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Abstract

The oomycete pathogen, Pseudoperonospora cubensis, is the causal agent of downy mildew on cucurbits, and at present, no
effective resistance to this pathogen is available in cultivated cucumber (Cucumis sativus). To better understand the host
response to a virulent pathogen, we performed expression profiling throughout a time course of a compatible interaction
using whole transcriptome sequencing. As described herein, we were able to detect the expression of 15,286 cucumber
genes, of which 14,476 were expressed throughout the infection process from 1 day post-inoculation (dpi) to 8 dpi. A large
number of genes, 1,612 to 3,286, were differentially expressed in pair-wise comparisons between time points. We observed
the rapid induction of key defense related genes, including catalases, chitinases, lipoxygenases, peroxidases, and protease
inhibitors within 1 dpi, suggesting detection of the pathogen by the host. Co-expression network analyses revealed
transcriptional networks with distinct patterns of expression including down-regulation at 2 dpi of known defense response
genes suggesting coordinated suppression of host responses by the pathogen. Comparative analyses of cucumber gene
expression patterns with that of orthologous Arabidopsis thaliana genes following challenge with Hyaloperonospora
arabidopsidis revealed correlated expression patterns of single copy orthologs suggesting that these two dicot hosts have
similar transcriptional responses to related pathogens. In total, the work described herein presents an in-depth analysis of
the interplay between host susceptibility and pathogen virulence in an agriculturally important pathosystem.
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Introduction

Cucumber (Cucumis sativus L.) is an economically important

vegetable crop cultivated in over 80 countries, with more than

66 million tons produced annually for both fresh use and

processing (http://faostats.fao.org). Cucumber has been utilized

extensively as a model system to study sex determination [1],

vascular biology [2], and induced defense responses [3,4]. Despite

its extensive use as a model system in research, as well as its

obvious economic importance, genetic and genomic resources

remain limited. In recent years, the publication of both a genetic

map [5] and genome sequences [6,7] of cucumber, as well as

generation of large-scale expression data sets [8,9], have provided

the first comprehensive resources for genetic and genomic based

inquiries into cucumber biology. Cucumber has limited genetic

diversity, few wild relatives, and only 7 pairs of chromosomes

(2n = 14), whereas other Cucumis spp., such as melon (Cucumis melo),

have 12 chromosomes, making interspecific breeding difficult, if

not impossible. As such, advances in breeding for important

agronomic traits such as increased yield, fruit quality, and disease

resistance are slow.

Cucumber production is hindered by diseases caused by

bacterial (e.g., Pseudomonas syringae pv. lachrymans), viral (e.g.,

Cucumber mosaic virus), fungal (e.g., Sphaerotheca fulginea and Erysiphe

cichoracearum), and oomycete (e.g., Phytophthora capsici and Pseudoper-

onospora cubensis) pathogens [10,11]. Of these, the most destructive

is Ps. cubensis, the causal agent of cucurbit downy mildew, which

threatens cucumber production in nearly 80 countries and causes

severe economic losses [11,12,13]. Ps. cubensis is an obligate,

biotrophic oomycete pathogen with a host range limited to the

Cucurbitaceae [11]. In recent years, a foundation has been

established to support advances in this area, including studies on

epidemiology [14], host specificity [15,16,17,18], pathogenic

variation [19,20,21], and more recently, generation of a draft

genome sequence of Ps. cubensis [22,23].

The molecular and biochemical mechanisms associated with

host resistance have been investigated to a limited extent in

cucumber and other cucurbits. In large part, signaling of resistance

is primarily associated with systemic acquired resistance (SAR)

[24], for which cucumber has historically been a model system

[25,26]. In addition to SAR, structural modifications (e.g., callose

deposition), as well as the induction of defense-related genes (e.g.,
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peroxidases, chitinases, and glucanases) are often associated with

the onset of resistance signaling following pathogen infection.

Moreover, like other well-characterized plant-pathogen systems,

the presence of nucleotide-binding site (NBS) containing genes

encoding protein products that recognize cognate pathogen

effector proteins or their perturbations [27] have been postulated

to play a role in disease resistance in cucumber. To this end,

analysis of the cucumber genome sequence has identified 61 NBS

resistance genes, considerably less than have been identified in

other plant genomes, such as Arabidopsis (200) or rice (600) [6].

