose nuclei; two samples of breast myoepithelial cells and three

samples of skeletal muscle cells. Total number of all analyzed

samples is equal to 37; the number of analyzed cell types is equal

to 19 because for some cell types data for more than one donor

was available. These 19 cell types belonged to eight different

tissues.

For each sample we calculated H3K4me1 enriched regions by

enrichment of treatment reads under a local background model

estimated from control reads by employing the statistical software

MACS (v.1.4.1, default parameter settings) [51]. Enriched regions

with a p-value #1e-5 were defined as enhancers.

All available ChIP-seq H3K27ac data for the samples that

contained H3K4me1 datasets were obtained from Human

Epigenome Atlas, release 5. Thus, we have analyzed H3K27ac

marks for the same CD4+ T cells (9 samples), one sample of brain

anterior caudate, one sample of adipose nuclei and one sample of

skeletal muscle cells. The twelve cell types mentioned above

belong to four different tissues and for each sample we have

calculated H3K27ac peaks using exactly the same parameters as

we used for H3K4me1 peak calling.

Comparing H3K4me1 Enhancers between Datasets
In order to compare the enhancers in different datasets we

calculated pair-wise Matthews correlation coefficients (MCC),

which quantify the overlap of enhancers on a per nucleotide basis.

For each pair of samples (datasets) the MCC was calculated using

the following formula:

MCC~
TP|TN{FP|FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPzFPð Þ| TPzFNð Þ| TNzFPð Þ| TNzFNð Þ

p

where true positive (TP) was a number of nucleotides present in

common enhancers, false positive (FP) and false negative (FN)

number of nucleotides in enhancers present in one dataset but not

in the other and vice versa, and, finally true negative (TN) was the

number of nucleotides in the genome that were not called as

enhancers in either dataset. To calculate overlapping and

intersecting genome coordinates, we utilized the BEDTools

utilities package [52]. The MCC-heatmap was generated by

Cluster 3.0 [53] and visualized by TreeView [54].

Transcription Factor Binding Sites Dataset
To calculate distribution of asthma SNPs within and without

Transcription Factor Binding Sites (TFBSs) we have used TFBSs

by ChIP-seq data from the ENCODE (Release 2) [55]. The

TFBSs ChIP-seq data were obtained from UCSC Genome

Browser [34].

Supporting Information

Figure S1 in File S1 Asthma-associated SNPs and
H3K4me1 (enhancer) enriched regions in the human
IKZF3 locus of different cell/tissue types. From top to

bottom, using the UCSC genome browser, are displayed: the gene

track (genes), all the SNPs not associated with asthma, the SNPs

associated with asthma (red are GWAS-identified SNPs, blue are

SNPs in linkage disequilibrium), H3K4me1 ChIP-seq track (green)

for different cell/tissue types (named on the left) underlined by the

corresponding peak-calling track (black boxes). For the blood

CD4+ T cells, peak calling tracks from seven samples/cell-types

are displayed. The red box shows an H3K4me1 peak that is

present only in CD4+ T cells.

(PDF)
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