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Abstract

Ranaviruses have caused die-offs of amphibians across the globe. In North America, these pathogens cause more amphibian
mortality events than any other pathogen. Field observations suggest that ranavirus epizootics in amphibian communities
are common during metamorphosis, presumably due to changes in immune function. However, few controlled studies have
compared the relative susceptibility of amphibians to ranaviruses across life stages. Our objectives were to measure
differences in mortality and infection prevalence following exposure to ranavirus at four developmental stages and
determine whether the differences were consistent among seven anuran species. Based on previous studies, we
hypothesized that susceptibility to ranavirus would be greatest at metamorphosis. Our results did not support this
hypothesis, as four of the species were most susceptible to ranavirus during the larval or hatchling stages. The embryo stage
had the lowest susceptibility among species probably due to the protective membranous layers of the egg. Our results
indicate that generalizations should be made cautiously about patterns of susceptibility to ranaviruses among amphibian
developmental stages and species. Further, if early developmental stages of amphibians are susceptible to ranaviruses, the
impact of ranavirus epizootic events may be greater than realized due to the greater difficulty of detecting morbid
hatchlings and larvae compared to metamorphs.
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Introduction

Disease epidemics are driven by the complex interactions

among the pathogen, host susceptibility, and the environment.

Recent work in disease ecology seeks to understand mechanisms of

pathogen infection during development that lead to developmental

abnormalities and mortality events [1]. There is increasing

awareness that there are critical windows during development in

which hosts are particularly sensitive to disease-causing agents

leading to mortality, impairment, or malformation of the individual

[1,2]. In humans, for example, differences in susceptibility to

infection during development are demonstrated by the early

childhood malformations and mortality associated with German

measles (Rubella Virus; [3]). Such developmental perturbations can

occur from exposure to toxins, parasites, and nutrient deficiencies

[1,2,4]. Thus, the connection between windows of developmental

sensitivity and susceptibility to pathogens is an important mecha-

nism in the emergence of wildlife diseases.

The role of pathogens in the recent declines of amphibians

across the globe has received considerable attention [5]. While

amphibians are hosts for a diversity of pathogens [6], many die-off

events have been associated with infection by ranaviruses [7,8].

Ranaviruses have been reported on five continents and are

associated with nearly 50% of the reported amphibian mortality

events in the United States [7,9]. Although ranaviruses have been

well studied and characterized at the molecular level [10,11],

research has only recently begun to examine the mechanisms

associated with ranavirus emergence in wild populations [12].

In 96% of reported ranavirus die-off events, recently metamor-

phosed individuals experienced the greatest mortality [7,9]. These

field observations have led to the hypothesis that ranavirus epizootics

in the wild occur most often as amphibians undergo metamorphosis,

which is known to be a period of natural immune suppression [12].

Previous studies suggest that there are varying degrees of immune

system development across different amphibian life stages. Du

Pasquier et al. [13] found that the production of thymic lymphocytes

increases during larval development, drops substantially at meta-

morphosis, and peaks in adult Xenopus laevis. Decreases in immune

function during metamorphosis are probably related to endogenous

production of glucocorticoids associated with restructuring organ

systems for postmetamorphic life [14]. Thus, the immunological

changes that occur during anuran development should affect host-

pathogen interactions [14,15]. Unfortunately, experimental studies

comparing the susceptibility of amphibians to pathogens at different

developmental stages are rare [15,16]. Thus, the first objective of our

research was to test for differences in susceptibility (as indexed by
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mortality and infection prevalence) to ranavirus among pre-

terrestrial developmental stages in amphibians.

Traditionally, disease ecology has focused on pathogens that

attack a single host, which has limited our ecological understanding

of disease dynamics driven by pathogens that infect multiple host

species [17–19]. There is growing evidence that amphibian species

differ in their susceptibility to pathogens [20–23]. While not

surprising, such variation in species susceptibility underscores the

need for comprehensive studies that examine multiple host species

to identify generalities that cannot be obtained from single-species

studies. To date, very few studies have examined the relative

susceptibility of amphibian larvae to ranaviruses [22,24,25,26].

Moreover, these studies tested only one developmental stage, thus

their results may be limited. The second objective of our study was

to identify trends in the relative susceptibility to ranavirus for seven

North American anuran species.

Methods

Ethics statement
All animal husbandry and euthanasia procedures followed an

approved University of Tennessee IACUC protocol (#1755).