However, of the 15 genes known to control disease resistance in

cucumber, none have been cloned, nor have they been associated

through linkage maps with the 61 predicted NBS resistance genes

[28]. It is hypothesized that cucumber has an expanded

lipoxygenase pathway which may provide an additional mecha-

nism(s) to facilitate responses to biotic stress [6].

While genetically conferred host resistance is the ideal means of

disease control in crop species, it has become ineffective in

controlling cucurbit downy mildew, particularly in the U.S., where

introduction of a new, more virulent pathotype of Ps. cubensis is

responsible for economic losses in recent years [12,29]. To this

end, control methods for cucurbit downy mildew in both Europe

and the U.S. require the use of fungicides, coupled with a single

host resistance locus, the recessive dm1 gene, which has been

incorporated into most commercial cucumber germplasm [11].

However, the identification of the dm1 locus, as well as its

functional role in resistance signaling remains undefined. In

addition to widespread incorporation of dm1, breeding of Ps.

cubensis resistance has focused mainly on genes from melon [30], as

limited diversity for resistance is available in cucumber or its wild

relative, Cucumis hardwickii. Large-scale screening trials to identify

tolerant germplasm are in progress, but have yet to identify a

source of complete resistance to Ps. cubensis [16,31]. As such, new

resources must be explored to support development of improved

cultivars and identify new sources of resistance for breeding

programs.

Next generation sequencing of the transcriptome (mRNA-Seq)

permits deep, robust assessments of transcript abundances and

transcript structure [32]. When gene expression profiling is applied

to host-pathogen interactions of economically important crops,

insights into the mechanisms these pathogens use to suppress and

subvert the host defense response can be made [33,34,35]. In the

current study, we performed expression profiling, using the

susceptible cucumber cultivar ‘Vlaspik’, over a time course of

infection with the downy mildew pathogen Ps. cubensis to identify

genes, pathways, and systems that are altered during a compatible

interaction. Using this technology, deep profiling of both the host

and pathogen transcriptome (see accompanying manuscript [36])

was achieved, providing the first in-depth analysis of this

important plant-pathogen interaction. In this study, we cataloged

the expression of 14,476 genes from cucumber through an 8-day

time course of infection with a virulent Ps. cubensis isolate. In total,

this work identified major changes in gene expression in cucumber

at 1 day post-inoculation (dpi) continuing through 8 dpi, with up

to 3,286 genes differentially expressed between time points.

Comparative analyses revealed correlated gene expression patterns

in cucumber and Arabidopsis thaliana leaves infected with downy

mildew, suggesting orthologous host responses in these two

dicotyledonous hosts. Through co-expression network analyses,

modules of temporal-specific transcriptional networks were

constructed that provide a framework to connect transcription

factors with defense response genes.

Results and Discussion

Response of C. sativus leaves to pathogen infection
To correlate gene expression and host responses with observable

disease symptoms and pathogen invasion, the progression of

infection in susceptible C. sativus cv. ‘Vlaspik’ was monitored at 1,

2, 3, 4, 6, and 8 dpi. As shown in Figure 1, the first visible

symptoms of Ps. cubensis infection were apparent at 1 dpi, in the

form of water soaking on the abaxial leaf surface at the inoculation

site (Figure 1A). These symptoms correspond to zoospore

encystment and initial penetration through the stomata into the

host [36]. In similar pathosystems, systems such as Hyaloperonospora

arabidopsidis, the causal agent of downy mildew on A. thaliana,

analogous processes occur in the early stages of infection. One

exception is that H. arabidopsidis penetrates between anticlinal walls

of epidermal cells rather than utilizing natural openings like

stomata [37]. While no symptoms are visible on the upper leaf

surface in cucumber, water soaking on the lower leaf surface can

be seen as early as 1 dpi, and remains present through 4 dpi,

during which time hyphal growth through the mesophyll of the

host tissue occurs and haustoria formation begins [36]. Yellow

angular lesions bound by leaf veins characteristic of cucurbit

downy mildew were first visible on the upper leaf surface at 4 dpi

(Figure 1D), and became more chlorotic and slightly necrotic at

the centers by 8 dpi. These symptoms are associated with

extensive growth of hyphae through the plant mesophyll [36].

