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Abstract

Background: Current treatment of chronic hepatitis C virus (HCV) infection has limited efficacy 2especially among
genotype 1 infected patients2, is costly, and involves severe side effects. Thus, predicting non-response is of major interest
for both patient wellbeing and health care expense. At present, treatment cannot be individualized on the basis of any
baseline predictor of response. We aimed to identify pre-treatment clinical and virological parameters associated with
treatment failure, as well as to assess whether therapy outcome could be predicted at baseline.

Methodology: Forty-three HCV subtype 1b (HCV-1b) chronically infected patients treated with pegylated-interferon alpha
plus ribavirin were retrospectively studied (21 responders and 22 non-responders). Host (gender, age, weight, transaminase
levels, fibrosis stage, and source of infection) and viral-related factors (viral load, and genetic variability in the E1–E2 and
Core regions) were assessed. Logistic regression and discriminant analyses were used to develop predictive models. A
‘‘leave-one-out’’ cross-validation method was used to assess the reliability of the discriminant models.

Principal Findings: Lower alanine transaminase levels (ALT, p = 0.009), a higher number of quasispecies variants in the E1–
E2 region (number of haplotypes, nHap_E1–E2) (p = 0.003), and the absence of both amino acid arginine at position 70 and
leucine at position 91 in the Core region (p = 0.039) were significantly associated with treatment failure. Therapy outcome
was most accurately predicted by discriminant analysis (90.5% sensitivity and 95.5% specificity, 85.7% sensitivity and 81.8%
specificity after cross-validation); the most significant variables included in the predictive model were the Core amino acid
pattern, the nHap_E1–E2, and gamma-glutamyl transferase and ALT levels.

Conclusions and Significance: Discriminant analysis has been shown as a useful tool to predict treatment outcome using
baseline HCV genetic variability and host characteristics. The discriminant models obtained in this study led to accurate
predictions in our population of Spanish HCV-1b treatment naı̈ve patients.

Citation: Saludes V, Bracho MA, Valero O, Ardèvol M, Planas R, et al. (2010) Baseline Prediction of Combination Therapy Outcome in Hepatitis C Virus 1b Infected
Patients by Discriminant Analysis Using Viral and Host Factors. PLoS ONE 5(11): e14132. doi:10.1371/journal.pone.0014132

Editor: John E. Tavis, St. Louis University, United States of America

Received July 1, 2010; Accepted November 8, 2010; Published November 30, 2010

Copyright: � 2010 Saludes et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was funded by "Instituto de Salud Carlos III - Fondo de Investigaciones Sanitarias" (ISCIII-FIS) projects PI05/1131 (EM, RP, VA) and CP09/00044
(EM, MA, RP, VA, VS), grant numbers CD05/00258 ("Contratos Postdoctorales de Perfeccionamiento") and CP09/00044 ("Miguel Servet") from "Ministerio de Ciencia
e Innovacion" (MICINN), within the "Plan Nacional de Investigación cientı́fica, Desarrollo e Innovación Tecnológica (I+D+I)" (EM); and with support from
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Introduction

Hepatitis C virus (HCV), with an estimated 170 million people

infected worldwide, is the major causative agent of chronic liver

disease, cirrhosis and hepatocellular carcinoma [1]. HCV is an

enveloped positive single-stranded RNA virus and its genome

exhibits significant genetic variability, which has been used to classify

the virus into six major genotypes and a number of subtypes [2].

Furthermore, a high replication rate and the lack of proofreading

activity of the viral RNA-dependent RNA polymerase generate a

dynamic mosaic of closely related variants, usually referred to as

quasispecies, within an infected individual. This phenomenon allows

chronic infection establishment and may also have important

implications in pathogenicity and resistance to antiviral drugs [3].