Animal collection and maintenance
We used seven anuran species for our study: Lithobates clamitans,

L. pipiens, L. sylvaticus, Pseudacris feriarum, Hyla chrysoscelis, Scaphiopus

holbrookii, and Anaxyrus americanus, which are widely distributed in

eastern North America [27]. Between February–July 2009, we

collected 7–20 egg masses for each species from single populations

(Table 1). Egg masses were collected within 48 hours of deposition,

rinsed with sterile water, and transported in 19-L buckets filled with

aged tap water to the University of Tennessee Joe Johnson Animal

Research and Teaching Unit (JARTU). Egg masses were placed in

covered (60% shade cloth) 300-L wading outdoor pools the day

after collection to develop. After hatching, tadpoles were main-

tained in these pools and fed rabbit chow (Purina, St. Louis,

Missouri) and ground TetraMinH (Tetra, Blacksburg, Virginia) ad

libitum until used in the experiments. The experiments began as

individuals reached the appropriate developmental stages (see

below). Prior to each experimental trial, a random sample of 10

tadpoles was euthanized and frozen at 280uC for confirmation that

they were negative for ranavirus using real-time quantitative

polymerase chain reaction (qPCR, see Molecular Analyses section);

all pre-experiment individuals tested negative.

Virus isolate
A single isolate of Ranavirus was used for all experiments. The

University of Georgia Veterinary Diagnostic and Investigational

Laboratory (VDIL) extracted this isolate from morbid L.

catesbeianus juveniles. Preliminary molecular analyses suggest that

the isolate is similar to the ranavirus frog virus 3 (GenBank accession

no. EF101698, [28]), and it has been shown to be virulent in

anuran larvae [22]. Titrated stock solutions of the isolate were sent

overnight by the VDIL to the University of Tennessee for the

experiments.

Experimental protocol
For each species, we conducted a 14-d experimental trial for

each of four developmental stages: 1) embryo (stage 11), 2)

hatchling (stage 21), 3) larval (stage 30), and 4) pro-metamorphosis

(stage 41, [29]). For our experiments, embryos were contained in

eggs. Experimental units for all trials were 1-L tubs filled with

0.5 L of aged tap water. The tubs were placed at a common shelf

height in a completely randomized design at the JARTU

laboratory facility. We randomly assigned a single individual to

each tub. Treatments included a no-virus control and a virus

exposure of 103 plaque-forming units (PFUs) mL21 [22]. Both

treatments were replicated 20 times for a total of 40 experimental

units per trial.

We inoculated the water (i.e., bath exposure) with 29.5 mL of

Eagle’s Minimal Essential Media (MEM) for the no-virus control

tubs and 29.5 mL of MEM containing the virus for the virus tubs.

The resulting virus concentration was 103 PFUs mL21, which is

within the range of doses used in other studies (102–106 PFUs mL21;

[30–32]) and ecologically relevant [24,33]. Given that some species

in our study developed rapidly (e.g., S. holbrookii), we used a 3-day

exposure in an attempt to target the intended developmental stage

rather than a subsequent stage. After three days, individuals were

removed from the containers, rinsed with sterile water, and placed

into a new container with 500-mL of fresh aged tap water. For the

remainder of the experiment, water was changed every three days to

maintain water quality.

After each water change, individuals in the larval and

metamorph experiments were fed ground TetraMinH at a daily

rate of 8% body mass [34]. Prior to the water change, we weighed

a group of 10 non-experimental individuals housed under identical

conditions to calculate food rations based on the average mass.

Individuals in the embryo and hatchling experiments were fed if

they reached stage 25 prior to the end of the experiment, which is

when yolk reserves are exhausted and jaw development is

complete in most species [35]. After the initial exposure and

water change, platforms were placed in the metamorph experi-

mental units to allow individuals to crawl out of the water to

complete metamorphosis. Once individuals in the metamorph

stage experiments began tail resorption, feedings were terminated

and water depth was slowly reduced until a minimal amount of

Table 1. Quantity of egg masses and collection sites in Tennessee and Pennsylvania, USA.