Figure 1. Symptoms of Pseudoperonospora cubensis infection on
susceptible Cucumis sativus cv. ‘Vlaspik’. Images were collected of
the adaxial (left column) and abaxial (right column) leaf surfaces at 1, 2,
3, 4, 6, and 8 days post-inoculation (dpi). A., 1 dpi, B., 2 dpi, C., 3 dpi,
D., 4 dpi, E., 6 dpi, F., 8 dpi.
doi:10.1371/journal.pone.0034954.g001
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Gene expression profiling in C. sativus
We performed mRNA-Seq profiling of C. sativus leaves following

infection with Ps. cubensis over an 8-day period. Leaf disc samples

were collected using a cork borer to maximize the amount of

infected tissue in each sample (Figure 2, black circles), pooled

within a given time point, and RNA was isolated. Two biological

replicates of each time point were sequenced, yielding 55 to

59 million reads from both replicates at each time point.

Additionally, a mock-inoculated C. sativus sample was collected

and sequenced, yielding 5.8 million reads. The number of reads

that mapped to the C. sativus genome ranged from 48 to 53 million

(Figure 3A, 84–93% of the total reads) per time point while the

number of genes expressed at different time points ranged from

12,257 to 13,048 (Figure 3A).

The libraries were constructed from inoculated leaves and

therefore, the reads represent transcripts from the host (C. sativus)

and the pathogen (Ps. cubensis). At the early time points, nearly all

of the reads obtained were of host origin, which is consistent with

our microscopy analysis revealing limited pathogen biomass.

However, as we are surveying a susceptible interaction, pathogen

biomass increases throughout the time course and consequentially,

pathogen transcripts increase in the total read pool in the later

time points [36]. However, even with the increased percentage of

pathogen reads in the later time points, we have saturated

sampling of the C. sativus transcriptome with our deep read

coverage of the libraries. Randomly selected subsets of reads, 5 to

30 million, from the total read pool were used to evaluate the

effect of sampling depth on gene expression detection. The

simulation demonstrates a positive relationship between sampling

depth and numbers of expressed genes at lower sequencing depths

(5 to 20 million reads) (Figure 3B). The number of expressed

genes, however, begins to plateau at approximately 20 million

Figure 2. Experimental design and sample collection. Cucumber cv. ‘Vlaspik’ leaves were inoculated on the abaxial leaf surface with 10–30
10 ml droplets of a 16105 sporangia/ml solution. Samples were collected at 1, 2, 3, 4, 6, and 8 days post-inoculation (dpi) using a #3 cork borer to
isolate tissue immediately around the infection point (black circles). Samples from cucumber leaves mock-inoculated with 10 ml droplets of dH2O
were collected in the same manner at 1 dpi. Leaf disks from each time point were pooled for RNA extraction. mRNA-Seq libraries were made for each
time point from two separate biological replicates. Within a biological replicate, libraries were barcoded and sequenced in multiple lanes with the
exception of the mock-inoculated library, which was not barcoded.
doi:10.1371/journal.pone.0034954.g002
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reads, corresponding to the minimum sampling depth of all

libraries in this study. To study the repeatability of two biological

replicates, pair-wise scatter plots of gene expression values were

generated. With correlation coefficients (R2) ranging from 0.97 to

0.98 for biological replicates of each time point, nearly all genes

fell along the diagonal of plots, indicating no major variation and

providing evidence for high reproducibility of biological replicates

(Figure S1).

Host transcriptional changes in response to infection
Over the infection period, a total of 14,476 C. sativus genes were

expressed (Table S1), with 10,350 genes common to all time

points. For all data points analyzed, the minimum fragments per

kilobase exon model per million mapped reads (FPKM) value was

zero, yet the maximum FPKM values ranged from 8,869 at 1 dpi

to 34,017 at 8 dpi (Table S1). Interestingly, the highest up-

regulated gene at 1 dpi was a putative galactinol synthase

(Csa6M000080.1), which has been shown to be up-regulated in

Cucumis melo (melon) in response to abiotic stress [38] as well as in

an inbred C. sativus line ‘IL57’ with a high level of resistance to

downy mildew [39]. The expression patterns of the top 20 highly

expressed genes showed expression of genes involved in defense

responses including catalases, chitinases, lipoxygenases, peroxidas-

es, and protease inhibitors, beginning at 1 dpi and extending

through 8 dpi (Table S2). The detection of defense-related genes

within 1 dpi suggests that there is an active response by C. sativus to

early infection stages of Ps. cubensis, including zoospore encystment,

appressorium formation, and penetration via stomata [36].

Additionally, no pathogen defense-related genes are present within

the top 20 highly expressed genes in the mock-inoculated samples,

which mainly consists of housekeeping genes (Table S2).