PLoS ONE | www.plosone.org 1 November 2010 | Volume 5 | Issue 11 | e14132



Pegylated-interferon alpha (PegIFN-a) and ribavirin (RBV)

combination therapy constitutes the current standard of care for

chronic hepatitis C treatment [4]. Despite recent advances in the

development of ‘‘specifically targeted antiviral therapy for hepatitis

C’’ (STAT-C) compounds, with protease inhibitors in phase III

studies, possible future treatment regimens are likely to continue

including these drugs in order to prevent HCV resistance [5].

Combination treatment is costly, requires long-term follow-up,

and involves severe side effects. Furthermore, HCV genotype 1

infected patients fail to achieve a sustained virological response

(SVR) in about 40–50% of the cases [6,7]. Genotype 1 is the most

common genotype worldwide; HCV subtype 1b (HCV-1b) is the

most prevalent in Southern and Eastern Europe, Japan and other

countries [8,9] and is associated with a higher risk for

hepatocellular carcinoma development [10].

A number of host-related factors have been associated with a

lower likelihood of response to treatment, such as African-

American ancestry, advanced liver fibrosis or cirrhosis, older

age, male gender, obesity, transaminase levels, and host genetic

polymorphisms [6,7,11–18]. Among the later, the rs12979860

polymorphism near the IL28B gene is the strongest predictive

factor of SVR identified so far [14]; however, European-American

patients not having the most favourable genotype (C/C) still have

approximately 40% chance of responding to therapy (negative

predictive value (NPV) around 60%). With regards to baseline

virological factors, high viral loads, high levels of genetic variability

within the E1–E2 and NS5A regions, as well as mutations in the

so-called interferon sensitivity determining region (ISDR) and

Core regions, have been related to therapeutic failure. Neverthe-

less, such findings have not been found in other studies and remain

controversial [11,19].

As predicting non-response prior to treatment is of major

interest for both patient wellbeing and health care expense, several

predictive models with variable accuracy have been proposed for

HCV-1, such as those based in clinical variables in combination

with viral load [20] or the ISDR mutant [21], as well as amino

acid covariance in the full viral coding region [22]. However,

according to present guidelines for patient management, individ-

ual treatment outcomes can only be precisely predicted once

treatment is initiated on the basis of viral kinetics; a $2-Log(HCV-

RNA) decline at week 12 (early virological response) is the most

robust approach for identifying non-responder patients (NPV, 97–

100%) and thus constitutes the earliest treatment-stopping rule [4].

The goal of this study was to identify pre-treatment clinical and

virological parameters associated with treatment failure, as well as

to assess whether therapy outcome could be predicted at baseline

by means of comprehensive statistical methods in HCV-1b

treatment naı̈ve patients. Our results show that discriminant

analysis could be a useful tool to predict treatment outcome using

both baseline HCV genetic variability and host characteristics.

The discriminant models obtained in this study lead to accurate

predictions in our population of Spanish HCV-1b patients.

Results

Treatment response groups and adherence
Forty-three white Spanish patients met the inclusion criteria, 21

being responders and 22 non-responders. All patients were on

treatment for the complete expected time and adherence to both

drugs was overall .80%. No significant differences were observed

between groups: 20 (95.2%) and 22 (100%) responders and non-

responders had a good adherence to PegIFN-a, respectively

(p = 0.488), and these proportions were 17 (80.9%) and 20 (90.9%)

for RBV (p = 0.412).

Baseline clinical variables associated with treatment
outcome

Baseline clinical characteristics of patients according to

treatment outcome and bivariate analyses results are shown in

Table 1. Responder and non-responder groups were comparable

in terms of gender, age, source of infection, and liver fibrosis stage

(liver biopsy was not performed in 37.2% of the patients).

Regarding body weight, one outlier was identified corresponding

to a responder patient with 101.40 Kg, and differences between

groups became significant when this patient was excluded

(70.7968.35 vs. 78.51614.96 Kg in responder and non-respond-

er groups, respectively p = 0.048). The alanine transaminase (ALT)

quotient was significantly higher in responders than in non-

Table 1. Baseline clinical features of study patients according to treatment response group.