Scientific Name State County Location Lat – Long UTM Quantity

Anaxyrus americanus PA Crawford Pymatuning State Park 41u349100N, 80u279200W 17 545392E 4602117N 10

Hyla chrysoscelis TN Knox Private landowner 36u019300N, 83u479300W 17 248426E 3990338N 9

Lithobates clamitans TN Union Chuck Swan WMA 36u219290N, 83u549490W 17 238539E 4027616N 7

Lithobates pipiens PA Crawford Pymatuning State Park 41u419300N, 80u309200W 17 541146E 4615661N 10

Lithobates sylvaticus TN Knox Royal Blue WMA 36u029100N, 83u519190W 17 242745E 3991727N 9

Pseudacris feriarum TN Knox Seven Islands Wildlife Refuge 35u569590N, 83u419410W 17 256940E 3981756N 20

Scaphiopus holbrookii TN Union Chuck Swan WMA 36u219290N, 83u549490W 17 238539E 4027616N 20

doi:10.1371/journal.pone.0022307.t001
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water remained to provide moisture for the individual and

TetraMinH was no longer added. Following tail resorption,

individuals were fed 10 seed weevils (Callosobruchus sp.) every three

days.

The experimental units were monitored three times daily for

mortality. Dead larvae and metamorphs were necropsied using

sterilized forceps and scissors. Because the kidneys and liver are

known sites of ranavirus infection [12], we removed sections of

these organs from each individual, placed the pooled sample in a

1.5-mL microcentrifuge tube, and froze at 280uC for molecular

testing. Dead embryos and hatchlings were rinsed with sterile

water and frozen at 280uC, because their small size prevented

consistent necropsies. After 14 days, all live individuals were

euthanized in benzocaine hydrochloride (1 g L21) and the

identical necropsy procedures followed. We set 14 days as the

experiment duration because previous research has shown this is

sufficient duration to observe disease from ranavirus infection with

a 3-day water bath exposure [22].

Diagnostic testing
For ranavirus testing, genomic DNA (gDNA) was extracted

from a homogenate of the kidney and liver for tadpoles and

metamorphs and from entire embryos (including vitelline

membrane and mucoidal capsules) and hatchlings using a DNeasy

Blood and Tissue Kit (Qiagen Inc., Valencia, CA). We used the

QubitTM fluorometer and the Quant-iTTM dsDNA BR Assay Kit

to quantify the concentration of genomic DNA in each sample

(Invitrogen Corp., Carlsbad, CA, USA) [36]. The qPCR amplified

a 70-bp region of the ranavirus major capsid protein. For each

sample, we combined 12.5 mL of TaqMan Universal PCR Master

Mix (Applied Biosystems, Foster City, California, USA), 1.5 mL of

each primer (rtMCP-F [59 – ACA CCA CCG CCC AAA AGT

AC – 39] and rtMCP-R [59 – CCG TTC ATG ATG CGG ATA

ATG – 39]), and 1.5 mL of rtMCP-probe (59-CCT CAT CGT

TCT GGC CAT CAA CCA-39). We added 0.25 mg of gDNA

from each sample to standardize the total amount of gDNA added

to the tubes. Because the volume containing this amount of gDNA

varied depending on the gDNA concentration of the sample, we

used the values from the fluorometer to calculate how much of the

sample to add. We then added DNA grade water to the sample to

bring the total volume to 30 mL. A SmartCyclerH (Cepheid,

Sunnyvale, California) thermal cycler was used for the qPCR. In

each run of the qPCR, we included 4 controls, which were a

ranavirus-negative tadpole sample, a negative DNA grade water

sample, a ranavirus-positive tadpole sample, and a cultured virus

sample. For each sample, we recorded the cycle number at which

the sample crossed the fluorescent threshold level, which was set at

30 (i.e., CT value). Those samples that crossed the threshold level

before CT = 30 were declared infected.

Statistical analysis
The response variables for each experiment included final

mortality and infection prevalence calculated from binary data.

Differences in final mortality and infection prevalence were tested

among species and developmental stages using logistic regression

analysis [37,38]. We did not include the control treatment in the

analysis because control mortality was low resulting in low or zero

counts for prevalence estimates of several developmental stages,

which could have biased the logistic regression results [37,38].