Correlation and cluster analyses were used to identify

similarities in transcriptome profiles among the sampled time

points. Pearson Correlation Coefficient (PCC) values for time

point comparisons ranged from 0.78 to 0.93, with tight clustering

readily apparent, revealing patterns that highlight the extent of

transcriptional diversity underlying early (1 dpi), intermediate (2,

3, and 4 dpi), and advanced (6 and 8 dpi) stages of disease

progression and the corresponding responses in host gene

expression (Figure 1). As described above, C. sativus defense-

related genes are expressed within 1 dpi of Ps. cubensis inoculation,

and based on our correlation analysis (Figure 4), these likely

represent a distinct cluster of genes responding specifically to initial

recognition of sporangia, germination of zoospores, and zoospore

encystment in stomata. Genes expressed at 2–4 dpi also cluster

more with each other than to 1 dpi or to later time points, which

also reflects the similar stages of Ps. cubensis infection apparent at

this stage, indicating that these genes may be involved in host

Figure 3. Comparison of total mRNA-Seq reads, reads mapped and number of genes expressed. A. Total number of reads, total reads
mapped, and number of genes expressed as determined from pooling of both biological replicates are shown. Reads were mapped to the C. sativus
genome [6] using Bowtie version 0.12.5 [57] and TopHat version 1.2.0 [56]. Fragments per kilobase pair of exon model per million fragments mapped
(FPKM) values for the annotated C. sativus genes were calculated using Cufflinks version 0.9.3 [58]. Genes were considered expressed if the FPKM
value and 95% confidence interval lower boundary FPKM value was greater than 0.001 and zero, respectively. B. Effect of sampling depth on
detection of expressed genes. For all time points 5, 10, 15, 20, 25, and 30 million reads were randomly selected from the total pool of reads. Read
mapping and expression abundance estimates were performed as described above. Solid lines indicate number of genes expressed and the dashed
lines indicate number of reads mapped at different time points. dpi, days post-inoculation.
doi:10.1371/journal.pone.0034954.g003
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responses to hyphal penetration, hyphal growth and haustorium

formation. The clustering of gene expression at later time points (6

and 8 dpi) likely corresponds to similar symptoms observed

(Figure 1) as well as plant responses to extensive Ps. cubensis

hyphal growth that is occurring at those time points [36].

Conserved host responses in C. sativus and A. thaliana in
compatible interactions as measured through expression
profiling

Host responses to pathogen challenge have been well docu-

mented in the model species A. thaliana [40], including those to the

downy mildew pathogen H. arabidopsidis [34,37]. To identify genes

induced in a compatible interaction with a downy mildew

pathogen common to both C. sativus and A. thaliana, we identified

single copy orthologous genes in both plant genomes and analyzed

their expression patterns. A total of 7,396 clusters of single copy

genes from both species were identified by clustering 23,248 and

27,416 representative protein coding genes from C. sativus and A.

thaliana, respectively. Data from a previous microarray-based

expression profiling [41] experiment of a compatible A. thaliana-H.

arabidopsidis interaction was compared with our mRNA-Seq-based

expression data. The H. arabidopsidis infection time points were 0,

0.5, 2, 4, and 6 dpi, similar to the 1–8 dpi time points assayed in

this study. Spearman rank correlation coefficients (SCCs) of log2

expression values were calculated between the single copy

orthologs at all time points in the two datasets; between 2,136

and 3,446 gene pairs were included in the pair-wise comparisons.

Among the six comparisons between similar time points, the SCC

values ranged from 0.10 to 0.72 (Table S3). The correlations

between early time points were the lowest between the two

interactions, possibly due to the differences in penetration

strategies between the two pathogens. The highest correlations

were observed between 6 dpi (SCC = 0.72) followed by 2 dpi

(SCC = 0.66) for both host-pathogen interactions (Figure 5).

Overall, correlation coefficients between analogous time points

(0.65 to 0.72) were greater than comparisons between dissimilar

time points (0.10 to 0.33) indicating similar expression patterns for

single copy orthologous genes in C. sativus and A. thaliana.

Differential gene expression throughout the infection
process

Differences in gene expression patterns between time points can

provide insight into the host response following pathogen

perception and subsequent infection; thus, the mechanism(s)

through which pathogenicity occurs may be inferred

[42,43,44,45]. For example, a recent publication by Gaulin et al.

