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Abstract

Background: Visceral Leishmaniasis is a serious human disease transmitted, in the New World, by Lutzomyia longipalpis sand
flies. Natural resistance to Leishmania transmission in residents of endemic areas has been attributed to the acquisition of
immunity to sand fly salivary proteins. One theoretical way to accelerate the acquisition of this immunity is to increase the
density of antigen-presenting cells at the sand fly bite site. Here we describe a novel tissue platform that can be used for this
purpose.

Methodology/Principal Findings: BluePort is a well-vascularized and macrophage-rich compartment induced in the
subcutaneous tissue of mice via injection of agarose beads covered with Cibacron blue. We describe the sequence of
inflammatory events leading to its formation and how it can be used to study the dermal response to the bite of L.
longipalpis sand flies. Results presented indicate that a shift in the inflammatory response, from neutrophilic to eosinophilic,
is the main histopathological feature associated with the immunity acquired through repeated exposure to the bite of sand
flies, and that the BluePort tissue compartment could be used to accelerate this process. In addition, changes observed
inside the BluePort parenchyma indicate that it could be used to study complex immunobiological processes, and to
develop ectopic secondary lymphoid structures.

Conclusions/Significance: Understanding the characteristics of the dermal response to the bite of sand flies is a critical
element of strategies to control leishmaniasis using vaccines that target salivary proteins. Finding that dermal eosinophilia is
such a prominent component of the anti-salivary immunity induced by repeated exposure to sand fly bites raises one
important consideration: how to avoid the immunological conflict derived from a protective Th2-driven immunity directed
to sand fly saliva with a protective Th1-driven immunity directed to the parasite. The BluePort platform is an ideal tool to
address experimentally this conundrum.
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Introduction

Leishmaniasis is a group of parasitic diseases transmitted to

humans and animals through the bite of phlebotomine sand flies

infected with parasitic protozoans of the genus Leishmania [1,2,3].

The wide variety of clinical presentations of these diseases

[4,5,6,7,8] is a reflection of the numerous host-, parasite- and

vector-derived factors playing a role in their pathogenesis

[9,10,11,12,13,14,15,16,17,18,19]. Among these factors, the

infection-potentiating effect of sand fly salivary molecules

[17,18,19,20] has generated a great deal of excitement in the

research community because: 1) it provides clues about immuno-

biological determinants of resistance or susceptibility to Leishmania

infection and 2) it provides additional targets for vaccines to

prevent leishmaniasis. Sand fly saliva plays an important role in

the transmission of Leishmania parasites, facilitating their survival

and dissemination in tissues of the vertebrate hosts by promoting a

Th2-skewed immune response at the bite site [21,22,23]. Vaccines

directed to sand fly saliva are expected to induce protective

immunity by neutralizing the biological activity of salivary

immuno-modulators and by generating a tissue microenvironment

that promotes the destruction of parasites delivered, along with

saliva, while sand flies take a blood meal [17,24,25]. Epidemio-

logical evidence linking resistance to Leishmania infection in adults

living in endemic areas with production of antibodies to sand fly

salivary antigens, indicates that protective anti-salivary immunity

can be acquired through chronic exposure to the bite of sand flies

[26,27]. Given that arthropod saliva is a cocktail of molecules

selected through evolution to optimize access to the blood of

vertebrates and minimize immune reactions [17,20,28,29], it is not
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surprising that anti-salivary immunity takes so long to develop

under natural conditions. The fate of arthropod-salivary proteins

delivered at the bite site is an additional factor that might

determine the speed at which the vertebrate host acquires

protective anti-salivary immunity. This is because neutrophils,

one of the major components of the wound resolution machinery

of vertebrates [30], can degrade arthropod salivary proteins before

they are taken up by professional antigen-presenting cells.

Histopathological analysis of sand fly bite sites indicates that

neutrophils are indeed a dominant component of the early

inflammatory response to sand fly bites in naı̈ve animals [31,32].