Instead, median control mortality among developmental stages

was provided for each species. If the Wald’s chi-square test

associated with the logistic regression analysis was significant, we

used binomial tests that were Bonferroni corrected (a4number of

post-hoc comparisons) to test for pairwise differences between

proportions [38]. We estimated the likelihood of infection and

mortality for each treatment in comparison with the treatment

having the lowest rate by calculating odds-ratio statistics [37]. If

species and developmental stage effects interacted, we separated

the analysis by species and performed a chi-square test for

differences in mortality and infection prevalence among stages. All

tests were performed at a= 0.05 using PROC LOGISTIC in the

SASH system [37]. Test statistics and P-values were provided for

evidence of differences in infection prevalence and mortality

among effect levels. Test statistics with inequalities included results

from more than one effect. Lastly, we regressed infection

prevalence against mortality using linear regression in PROC

GLM. Paired estimates for infection and mortality were the

response variables and included in the analysis only if both

proportions were not zero.

Results

Across all species, final mortality and infection prevalence for

the hatchling, larval and metamorph stages were significantly

greater than the embryo stage (x2
3.43.3, P,0.001). In the

hatchling, larval, and metamorph stages, the odds of mortality

were 3X, 4X, and 5X greater, respectively, when exposed to

ranavirus compared to the embryo stage. Across all developmental

stages, mortality and infection were greatest for L. sylvaticus and S.

holbrookii, and were lowest for P. feriarum and A. americanus

(x2
6.40.67, P,0.001; Figure 1). Intermediate mortality and

infection occurred for L. clamitans, L. pipiens, and H. chrysoscelis

(Figure 1). Ranavirus exposed L. sylvaticus and S. holbrookii had

150X and 119X greater odds of mortality, respectively, than P.

feriarum. Among species and stages, there was a strong positive

relationship (R2 = 0.79) between mortality and infection preva-

lence (F1,20 = 74.52, P,0.001).

Species and developmental stage effects interacted for final

mortality and infection prevalence (x2
18 = 128.9, P,0.001); thus,

logistic regression analyses were performed separately for each

species. For all species except L. sylvaticus, mortality and infection

prevalence differed among developmental stages (x2
3.12.6,

P,0.006; Figure 1). For L. sylvaticus, infection prevalence was

high (.82%) and did not differ among stages (x2
3 = 6.3, P = 0.09).

Mortality and infection prevalence were greatest during the

metamorph stage for all Lithobates species. Mortality also was

greatest during the metamorph stage for A. americanus, but these

individuals were not infected with ranavirus. Mortality and

infection prevalence tended to be greatest during the larval stage

for the two hylid species: P. feriarum and H. chrysoscelis. The greatest

infection and mortality for S. holbrookii occurred during the

embryo, hatchling and larval stages, and were lowest during

metamorphosis. Median control mortality was low for all species

(#10%), except for P. feriarum (22.5%), thus the results for this

species should be interpreted cautiously. No control tadpoles tested

positive for ranavirus infection.

Discussion

Embryos that were contained within eggs were the least

susceptible stage across species when exposed to ranavirus in a

water bath. Previous research has shown that direct injection of

ranavirus into embryos causes 97–100% mortality in L. pipiens

[39]. Thus, the vitelline membrane encasing the developing

embryo or the mucopolysaccharide/mucoprotein capsules coating

the surface of the egg likely affords protection against ranavirus

infection. The mechanisms that contribute to this protection are

unknown but may include structural barriers [40,41] or anti-viral

properties of the egg capsules or membrane [42]. Infection
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occurred in the embryo experiments for S. holbrookii and L.

sylvaticus; however, embryos of these species hatched prior to the

end of the 3-day virus challenge, hence exposing the hatchling to

virions. No infection occurred during the embryo experiments in

species that hatched after the virus challenge and first water

change. Thus, it appears that eggs protect their developing

embryos from ranavirus infection for the species we tested.

We documented high mortality during metamorphosis for all

species of Lithobates tested, which is frequently the stage documented

during anuran die-offs in the wild [43,44]. Cullen et al. [25] and

Cullen and Owens [26] reported high susceptibility of several

species of recently metamorphosed anurans compared to larvae or

adults when exposed to ranavirus. Warne et al. [45] also reported

higher mortality of ranavirus-exposed L. sylvaticus tadpoles during

metamorphosis. High infection and mortality during metamorpho-

sis may be associated with decreased immune function from

endogenous production of corticosteroids and lymphocyte apoptosis

[14,45,46,47], which has been demonstrated in X. laevis [48,49].