[46] used a comparative approach analyzing the transcriptomes of

Aphanomyces euteiches and Phytophthora spp. to identify novel

pathogenicity factors and expanded repertoires for virulence.

Through comparison of gene expression patterns across time

points, we identified genes differentially expressed between all time

points and the control sample, 1 dpi mock inoculation; between

1,170 and 3,286 genes were differentially expressed in pair-wise

comparison between the mock inoculated and/or the inoculated

time points (Table 1, Table S4). In general, 12 to 31% of the genes

tested under different conditions were differentially expressed in

the pair-wise comparisons. In infected samples, comparisons of the

three early to intermediate time points (i.e., 1, 2, and 3 dpi)

showed a higher number of differentially expressed genes (2,214 to

3,286) than those between three intermediate to later (4, 6 and,

8 dpi) time points (1,612 to 2,074), suggesting more correlated

gene expression in later stages of infection.

Gene co-expression pattern analyses
Using Weighted Gene Correlation Network Analysis (WGCNA)

[47], we identified sets of highly correlated genes and constructed

modules where all members are more highly correlated with each

other than they are to genes outside the module [48]. Out of

15,286 genes expressed in the mock control or throughout the

infection time course, 4,410 genes passed the Coefficient of

Variance (CV) filter (0.4) and were retained for downstream

analyses. Of the 4,410 genes, a total of 2,169 were assigned to 11

gene modules that contained between 50 and 428 genes

(Table S5); 2,241 genes were not assigned to any module. To

visualize the relationship of the modules to each other with respect

to the progression of infection, eigengenes for each module were

calculated and displayed in a heat map [49]. As shown in Figure 6,

some modules are representative of genes with correlated co-

expression at primarily a single or two time points (Modules F, G,

H, I, J, and K) whereas other modules represent genes that share

broader co-expression patterns across multiple time points

(Modules A, B, C, D, E). Examination of trend plots for the

modules (Figure 7, Figure S2) reveals the direction and magnitude

Figure 4. Correlation matrix of Cucumis sativus expression
profiles during infection by Pseudoperonospora cubensis. Tissue
samples were collected from C. sativus at different time points of
infection with Ps. cubensis. Normalized transcript abundances for
14,476 genes were calculated as fragments per kilobase pair of exon
model per million fragments mapped (FPKM) with Cufflinks version
0.9.3 [58]. Pearson correlation coefficient of log2 FPKM values were
calculated for all pair-wise comparisons using R (http://cran.r-project.
org/). Hierarchical clustering was performed using Pearson correlation
distance metric and average linkage with the Multiple Experiment
Viewer Software version 4.5 [60]. The bootstrap support values shown
on tree nodes were obtained from 1000 bootstrap replicates. dpi, days
post-inoculation.
doi:10.1371/journal.pone.0034954.g004
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of gene expression patterns. Genes within Module B are expressed

in the mock control and at 1 dpi, but are coordinately down-

regulated at 2 dpi, remaining less abundant through 8 dpi

(Figure 7). This set of 272 genes includes a large suite of genes

implicated in resistance including six lipoxygenase genes, four

cationic peroxidases, two cinnamate 4-hydroxylases, an anthocya-

nidin 3-glucosyltransferase, an anthocyanin 5-aromatic acyltrans-

ferase, a cysteine protease, and the elicitor-inducible protein EIG-

J7. All of these genes have been implicated in defense responses in

other plants [50,51,52,53,54,55], and in total, their coordinate

down-regulation at 2 dpi is suggestive of an active mechanism by

the pathogen to alter host defense responses. For example, the

Figure 5. Comparison of orthologous gene expression in Cucumis sativus and Arabidopsis thaliana in a compatible interaction.
Microarray expression profiles were obtained from time-course analyses of genes expressed in A. thaliana (Arth) during infection by H. arabidopsidis
[41]. Single copy orthologous genes between C. sativus (Cusa) and A. thaliana were identified using OrthoMCL [63]. Log2 transformed expression
values of single copy orthologous genes expressed in the C. sativus mRNA-Seq dataset (log2 fragments per kilobase pair of exon model per million
fragments mapped [FPKM]) and A. thaliana microarray dataset (log2 intensity) are shown as scatter plots. SCC, Spearman correlation coefficient; dpi,
days post-inoculation.
doi:10.1371/journal.pone.0034954.g005

Table 1. Number of genes differentially expressed between different time points.