Patient characteristic Responders (n = 21) Non-responders (n = 22) p-value

Male gender, n (%) 9 (42.9) 14 (63.6) 0.172

Age a 47.5269.66 48.55612.39 0.764

Weight (Kg) a 72.24610.53 78.51614.96 0.122

Source of infection, n (%) Blood transfusion 6 (28.6) 10 (45.5) 1.000

Non blood transfusion 2 (9.5) 2 (9.1)

Unknown 13 (61.9) 10 (45.5)

Liver fibrosis stage, n (%) F0-2 11 (52.3) 10 (45.5) 0.648

F3-4 2 (9.5) 4 (18.2)

Unknown 8 (38.1) 8 (36.4)

ALT quotient (6ULN) b 2.51 (1.32–4.15) 1.53 (0.15–4.90) 0.009

AST quotient (6ULN) a 1.7460.50 1.5460.74 0.328

GGT quotient (6ULN) b 0.58 (0.22–1.80) 1.12 (0.18–2.50) 0.111

ALT, alanine transaminase; AST, aspartate transaminase; GGT, gamma-glutamyl transferase; 6ULN, factor times upper limit of normal used in our center for males and
females: 41 and 31 U/L for ALT, 37 and 31 for AST, and 85 and 50 for GGT, respectively;
aData presented as mean 6 SD, Student’s t test;
bData presented as median (range), Mann-Whitney U test.
doi:10.1371/journal.pone.0014132.t001
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responders (p = 0.009). Conversely, the gamma-glutamyl transfer-

ase (GGT) quotient tended to be higher in the non-responder

group; two outliers were identified, which corresponded to two

responder patients, and the GGT quotient was significantly higher

in the non-responder group when these outliers were excluded

(median, 0.58 and 1.07 in responders and non-responders,

respectively, p = 0.033). The aspartate transaminase (AST) quo-

tient was similar in both groups.

Baseline virological variables associated with treatment
outcome

HCV viral load. Viral load did not differ significantly

between groups (p = 0.210), with a mean value of

5.7560.86 Log(IU/ml) in responders, and 6.0360.58 Log(IU/

ml) in non-responders.

E1–E2 genetic variability estimates. The median number

of clones sequenced per patient was 22 (range, 20–33) in

responders and 23 (range, 20–27) in non-responders (p = 0.291),

yielding a total of 993 sequences. Genetic variability estimates

according to treatment outcome and genomic region are shown in

Table 2. Although non-responder patients tended to have higher

values than those with SVR for most E1–E2 genetic variability

estimates, the number of quasispecies variants (number of

haplotypes, nHap) was the only factor that significantly differed

between groups (p = 0.003). Regarding the hypervariable regions

(HVR), the HVR-1 showed the highest values for all parameters;

the nHap and the number of synonymous substitutions per

synonymous site (Ks) in this region were marginally significant,

both being higher in non-responders.

Phylogenetic analysis of the E1–E2 region. Differentiated

clusters corresponding to responder and non-responder patients

were not observed (Figure S1). Patients 1746 and 3468 appeared

to be closely epidemiologically related since they shared a

monophyletic clade with a 100% bootstrap support. In this

clade, sequences from patient 1746 were a subgroup of those

obtained from patient 3468, thus pointing to a source-recipient

relationship. Patients 1634 and 3030, and 587 and 1313 might also

be epidemiologically related, as inferred from the highly supported

clade encompassing sequences from both patients in each group

(100 and 90% bootstrap values, respectively), but no source-

recipient relationship could be inferred.

Analysis of amino acid composition of the E1–E2

region. None of the nine amino acid positions initially

identified by VESPA analysis showed a significantly different

composition between responders and non-responders after the

false discovery rate correction was applied (data not shown).