Theoretically, the acquisition of natural immunity to sand fly

saliva would be accelerated if changes introduced into vertebrate

tissues decrease the influx of neutrophils to the bite site or,

alternatively, improve access of professional antigen-presenting

cells to salivary proteins before they are degraded by neutrophil-

derived enzymes. The former can be induced with drugs or anti-

neutrophil antibodies [33,34], but the associated systemic

vulnerability to bacterial infections is a major drawback of this

approach. The latter, on the other hand, can be limited to small

skin areas to minimize unintended adverse side effects. During

experimental evaluation of mechanisms to increase the density of

professional antigen-presenting cells in the subcutaneous tissue of

mice, we found that a well-vascularized and stable tissue

compartment enriched in macrophages can be induced by the

injection of agarose beads covered with the triazine dye Cibacron

Blue. Here we describe the characteristics of this tissue

compartment (BluePort), the sequence of inflammatory events

leading to its formation, and how it can be used to study the

dermal response to the bite of Lutzomyia longipalpis sand flies.

Results

Induction of BluePort formation
Cibacron blue-agarose (CBa) beads injected in the subcutaneous

tissue of mice remain in place without evidence of degradation or

tissue rejection for up to 4 months. Upon inspection at the

microscopic level, a typical acute inflammatory reaction developed

at the site of injection with edema, vasodilatation of dermal blood

vessels, marginalization and migration of neutrophils into the

space between the beads. This was initially detected 6 hours post-

injection (Figure 1A and B) and continued until the space between

the beads was found replete with neutrophils 24 hours post-

injection (Figure 1C and D). A basophilic amorphous material,

likely to represent neutrophil extracellular traps (NETs) [35], was

found between the beads 48 hours post-injection (Figure 1E). The

influx of neutrophils waned afterwards and a mixed infiltrate of

neutrophils, eosinophils and mononuclear cells was found at the

interface between the beads and mouse tissues 96 hours post-

injection (Figures 1F and G). By the second week following the

injection of CBa-beads only a few neutrophils were found

infiltrating a space occupied mostly by mononuclear cells

(Figures 1H). In samples taken 30 and 60 days post-injection, it

was found that the CBa-beads were integrated into a well-

vascularized tissue compartment enriched in macrophages and

surrounded by a thin fibrous capsule (Figure 2A–D). The beads

did not appear damaged and only a few foreign-body multinu-

cleated giant cells were found (Figure 2E), an indication that the

beads were no longer generating danger signals to the innate

immune system. In support of this interpretation was the finding of

collagen-rich extracellular matrix deposition, a terminal event of

the wound healing and tissue regeneration process [36], in

scattered areas within the bead-generated compartment 90 and

120 days post-injection (Figure 2F–H). Mast cells, eosinophils and

rarely lymphocytes, were found in some of these collagen-rich

areas (Figure 2F–H). Immuno-histochemical analysis confirms the

phenotype of the two most abundant cells in the BluePort

parenchyma, endothelial cells (CD31+) (Figure 3A and B) and

macrophages (F4/80+) (Figure 3C and D).

BluePort-associated skin to study tissue response to sand
fly bites in naı̈ve and immune mice

The blue nodule (BluePort) formed in the subcutaneous tissue of

mice one month after injection of CBa-beads rests under a normal

looking skin (Figure 4A and B) that, after shaving, can be used as

an access window for sand flies to obtain a blood meal. Adult L.

longipalpis female sand flies successfully blood-feed on this skin area,

causing one of the well known clinical features of sand fly bites,

intense erythema that last several hours [27] (Figure 4C). This

erythema is associated, at the microscopic level, with a strong

Figure 1. Acute inflammatory response to CBa-beads. Histopathological changes observed 6 hours (A and B), 24 hours (C and D), 48 hours (E),
96 hours (F and G) and 15 days (H) after injection of CBa-beads in the subcutaneous tissue of BALB/c mice. Arrows indicate marginalized neutrophils
in (A), neutrophils in the space between CBa-beads in (B, C and D), neutrophil extracellular traps (NETs) in (E), and mixed cellular infiltrate in (F-H).
Hematoxylin-eosin stain. Magnification: 200x (B, C and E), 400x (A and H) and 1000x (D and G).
doi:10.1371/journal.pone.0013546.g001