1 dpi¥ 2 dpi 3 dpi 4 dpi 6 dpi 8 dpi

Mock-Control 1,170 (12%)1 1,906
(19%)

2,596 (26%) 2,509 (25%) 1,713 (17%) 2,556 (26%)

1 dpi 3,286 (31%) 2,948 (30%) 2,849 (27%) 2,010 (20%) 3,014 (30%)

2 dpi 2,214 (23%) 1,736 (18%) 2,718 (27%) 3,006 (29%)

3 dpi 1,590 (16%) 1,840 (18%) 2,218 (23%)

4 dpi 1,842 (18%) 2,074 (21%)

6 dpi 1,612 (16%)

Differential expression analysis was conducted using the cuffdiff program in Cufflinks version 0.9.3 [58], Cucumis sativus v2 annotation, and false discovery rate of 0.01.
¥dpi, days post-inoculation.
1Numbers in parenthesis indicate the percent of significantly different tests out of the total number of tests that could be performed for each pair-wise comparison.
doi:10.1371/journal.pone.0034954.t001
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lipoxygenase pathway has been hypothesized to be involved in

defense responses in cucumber, due to its expansion within the

genome [6], and our data presented herein showing a rapid down-

regulation of these transcripts during infection supports this

hypothesis. In addition, cinnamate 4-hydroxylase, one of the

primary enzymes in the phenylpropanoid pathway responsible for

the conversion of cinnamic acid to p-coumaric acid, was shown to

be rapidly induced in C. sativus in response to abiotic stress [52]. In

this context, it is reasonable to hypothesize that the down-

regulation of its expression (observed in the present study), as well

as that of other genes within the phenylpropanoid pathway, are

suggestive of an active virulence mechanism to abrogate host

responses associated with stress-induced signaling. In addition to

the direct correlation among defense gene expression noted above,

this module also includes the coordinated expression of 33

transcription factors that may also have critical roles in regulating

genes responsible for the induction of defense signaling in the host.

A total of 33 genes of no known function are also in this module,

and further examination of their roles in defense responses may

provide new insight into critical host genes modulated by virulent

pathogens.

Modules F, G, H, I, J, and K all have discrete time points where

genes are up-regulated compared to the other sampled time

points. As shown in Figure S2, genes in Module F (162 genes total)

have a peak of expression solely at 2 dpi. This module contains 21

transcription factors which could be key to regulating genes from

Module G that have peak expression at 3 dpi (Figure 7). Likewise,

Module G (244 genes total) has 21 transcription factors that may

regulate genes within Module H (89 genes total) that are

coordinately up-regulated at 4 dpi (Figure 7). Within all of these

modules (F, G, H, I, J, and K, 726 genes total) there are 199 genes

with no known function and placement of these genes in

transcriptional networks provides a new functional annotation

and contextual information on their function.

In summary, the work described herein represents the first

genome-scale analysis of the cucumber-downy mildew interaction

in which we catalog gene expression throughout an 8 day infection

period and identify differentially expressed genes that could be

correlated with pathogen growth and development in planta. With

expression profiles for nearly 15,000 genes during a compatible

interaction, we have new insight into molecular events at the host-

pathogen interface including a suite of defense response-related

genes that are down-regulated early upon infection and transcrip-

tional networks that respond in a temporal manner throughout the

infection cycle. Most intriguingly, these networks include tran-

scription factors and genes of no known function, which may have

a role in the host-pathogen interaction.

Materials and Methods

Plant materials, inoculum and pathogen infection
C. sativus cv. ‘Vlaspik’ was grown in growth chambers

maintained at 22uC with a 12 h light/dark photoperiod. Ps.

cubensis MSU-1 was maintained as previously described [22]. The

first fully expanded leaf of four-week-old cucumber plants was

inoculated on the abaxial surface with 20–30 10 ml droplets of a

16105 sporangia/ml solution. After inoculation, plants were kept

at 100% relative humidity for 24 hours in the dark. Plants were

returned to growth chambers for disease progression.

Sampling and experimental design
Samples from two biological replicates were collected at 1, 2, 3,

4, 6, and 8 dpi at the site of inoculation using a #3 cork borer.

Additionally, a mock-inoculated sample (i.e.,10 ml dH2O), which

was inoculated as described above and kept at 100% relative

humidity for 24 hours in the dark was collected at 1 dpi. Samples

were frozen immediately in liquid nitrogen and stored at 280uC
until use.