Analysis of amino acid composition of the Core

region. VESPA analysis did not identify any amino acid

position that differed between groups, although a polymorphism

at position 70 was detected. On the other hand, when pairs of

observed polymorphisms were subjected to bivariate analysis, the

absence of both amino acids arginine (R) at position 70 and

leucine (L) at position 91 was observed in 5 of 21 responder

patients (23.8%) and in 12 of 22 non-responders (54.5%),

(p = 0.039). R70 was substituted either by glutamine (Q) or

histidine (H), and L91 mostly by methionine (M) and by cysteine

(C) in one case. Since phylogenetic analysis showed that patients

with this amino acid pattern did not group within the same cluster,

the observed association was not attributed to sharing a common

ancestry. This phylogenetic analysis provided similar evidence

regarding to epidemiological relationships described for the E1–E2

region (data not shown).

Prediction of the treatment outcome according to
baseline host and virological variables

Logistic regression analysis. Variables showing a p-value

,0.2 in the bivariate analyses (gender, Sqrt(ALT quotient),

Sqrt(GGT quotient), weight, Core amino acid pattern, nHap_

E1–E2, Log(Ks_E1–E2), nHap_HVR-1, and Sqrt(Ks_HVR-1))

were initially considered; the nHap_E1–E2 and the Core amino

acid pattern persisted in the final model (Text S1), with an odds

ratio (OR) of 1.47 (95% confidence interval, CI95% = [1.16–1.87])

and 25.47 (CI95% = [2.52–257.74]), respectively. Thus, the

absence of amino acids R70 and L91 and a higher nHap_E1–

E2 significantly increased the risk for treatment failure. An area

under the curve (AUC) of 0.8755 was obtained in the receiver

operating characteristic (ROC) curve (Figure 1), and selecting a

0.500 cut-off yielded a sensitivity and positive predictive value

(PPV) of 81.0%, and a specificity and NPV of 81.8%.

Table 2. Summary of viral genetic variability estimates according to genomic region.*

E1–E2 region HVR-1 subregion HVR-2 subregion HVR-3 subregion

Estimator
Responders
(n = 21)

Non-
responders
(n = 22)

p-
value

Responders
(n = 21)

Non-
responders
(n = 22)

p-
value

Responders
(n = 21)

Non-
responders
(n = 22)

p-
value

Responders
(n = 21)

Non-
responders
(n = 22)

p-
value

S 60.9642.9 68.0626.7 0.525 16.0 (1–48) 17.0 (0–46) 0.319 3.0 (0–13) 4.0 (1–10) 0.366 13.7610.2 13.166.9 0.817

g 48.0 (9–154) 63.5 (29–142) 0.290 17.0 (1–64) 18.0 (0–59) 0.458 3.0 (0–13) 4.0 (1–11) 0.282 11.0 (2–42) 12.0 (5–34) 0.981

nHap 17 (5–25) 22 (11–27) 0.003 11 (2–17) 12 (1–18) 0.090 4 (1–12) 5 (2–10) 0.281 9.565.4 10.863.4 0.384

p 0.019
(0.002–0.089)

0.024
(0.005–0.077)

0.496 0.043
(0.001–0.261)

0.063
(0.000–0.256)

0.716 0.035
(0.000–0.186)

0.032
(0.003–0.176)

0.734 0.019
(0.001–0.132)

0.021
(0.005–0.099)

0.923

Ka 0.013
(0.000–0.063)

0.014
(0.001–0.060)

0.827 0.052
(0.000–0.294)

0.057
(0.000–0.279)

0.903 0.030
(0.000–0.195)

0.028
(0.000–0.221)

0.961 0.016
(0.000–0.084)

0.009
(0.001–0.084)

0.536

Ks 0.05760.050 0.06460.035 0.609 0.07060.060 0.11260.079 0.064 0.041
(0.000–0.591)

0.048
(0.000–0.190)

0.864 0.040
(0.004–0.322)

0.056
(0.014–0.162)

0.610

*Nucleotide positions corresponding to the H77 reference sequence (GenBank accession number AF009606): E1–E2 region, 1322–1853; HVR-1, 1491–1571; HVR-2, 1761–
1787; HVR-3, 1632–1739.