BluePort and Sand Fly Bite
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vasodilatory response of dermal blood vessels (Figure 4D). A

concomitant vasodilatory response of vessels irrigating the Blue-

Port parenchyma indicates that these new vessels respond to

vasodilatory signals generated at the bite site, acting as a functional

unit with the adjacent dermal vessels (Figure 4D). In addition to

the vascular response, edema, marginalization and infiltration of

the dermis by neutrophils were the main characteristics of the

tissue response to the bite of sand flies on BluePort-associated skin

of naı̈ve mice (Figures 5A–D). These features were prominently

expressed 24 hours after exposure and progressively decreased

afterwards with few traces of inflammation, including the presence

of few eosinophils, 72 and 96 hours post-exposure (Figure 5C and

D). In contrast to the mild and transitory neutrophilic inflamma-

tory reaction of naı̈ve mice to the bite of sand flies, the

inflammatory reaction in mice pre-exposed multiple times to the

bite of sand flies was characterized by intense and protracted

infiltration of dermis and hypodermis by eosinophils and

mononuclear cells (Figure 5 E–H). This change from a

predominantly neutrophilic infiltrate to a predominantly eosino-

philic infiltrate does not seem to be attributed to an effect mediated

by the BluePort because a similar shift in granulocyte dominance

was observed when exposure to the bite of sand flies occurred on

normal skin (Figure 6). This neutrophil-to-eosinophil shift was also

found in samples taken from mice in which L. longipalpis sand flies

were allowed to take a blood-meal for a second time, one month

after the first exposure on BluePort-associated skin (Figure 7).

While some neutrophils were found in the hypodermis of these

mice 24 hours after the second exposure to the bite of sand flies

(Figure 7I), by 48 hours all granulocytes found in the dermis and

hypodermis were eosinophils (Figure 7F and J).

Changes in the BluePort parenchyma during an ongoing
immune response to sand fly bites

In addition to the extensive dermal infiltration around sand fly

bite sites in immune mice, several features indicative of immune-

defense activation were observed scattered in the parenchyma of

the associated BluePort, including: 1) the formation of clusters of

foreign-body giant cells (Figure 8A), 2) attack and selective

destruction of some CBa-beads by neutrophils (Figure 8B), and

macrophages (Figure 8C), and 3) infiltration by lymphocytes

(Figure 8D). Interestingly, most of these foci of inflammatory- and

immune-reactivation were not found in close proximity to the

dermal segments where the reactions triggered by sand fly bites

were taking place, an indication that a long-range activation

mechanism must be responsible for this phenomenon. One

possibility is that the newly formed venules and capillaries inside

the BluePort were integrated in a portal-like arrangement with the

blood supply network of the skin, allowing for cytokines,

chemokines and other soluble molecules synthesized at the bite

site to be transported into the BluePort parenchyma, following a

tissue perfusion dynamics similar to that of neuropeptides and

hormones in the hypothalamus/pituitary axis [37].

Figure 2. Chronic inflammatory response to CBa-beads. Histopathological changes observed 30 days (A and B), 60 days (C and D), 90 days (E
and F) and 120 days (G and H) days after injection of CBa-beads. Arrows indicate endothelial cells in (A), macrophages in (B), neutrophils inside a
blood vessel in (C), capsule in (D), multinucleated foreign-body giant cells in (E), mast cells in (F), eosinophils in (G) and lymphocytes in (H).
Hematoxylin-eosin stain, 1000x magnification.
doi:10.1371/journal.pone.0013546.g002

Figure 3. Immuno-histochemical analysis of BluePort-resident cells. Reactivity of antibodies to CD31, marker of endothelial cells, in (A and
B), and to F4/80, marker of macrophages, in (C and D). Magnification 200x (A and C) and 1000x (B and D).
doi:10.1371/journal.pone.0013546.g003
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Lectin-blot analysis of L. longipalpis salivary gland lysates
Two of the best characterized inductors of Th2-type immune