Library preparation and sequencing
Total RNA was isolated from infected leaf discs using the

RNeasy Mini Kit (Qiagen, Germantown, MD) and treated with

DNase (Promega, Madison, WI) per the manufacturer’s instruc-

tions. RNA concentration and quality was determined using the

Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA). The

mRNA-Seq sample preparation was done using the Illumina

mRNA-Seq kit (Illumina, San Diego CA) according to the

manufacturer’s protocol. Parallel sequencing was performed using

an Illumina Genome Analyzer II (Illumina, Inc., San Diego, CA)

at the Research Technology Support Facility (RTSF) at Michigan

State University. Each library within a biological experiment was

barcoded, six different barcodes for 6 time-points, pooled and run

on multiple lanes. Two biological replicates of each time-point

were sequenced multiple times and single-end reads between 35

and 42 bp were generated. Reads from both biological replicates

were pooled for determining expression abundances. The mock-

inoculated sample library was made as described above, but not

barcoded and run in a single lane.

Processing of mRNA-Seq data
mRNA-Seq reads obtained from Illumina Pipeline version 1.3

were quality evaluated on the Illumina purity filter, percent low

quality reads, and distribution of phred-like scores at each cycle.

Reads were deposited in the National Center for Biotechnology

Information Sequence Read Archive under accession number

SRP009350. Reads in FASTQ formats were aligned to the C.

sativus [6] reference genome using TopHat v1.2.0/Bowtie v0.12.5

[56,57]. A reference annotation of C. sativus (version 2) from the

Cucurbit Genomics Database (http://www.icugi.org/cgi-bin/

ICuGI/misc/download.cgi) was provided in which a representa-

tive isoform, the gene model with the longest CDS, was used to

Figure 6. Heat map of eigengenes representing each gene
module. The mock control and post-infection time points are
represented in columns and the eigengenes for each of the 11
identified coexpression modules [49] are presented in rows. The
numbers of genes in each module are given in parentheses. The
eigengene values, which range from 0 to 1, are a measure of centrality
and indicate the relative expression levels of all genes in the module
(see Materials and Methods). dpi, days post-inoculation.
doi:10.1371/journal.pone.0034954.g006
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estimate expression of the gene; a total of 23,248 gene models

from a total of 25,600 gene models were used. All other isoforms

were discarded from the annotation set. The minimum and

maximum intron length was set to 5 and 50,000 bp, respectively;

all other parameters were set to the default values.

Normalized gene expression levels were calculated using

Cufflinks v0.9.3 [58] using the quartile normalization option

[59] to improve differential expression calculations of lowly

expressed genes. The maximum intron length parameter was set

to 50,000 bp. All other parameters were used at the default

settings. Sampling depth was evaluated on expression estimates by

randomly selecting 5, 10, 15, 25, and 30 million reads from the

total pool of reads at all time points. Pearson correlation coefficient

analyses of log2 FPKM values were performed using R (http://

cran.r-project.org/), in which all log2 FPKM values less than zero

were set to zero. Only tests significant at p = 0.05 are shown. The

correlation values were clustered with hierarchical clustering using

a Pearson correlation distance metric with average linkage and

depicted as a heat map. For each node, bootstrap support values

were calculated from 1000 replicates using Multiple Experiment

Viewer Software (MeV) v4.5 [60]. To examine biological

variation, PCC was calculated for the log2 transformed FPKM

values of the genes expressed in both replicates at a particular time

point.

Microarray data acquisition and processing
Comparative analyses of host gene expression responses during

a compatible interaction with the model species A. thaliana utilized

microarray-based gene expression data from an H. arabidopsidis-A.

thaliana time course experiment [41]. The dataset was comprised of

A. thaliana genes expressed in response to H. arabidopsis infection at

0, 0.5, 2, 4, and 6 dpi using the ATH1 Affymetrix platform. The

probe intensity values were downloaded from Gene Expression

Omnibus (http://www.ncbi.nlm.nih.gov/geo/; GSE22274) [61],

normalized using Robust Multichip Analysis method [62].

OrthoMCL [63] was used to identify clusters of orthologs and

close paralogs in cucumber and A. thaliana. For the mRNA-Seq to

microarray comparative analysis only single copy orthologous

genes were considered for further analyses. The FPKM and

intensity values were log2 transformed, and Spearman rank

correlations of the single copy orthologs in both hosts were

calculated in R (http://cran.r-project.org/). Only tests significant

at p = 0.05 are shown.