S, total number of polymorphic sites; g, total number of mutations; nHap, number of haplotypes; p, nucleotide diversity corrected by Jukes-Cantor method; Ka, number
of nonsynonymous substitutions per nonsynonymous site; Ks, number of synonymous substitutions per synonymous site; Data are expressed as mean 6 SD, Student’s t
test or median (range), Mann-Whitney U test.
doi:10.1371/journal.pone.0014132.t002
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Discriminant analysis. Two discriminant functions were

obtained (Text S1) and cross-validated to assess how the results

obtained would generalize to an independent but similar data set.

Variables that persisted in Model 1 were: Core amino acid

pattern, nHap_E1–E2, Sqrt(GGT quotient), Sqrt(ALT quotient),

Log(viral load), Sqrt(total number of polymorphic sites in the

HVR-2, S_HVR-2), body weight, and Log(Ks_E1–E2), in

decreasing order of significance. The ROC curve obtained had

an AUC of 0.9946 (Figure 1). This model yielded a 95.2%

sensitivity and a 100% specificity (Table 3); however, sensitivity

decreased to 76.2% and specificity to 72.7% after cross-

validation. Therefore, we developed model 2 including the

Core amino acid pattern, nHap_E1–E2, Sqrt(GGT quotient),

Sqrt(ALT quotient), nHap_HVR-1, and Sqrt(Ks_HVR-1), and

body weight, in decreasing order of significance. The AUC of the

corresponding ROC curve was 0.9697 (Figure 1). Treatment

outcome was predicted with 90.5% sensitivity and 95.5%

specificity (cut-off, 0.550), and these values remained high after

the cross-validation (85.7% and 81.8%, respectively). Besides, the

model could be optimized to correctly identify most responder

patients by choosing a cut-off of 0.900, so that treatment is not

denied to individuals that are likely to respond (NPV, 93.3% after

cross-validation). Sensitivity, specificity, NPV and PPV for

different cut-offs are shown in Table 3. According to cross-

validation, in an independent but similar data set, treatment

could be omitted in 63.6 to 81.8% of the non-responder patients

while most patients likely to respond would be identified and

treated.

Discussion

As combination treatment failure occurs in about half of all

patients with chronic hepatitis C infected by genotype 1 [6,7],

prediction of treatment outcome at baseline would be highly

beneficial. Although several factors have been identified as

predictors of treatment outcome, none of them can provide a

reliable individualized prediction when used independently. Based

on our results in Spanish patients infected with HCV-1b, we

propose the use of discriminant statistical models based on host

and viral characteristics to provide an aggregate prediction of the

treatment outcome at baseline.

Among the host-related factors studied baseline ALT levels,

which are an indicator of liver damage, were significantly higher in

responder patients than in non-responders (p = 0.009), as previ-

ously reported [11,12]. Conversely, the GGT quotient tended to

be higher in the non-responder group in agreement with other

studies [12,23]; higher GGT levels have been related to advanced

fibrosis, steatosis and insuline resistance, which are more common

among non-responders [24]. The body weight tended to be higher

in non-responder patients; in fact, it has been suggested that obese

subjects have an increased expression of the IFN-a signalling

inhibitor factor SOCS-3 [25]. Some of the host factors that have

previously been associated with treatment failure, such as male

gender, advanced age, advanced liver fibrosis stage and cirrhosis

[6,7,13] did not reach statistical significance in our study probably

due to a limited sample size, especially regarding the liver biopsy,

which was not performed in 37.2% of patients.

Figure 1. Receiver operating characteristic (ROC) curves for the multivariate logistic regression analysis and discriminant analysis
models. AUC, area under the ROC curve; Sensitivity, proportion of responders which are correctly identified; Specificity, proportion of non-
responders which are correctly identified. Variables included in the models in decreasing order of significance: logistic regression model, Core amino
acid pattern and nHap_E1–E2; discriminant analysis model 1, Core amino acid pattern, nHap_E1–E2, Sqrt(GGT quotient), Sqrt(ALT quotient), Log(viral
load), Sqrt(S_HVR-2), body weight, and Log(Ks_E1–E2); discriminant analysis model 2, Core amino acid pattern, nHap_E1–E2, Sqrt(GGT quotient),
Sqrt(ALT quotient), nHap_HVR-1, and Sqrt(Ks_HVR-1), and body weight.
doi:10.1371/journal.pone.0014132.g001
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In relation to virus-related factors, HCV baseline viral load has