responses and tissue eosinophilia, Lacto-N-fucopentaose III and

LewisX, are saccharidic in nature [38,39], raising the question of

whether glycans attached to salivary proteins play a role in the

recruitment of eosinophils at sand fly bite sites. This possibility is

supported by evidence indicating that insect-derived glycans are

involved in the etiopathogenesis of allergic reactions to insect bites

and stings [40,41]. As an initial approach to explore this possibility,

we conducted a lectin-blot analysis of two lysates (SGL and HSL)

enriched in sand fly salivary proteins, using biotinylated lectins that

specifically recognize N-linked glycans (GNL, AAL) and O-linked

glycans (VVL, PNA) (Figure 9). After treatment with PNGase-F, an

endoglycosidase that specifically removes N-linked glycans attached

to asparagine residues of proteins [42], the electrophoretic mobility

of the most abundant glycoprotein in the lysates shifted from 47-

kDa to 45-kDa, indicating the presence of an N-linked glycan of

approximately 2-kDa (Figure 9A). This was corroborated by

showing that the reactivity of the 47-kDa band with GNL, a lectin

specific for mannose-rich N-linked glycans, disappeared after

deglycosylation with PNGase-F (Figure 9B). The fact that the 45-

kDa band was still recognized by a lectin (AAL) specific for

fucosylated N-linked glycans (Figure 9C) suggests that two different

N-linked glycans are attached covalently to the 47-kDa glycopro-

tein, a PNGase F-susceptible mannose-rich glycan and a PNGase F-

resistant fucosylated N-linked glycan. This interpretation is

consistent with evidence indicating that PNGase-F cannot remove

N-linked glycans containing core alpha1-3fucose residues [43], one

of the determinants recognized by the AAL-binding site [44]. Given

that the partially deglycosylated 45-kDa glycoprotein is recognized

by two lectins that are specific for O-linked glycans (Figures 9D and

E), an alternative explanation is also possible, that AAL reacts with

fucosylated O-linked glycans similar to those described in Schistosoma

mansoni glycoproteins [45]. One additional 37-kDa glycoprotein was

found in the sand fly lysates with a similar lectin-binding profile

(GNL-, AAL+, VVL+, PNA+) to that of the partially deglycosylated

45-kDa glycoprotein. Interestingly, IgG antibodies against these

glycoproteins were found in the sera of mice exposed to the bite of

sand flies on BluePort-associated skin (Figure 9F).

Discussion

In this study we describe a novel tissue compartment induced in

the subcutaneous tissue of mice by the injection of CBa-beads and

how it can be used to study the dermal response to the bite of L.

Figure 4. Localization and appearance of the BluePort tissue
compartment. Macroscopic appearance of the blue nodule (BluePort)
formed one month after injection of CBa-beads in the subcutaneous
tissue of mice (A and B). Macroscopic (C) and microscopic appearance
(D) of BluePort-associated skin 24 hours after exposure of naı̈ve mice to
the bite of L. longipalpis sand flies. Black arrows indicate skin erythema
in (C), and vasodilatation of dermal blood vessels in (D). White arrow
indicates vasodilatation of blood vessels inside the BluePort parenchy-
ma in (D). Hematoxylin-eosin stain, magnification 100x in (D).
doi:10.1371/journal.pone.0013546.g004

Figure 5. Inflammatory response of naı̈ve and immune mice to sand fly bites on BluePort-associated skin. Evolution of the
inflammatory response on naı̈ve mice (A–D), and mice pre-exposed multiple times to the bite of sand flies (E–H). Images correspond to samples taken
24 hours (A and E), 48 hours (B and F), 72 hours (C and G) and 96 hours (D and H) post-exposure. Black arrows indicate neutrophils and white arrows
eosinophils. Hematoxylin-eosin stain, 1000x magnification.
doi:10.1371/journal.pone.0013546.g005
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longipalpis sand flies, one of the arthropod vectors of Leishmania