Identification of differentially expressed genes
The Cuffdiff program within Cufflinks version 0.9.3 [58] was

used to identify differentially expressed genes using pair-wise

comparisons of the six time points and the control. The minimum

number of alignments at a gene required to test was set to 100.

Quartile normalization and a false discovery rate of 0.01 after

Benjamini-Hochberg correction for multiple testing were used.

Significance in the numbers of differentially expressed genes

between time points was tested using the two-sample t-test.
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Figure 7. Trend plots of the normalized gene expression values from six identified gene co-expression modules. Modules consisting
of genes down-regulated at 2 dpi (Module B), genes up-regulated at a single time point (Modules G, H, I, K), and genes up-regulated at two time-
points (Module J) are shown. The number of genes in each module is shown in parentheses.
doi:10.1371/journal.pone.0034954.g007
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Functional analyses of differentially expressed genes
Functional annotation for all C. sativus genes were generated

from BLAST searches of the UniProt databases (Uniref100) [64]

and combined with Pfam (version 24.0, [65]) protein families

assignment using PfamScan (ftp://ftp.sanger.ac.uk/pub/

databases/Pfam/Tools/) C. sativus sequences were functionally

annotated based on the best possible UniRef sequence match

using a minimum E value cutoff of 1E-5. If there was no UniRef

sequence match, functional annotations were assigned using Pfam

domains. Transcription factors were annotated based on PFAM

domain assignment.

Gene co-expression network analysis
Gene modules of highly correlated genes were identified using

the WGCNA method [48] implemented in R (http://cran.r-

project.org/). All gene FPKM expression values were log2

transformed and any transformed FPKM value less than 1 was

converted to zero. Genes without variation across the mock

sample and 6 time points were filtered out using a Coefficient of

Variance (CV =s/m) cutoff of 0.4. The b and treecut parameters

for WGCNA were 13 and 0.9, respectively. All other parameters

were used with their default values. Eigengenes for each gene

module [49] were calculated and presented as a heat map.

Supporting Information

Figure S1 Concordance of expression values in two
biological replicates of Cucumis sativus during infection
by Pseudoperonospora cubensis. Reads from different time

points were mapped to the C. sativus genome using Bowtie version

0.12.5 [57] and TopHat version 1.2.0 [56]. Fragments per

kilobase pair of exon model per million fragments mapped

(FPKM) values were calculated using Cufflinks version 0.9.3 [58]

and the C. sativus genome annotations. For each time point, log2

transformed FPKM values of equal number of genes from both

replicates are plotted. R2, correlation coefficient; dpi, days post-

inoculation.

(PDF)

Figure S2 Trend plots for all 11 modules. All 11 modules

generated using WGCNA are shown (Modules A through K). The

number of genes in each module is shown in parentheses.

(PDF)

Table S1 List of Cucumis sativus genes expressed
following infection with Pseudoperonospora cubensis.

Gene ID, expression values (fragments per kilobase pair of exon

model per million fragments mapped, FPKM) at different time

points, and their functional annotation are shown.

(XLS)

Table S2 List of the top 20 genes highly expressed at
different time points and control, their FPKM (fragments

per kilobase pair of exon model per million fragments mapped)

values and putative function as determined by BLASTX
searches against UniRef100 (E-value cutoff 1e-5), and
Pfam protein family and domain search.
(XLS)

Table S3 Spearman rank correlations of expression
values between single copy orthologous genes in Cucu-
mis sativus and Arabidopsis thaliana following infection
with a compatible oomycete pathogen.

(XLS)

Table S4 List of genes differentially expressed at
different time points along with their expression values
(FPKM) and functional annotation. Differential expression

analysis was conducted using the cuffdiff program in Cufflinks

version 0.9.3 [58]. FPKM, fragments per kilobase pair of exon

model per million fragments mapped.

(XLS)

Table S5 List of modules (Module A through K) with
their corresponding module name, gene ID, and puta-
tive function as determined by BLASTX searches against
UniRef100 (E-value cutoff 1e-5) and transcription factor-
related Pfam domains. Transcription factor-related Pfam

domains were identified using Pfam domain assignment. Expres-

sion values as represented by fragments per kilobase pair of exon

model per million fragments mapped (FPKM) were calculated

using Cufflinks [58].

(XLS)
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