Figure 1. Percent mortality and infection among embryo, hatchling, larval, and metamorphosis developmental stages for Lithobates
sylvaticus, L. pipiens, L. clamitans, Anaxyrus americanus, Pseudacris feriarum, Hyla chrysoscelis, and Scaphiopus holbrookii. Similar shaded bars
with unlike letters are different (P,0.006) by logistic regression analysis; n = 20 per developmental stage for each species.
doi:10.1371/journal.pone.0022307.g001
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All other species that we tested had low mortality and infection

prevalence during metamorphosis. The classic model of amphib-

ian immune function during development, based on X. laevis,

suggests that immune function increases through development

then drops during metamorphosis [47]. Down regulation of the

immune system during metamorphosis may prevent destruction of

new cell types that form for terrestrial life or may be a consequence

of reduced physiological resources [14,45]. According to the X.

laevis model of immune function, mortality associated with

ranavirus infection should have been lowest during the larval

(i.e., tadpole) stages. Lowest mortality during the larval stage did

not occur for any of the anuran species that we tested, which may

indicate that immune responses of North American anurans differ

from those of X. laevis. The fully aquatic life cycle of X. laevis may

result in unique immunological adaptations that are not shared

with amphibian species that live terrestrially after metamorphosis.

Pallister et al. [50] suggested that differences in larval development

might contribute to differences in immune function. Indeed,

comparative immunological studies between X. laevis and other

anuran species are needed.

The greatest mortality and infection prevalence occurred during

the hatchling stage for S. holbrookii, which was a different trend

among the species that we tested. Infection and mortality

decreased during the larval and metamorph stages, suggesting

that immune function increased through development for this

species. Compromised immunity during early development may

be a consequence of physiological trade-offs associated with rapid

development in this species. Spadefoots are among the fastest

developing anuran species due to their association with ephemeral

breeding sites [51,52]. Zettergren [53] reported cells synthesizing

immunoglobulins (Ig) during embryogenesis and B lymphocytes

circulating in pre-metamorphic L. pipiens at the onset of feeding.

Leukocyte mobilization and anti-FV3 IgY antibody production

have been reported as immune responses to ranavirus infection in

X. laevis [54,55]. We hypothesize that development of these

components of the amphibian immune system is delayed in S.

holbrookii due to rapid growth during the embryo and hatchling

stages.

Among species, L. sylvaticus was the most susceptible, with

infection and mortality exceeding 80% in the hatchling, larval,

and metamorph stages. These results support field observations for

this species across its geographic range [21,44,56,57]. To date, no

studies have explored the immunological mechanisms underlying

the high susceptibility of L. sylvaticus to ranavirus compared to

other species, although see Warne et al. [45]. Cotter et al. [58]

reported that poor lymphocyte production in the spleen was a

mechanism driving high susceptibility of larval Ambystoma mex-

icanum to ranavirus. Significant increases in total leukocytes and

natural killer cells are detected after 1 and 3 days post-infection

with ranavirus, respectively, in X. laevis [55]. Pre-metamorphic L.

catesbeianus and X. laevis produce antibodies [59,60], and therefore

may resist ranavirus infection [61]. Thus, minimal innate and

adaptive immune response to ranavirus infection may be

mechanisms contributing to high infection and mortality rates in

ranavirus-exposed L. sylvaticus.

Our study is the first to report mortality of anuran hatchlings by

ranavirus. The possibility for hatchling mortality from ranaviruses

raises a significant conservation concern considering that detecting

die-offs of hatchlings is extremely difficult in the wild. Differential

susceptibility among developmental stages also indicates that

studies that focus on one stage [22,24] may provide narrow insight

into species susceptibility. If testing only one stage is feasible, we

recommend using the larval stage because mortality and infection

prevalence were either greater or similar to hatchling and

metamorph stages for most species.

More research is needed investigating the role of immune

function in regulating differences in susceptibility to ranavirus

among anuran species. To date, few studies have quantified

immune responses to ranavirus in pre-metamorphic amphibians

[15,58]. Identifying commonalities among immunogenetic, evolu-

tionary and life history traits of susceptible species will improve our

understanding of host-pathogen interactions [62], and help

facilitate identification of amphibian communities at greatest risk

of ranavirus epizootics. To this end, we recommend that

additional amphibian species and ranavirus strains be tested for

relative susceptibility. Various multivariate techniques exist (e.g.,

canonical correspondence analysis, [63]) that can elucidate

patterns between host characteristics and indices of susceptibility.

We also encourage studies that challenge amphibian species with

ranavirus at each stage of development and follow individual

survival through metamorphosis. This knowledge is fundamental

to developing stage-structured disease models that predict

epizootic outcomes [64].
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