parasites in the New World. CBa-beads have been used

extensively in affinity chromatography protocols to purify, or

remove, proteins from complex biological fluids [46,47], but have

not been used before as tissue scaffolds or as a vaccination

platform, two of the potential applications that derive from this

study. The complex chemistry of Cibacron blue allows it to bind to

many different proteins including one, albumin, with the potential

to explain the peculiar fate of CBa-beads in mouse tissues. Given

the absence of receptors for albumin on the surface of cells of the

innate defense system, albumin-covered surfaces might be

rendered invisible to the mouse defense systems, and in the

absence of danger signals, integrated into the connective tissue of

mice. This interpretation is supported by data linking affinity for

albumin with the biocompatibility of biomaterials used in variety

of medical applications (dialysis, vascular grafting, tissue scaffold-

ing, etc) [48], and the theoretical model describing albumin and

other non-defense proteins as tissue-reactivity silencers [49]. An

alternative explanation for the fact that CBa-beads are integrated,

rather than rejected, might be that Cibacron Blue deliver signals

that deactivate, or alternatively activate, macrophages recruited

during the chronic inflammatory response to the beads [50].

Under this scenario, the intimate contact of macrophages with

CBa-beads might be expected to produce a protracted anti-

inflammatory state that allows for the maturation phase of the

wound healing process to proceed [36].

The skin overlying a BluePort is of normal appearance and can

be used as an access window for the BluePort-resident macro-

phages to take up and process antigens, including those delivered

by sand flies during hematophagy. As shown on Figure 3, the

induction of BluePort formation increases the density of

professional antigen-presenting cells (F4/80+ macrophages) on

the skin segment where sand flies were allowed to blood-feed. It

remains to be shown whether these macrophages actually take up,

Figure 6. Inflammatory response of naı̈ve and immune mice to sand fly bites on normal skin. Inflammatory response detected 48 hours
after exposure to the bite of L. longipalpis sand flies on naı̈ve mice (A and B) and immune mice (C and D). Black arrows indicate neutrophils and white
arrows eosinophils. Hematoxylin-eosin stain. Magnification, 200x in (A and C), 1000X in (B and D).
doi:10.1371/journal.pone.0013546.g006

Figure 7. Inflammatory response in mice exposed twice to sand fly bites on BluePort-associated skin. Evolution of the inflammatory
response in samples collected 24 hours (A, E and I), 48 hours (B, F and J), 72 hours (C, G and K) and 96 hours (D, H and L) after exposure for the
second time to the bite of sand flies. Black arrows indicate neutrophils and white arrows indicate eosinophils. Hematoxylin-eosin stain. Magnification:
100x in (A–D), 1000x in dermis (E–H) and hypodermis (I–L).
doi:10.1371/journal.pone.0013546.g007
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process and presents sand fly salivary proteins to cells of the

adaptive immune system. It also remains to be shown whether

dendritic cells, another lineage of antigen-presenting cells, are

recruited to this tissue compartment.

The tremendous difference in the acute inflammatory reaction

seen on BluePort-associated skin of mice exposed once, or twice, to

the bite of L. longipalpis sand flies, suggests that an immune

response to the first bite was enough to significantly modify the

intensity and character of the response to the second exposure. A

shift in the inflammatory response at the bite site, from a

predominantly neutrophilic infiltrate to a predominantly eosino-

philic infiltrate, was the main histological feature associated with

this response. Whether this shift in the inflammatory response

represents a bona fide surrogate of protection remains to be

determined. In contrast to the well characterized role that

eosinophils play in the immunobiology of schistosomiasis and

filariasis [51,52], their role in the immunobiology of leishmaniasis

has not been studied as extensively. While it has been

demonstrated that eosinophils can phagocytize and destroy

Leishmania parasites in vitro [53] and in vivo [54], and that they

can be found in skin lesions [55,56,57], it is unclear how this

translates into a resistance mechanism to parasite transmission by

infected sand flies. This is in part a reflection of a systematic

artifact introduced in the design of experiments to study

interaction of Leishmania parasites with their vertebrate host, ie,

the absence of sand fly saliva in the inoculate. As a result of this

artifact, the conclusion regarding the protective anti-Leishmania

effect associated with Th1-type immune responses [58], may apply

only for artifactual models of Leishmania infections where parasites

are injected in absence of sand fly saliva. Under natural conditions

of transmission (infective inoculum containing both parasites and

vector saliva) it is possible to envision a Th2-driven and eosinophil-

mediated immune response that delivers protective anti-Leishmania

effects. A high eosinophil/neutrophil ratio in the granulocyte

infiltrate at the bite site could be associated with protection if

cytotoxic cationic proteins released during eosinophil degranula-

tion [59], or eosinophil-mediated phagocytosis [60], destroy the

parasites before they use neutrophils as a Trojan horse to reach the

intracellular compartment of deactivated macrophages [61]. A

major problem with this theoretical protection mechanism is that

it needs to eliminate all parasites present in the infectious

inoculum, otherwise an exacerbated form of the disease can be

anticipated once surviving parasites infect deactivated macro-

phages. This is because their growth would proceed unhindered in

the presence of the Th2-type cytokines that are necessary to

promote the recruitment of eosinophils into tissues [59,60]. From a

Figure 8. Histopathological changes in the parenchyma of a BluePort adjacent to sand fly bite-induced dermal eosinophilia. Images
represent inflammatory changes observed 24 hours after exposure, for a second time, to the bite of sand flies on BluePort-associated skin. Arrows
indicate: foreign-body giant cells (A), attack and destruction of CBa-beads by neutrophils (B) and macrophages (C), and lymphocytic infiltration of the
BluePort parenchyma (D). Hematoxylin-eosin stain, 1000x magnification.
doi:10.1371/journal.pone.0013546.g008

Figure 9. Lectin-blot and immuno-blot analysis of L. longipalpis salivary glycoproteins. Effect of enzymatic deglycosylation with PNGase F
on two sources of sand fly salivary glycoproteins, SGL and HSL. Samples were stained for protein composition profile (Imperial), probed for the
presence of N-linked glycans (GNL, AAL) and O-linked glycans (VVL, PNA), or probed for reactivity with IgG antibodies of animals exposed to the bite
of sand flies on BluePort-associated skin. Arrows indicate the main antigenic salivary glycoproteins.
doi:10.1371/journal.pone.0013546.g009
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vaccine development perspective this situation represents a

conundrum: On the one hand, a Th2-driven vaccine targeting

sand fly salivary proteins would be required to be 100% effective

in eliminating the inoculated parasites at the sand fly bite site, and

on the other hand, a Th1-driven vaccine targeting the same

salivary proteins might mitigate the naturally acquired anti-

salivary immunity developed as a result of chronic exposure to

sand fly saliva. The BluePort system might be an ideal tool to

clarify this problem because their resident macrophages can be

readily infected with Leishmania parasites (data not shown).

The identification of salivary molecules and epitopes capable of

promoting the recruitment of eosinophils at the bite site is an

important element of efforts to understand the molecular basis of

pathogen transmission by hematophagous arthropods. One of the

best characterized L. longipalpis salivary proteins (maxadilan) has

been shown to induce Th2-biased immune responses [17,62], but

it is unknown whether it promotes dermal eosinophilia at the bite

site. While it remains to be shown whether any of the glycans

attached to L. longipalpis salivary proteins promotes dermal

eosinophilia, it is intriguing that AAL, a lectin that recognizes L.

longipalpis salivary glycoproteins, also recognize immunomodula-

tory glycans expressed in the eggshells of a pathogen, S. mansoni

[44], that induces strong eosinophilic responses in the tissues of

infected animals. The potential for structural similarity in glycans

synthesized by arthropods and helminths illustrate the need to

study the evolution of the Golgi system in metazoans, and a

comparative analysis of the repertoire of glycans that each species

can (and cannot) synthesize. It has already been shown that

structural similarity in fucosylated N-linked glycans synthesized by

plants, insects and nematodes define one of the main cross-reactive

epitopes recognized by antibodies of patients with allergies to

foodstuff, pollen, insect bites and stings [40,41]. The high

immunogenicity of these glycans, and the cross-reactivity of the

antibodies they induce, raises one possibility of great significance

in the immunobiology of Leishmania transmission by infected sand

flies; that anti-salivary immunity may derive not only from chronic

exposure to the bite of sand flies, but also from exposure to similar

glycans synthesized by plants, helminths or non-hematophagous

insects.

It is apparent that the BluePort is a versatile tissue platform that

can be used to study the immunobiology of diseases transmitted by

hematophagous arthropods, and to facilitate the interaction of

salivary proteins with professional antigen-presenting cells in order

to induce transmission-blocking anti-salivary immunity. Three

anatomical and functional features of the BluePort compartment

makes it an ideal tool to dissect complex immunobiological

processes: 1) high density of antigen-presenting cells, 2) prominent

blood supply network that provides nourishment and access for

infiltrating cells of the innate and adaptive immune systems, and 3)

accessibility for the delivery of antigens or pathogens, and retrieval

of biological samples. A lymph node-like structure with these

characteristics represent a novel technology with the potential of

transforming the way we study arthropod-borne diseases and

develop vaccines to prevent them.

Materials and Methods

Injection of Cibacron Blue-agarose (CBa) beads
For induction of BluePort formation, 200 ml of 50% slurry of

Cibacron Blue-agarose beads (Sigma, St. Louis, MO) equilibrated

in sterile PBS was injected in the subcutaneous tissue of 8–10 week

old BALB/c female mice. The procedure was performed using

syringes fitted with 23-gauge needles on the abdominal wall of

animals anesthetized with ketamine 75 mg/kg and xylazine

15 mg/kg. Animals were sacrificed 6, 24, 48, 72, 96 hours and

15, 30, 60, 90 and 120 days after injection of the CBa-beads.

Tissue samples were fixed in 10% formalin, processed routinely,

sectioned at 5 microns, and stained with H&E (Premier

laboratories, Boulder, CO).

Histopathological analysis of sand fly bite sites
A colony of L. longipalpis sand flies (Lapinha cave strain) was

reared following previously described methods [63,64]. Adult

females collected 3–5 days after emergence were allowed to feed

on the shaved skin of normal mice or on the skin overlying the blue

nodule (BluePort) formed 30–35 days after injection of CBa-beads.

Anesthetized animals were placed on top of cartons with 50–100

unfed female sand flies for 20–30 minutes. Three groups of

animals were exposed to the bite of sand flies: 1) naı̈ve mice, 2)

mice pre-exposed once or 30 times to the bite of L. longipalpis sand

flies on normal skin, and 3) mice pre-exposed once on BluePort-

associated skin. Tissue samples were collected for histopathological

analysis 24, 48, 72 and 96 hours after exposure.

Immunohistochemical analysis of BluePort-resident cells
Tissue samples taken 30 days after injection of CBa-beads were

processed for detection of markers specific for mouse endothelial

cells (CD31), or macrophages (F4/80), following protocols

standardized for each antibody (Premier). Tissue samples were

embedded in paraffin, sectioned at 4 microns and deparaffinized

in two changes of xylene and hydrated to water through a series of

alcohol gradients. Two different methods of antigen retrieval were

used: incubation in a TRIS/EDTA pH 9.0 target retrieval

solution (Dako, Carpinteria, CA) for 20 minutes at 95uC (for

CD31 expression), and incubation with Proteinase K (Dako) for 5

minutes at room temperature (for expression of F4/80). To

quench any endogenous peroxidase activity the sections were

incubated in a 3.0% hydrogen peroxide solution at room

temperature for 5 minutes. Serum Free Protein Block (Dako)

was used at room temperature for 5 minutes to neutralize any

charged molecules on the tissue sections that may cause non

specific staining. Working dilution of the primary antibodies: rat

anti-mouse CD-31 antibody (Dianova, Hamburg, Germany) and

rat anti mouse F4/80 antibody (AbD Serotec, Raleigh, NC), were

prepared in antibody diluent (Dako). The negative control sections

were incubated with a rat IgG2a isotype solution (AbD Serotec) at

the same duration, concentration and temperature as the primary

antibody. The primary antibodies were then conjugated with

rabbit anti-rat immunoglobulin (Dako) for 30 minutes at room

temperature. This secondary antibody was then labeled with

Envision+HRP rabbit polymer (Dako) for 30 minutes at room

temperature. Staining was developed with a DAB+ chromogen

system (Dako) for 5 minutes at room temperature. Counter

staining was performed with Automation Hematoxylin for 10

minutes at room temperature. Sections prepared from a mouse

tissue xenograph injected with a tumor cell line that expresses CD-

31 for vascularity, or with a HT-29 tumor cells line that expresses

F4/80, were used as positive controls. Photomicrographs were

acquired with an Olympus DP71 camera and associated computer

software.

Preparation of salivary gland lysates
Collecting pure saliva from sand flies is technically challenging,

so we used salivary gland lysates, which have been shown by

proteomic analysis to be enriched in salivary proteins [65], as

source of glycoproteins for lectin-blot analysis. Salivary glands

were dissected from 3–5 day old female L. longipalpis sand flies and

stored in groups of 20 pairs at 280uC until needed. To prepare
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the salivary gland lysate (SGL), the glands were resuspended in

PBS containing a 1:50 dilution of protease inhibitor cocktail set

III, EDTA-free (EMD Chemicals, Gibbstown, NJ) at a ratio of

1 ml of buffer per pair of salivary glands. After incubating at

220uC for 1 hour, the samples were centrifuged at 18,0006g for

10 minutes at 4uC, and the soluble phase containing salivary

glycoproteins, stored at 280uC until used. As an alternative to the

cumbersome salivary gland dissection process, we devised a

method to collect samples enriched in sand fly salivary proteins.

It takes advantage of the fact that when the head of a sand fly is

pulled from the rest of the body, the salivary glands remain

attached to the head. The collection of the head salivary lysate

(HSL) was conducted using the same buffer as above at a ratio of

1 ml of buffer per head. After incubating at 220uC for 1 hour, the

samples were centrifuged first at 10,0006g for 1 minutes at 4uC to

remove the large insoluble heads, and then at 18,0006g for 10

minutes at 4uC to collect the final soluble lysate.

Lectin-blot and Immuno-blot analysis of salivary gland
lysates

Electrophoretic separation of salivary glycoproteins was con-

ducted under reducing conditions using NuPAGE MES SDS

running buffer and NuPAGE 4–12% Bis/Tris precast SDS-PAGE

gels (Invitrogen, Carlsbad, CA). Imperial protein stain (Thermo

Scientific, Rockford, IL) was used to detect protein bands, and

broad-range markers (Bio-Rad) to calculate their molecular

weight. Each lane was loaded with lysates derived from seven

pairs of salivary glands. By running side by side each lysate before

and after treatment with PNGase F (New England Biolabs,

Ipswich, MA), it was possible to visualize a shift in molecular

weight caused by removal of N-linked glycans. The enzymatic

reaction was performed following the manufacturer instructions

for 2 hours at 37 C, using 10 units of PNGase F for each ml of

lysate. For lectin-blot analysis, the separated proteins were first

electro-transferred to nitrocellulose membranes (Bio-Rad), blocked

with 1% type B bovine skin gelatin (Sigma), and incubated with

biotinylated lectins (Vector, Burlingame, CA). Galanthus nivalis

lectin (GNL) and Aleuria aurantia lectin (AAL) were used to detect

N-linked glycans, whereas Vicia villosa lectin (VVL), and Peanut

agglutinin (PNA) were used to detect O-linked glycans. Following

incubation of the membranes with a 1 mg/ml dilution of

biotinylated lectins for 1 hour at room temperature, the

membranes were incubated with a 1 mg/ml dilution of NeutrA-

vidin (Thermo Scientific) and biotinylated alkaline phosphatase

(Vector) for 1 hour at room temperature. The binding reaction

was revealed by incubating the membrane in a phosphatase

substrate system, BCIP/NBT (KPL, Gaithersburg, MD), for 15–

30 minutes at room temperature. For immuno-blot analysis the

membranes were incubated with a 1:100 dilution of sera collected

from mice exposed twice on BluePort-associated skin to the bite of

L. longipalpis sand flies or, as negative control, the sera of non-

exposed mice. The membranes were then incubated in a 1:1,000

dilution of a goat anti-mouse IgG (H+L) alkaline phosphatase

conjugate (KPL) for 1 hour at room temperature, followed by an

incubation in alkaline phosphatase substrate as above.
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