been suggested as a predictor of SVR, but several cut-offs have

been proposed [24]. In our study, average viral loads were higher

in non-responders but differences were not significant. Addition-

ally, several studies have reported an association between the level

of variability in the HCV genome at baseline and treatment

outcome. Envelope glycoprotein coding regions are highly

variable; the HVR-1, which is the most variable region in the

whole genome, is targeted by host neutralizing antibodies and

plays a role in immune escape [26]. While the variability in this

region has also been associated with treatment outcome [27–32],

discrepancies on this matter have been noted probably due to the

different treatment regimens, the different genetic variability

estimates employed, and limitations in statistical analyses [33–

35]. While our results show that treatment outcome was not

related to the presence of a common evolutionary origin, in

general terms, the E1–E2 genetic variability estimators suggested

that a high heterogeneity in the baseline viral population could be

involved in combination therapy failure, either through the pre-

existence or the generation of drug-resistant viral variants. A

higher number of quasispecies variants in the E1–E2 region

(nHap_E1–E2) was significantly associated with treatment failure

(p = 0.003). Additionally, when the analysis focussed on the HVR-

1 subregion, nHap and Ks were marginally significant with higher

values in the non-responder group. Although significant differ-

ences between groups at the amino acid level were not found,

synonymous substitutions may have an effect on the secondary

structure of the genomic RNA, which is an important selection

target [36].

Pre-treatment Core amino acid substitutions at positions 70 (R

by Q) and/or 91 (L by M) have been described as useful

independent predictors of treatment failure in Japanese HCV-1b

infected patients [37]. Similarly, our results show an association

between the absence of both R70 and L91 amino acids and

treatment failure (p = 0.039). Although it has been suggested that

the Core protein may inhibit the transcription of antiviral genes

induced by IFN-a [38], further studies are needed to clarify the

role of the observed amino acid substitutions in treatment failure.

Since factors that significantly differed between groups in the

bivariate analyses were not completely reliable in predicting

treatment outcome when used independently, we developed

predictive models that included a combination of variables. The

logistic regression analysis identified the nHap_E1–E2 (OR = 1.47)

and the Core amino acid pattern (OR = 25.47) as independent risk

factors for treatment failure. However, predictive models obtained

by discriminant analysis including additional variables showed

better AUC values and more accurate predictions in our study

population (90.5–95.2% sensitivity and 95.5–100% specificity).

The most significant variables in both discriminant models were

the Core amino acid pattern, nHap_E1–E2, and GGT and ALT

quotients. Although prediction accuracy may deteriorate in an

independent sample, the internal cross-validation pointed to a

better reproducibility for model 2 in a comparable population

(identifying 85.7% and 81.8% of the responder and non-responder

patients, respectively), despite the fact that model 1 best predicted

treatment outcome in our population. Besides, using model 2 the

detection of those patients likely to respond to therapy could be

maximized by adjusting the cut-off, leading to a higher NPV at the

cost of a lower specificity (93.3% and 63.6%, respectively, after

cross-validation). Thus, the results suggest that non-response could

be predicted at baseline with high accuracy (NPV after cross-

validation of 81.8% to 93.3% depending on the cut-off) in patient

groups comparable to ours in terms of ethnicity, clinical

background, and HCV subtype.

To our knowledge, this is the first study that describes a model

for predicting individual combination therapy outcomes on the

basis of baseline host and viral characteristics using a discriminant

multivariate analysis. This comprehensive statistical method

integrates the information of all variables included in the model

thus improving the prediction with respect to more commonly

used statistical approaches. Additionally, discriminant models may

be adjusted to include the most significant predictors of treatment

outcome in each population. However, our study has several

limitations: i) other viral genome regions not included in the study

might also be involved in resistance to therapy, such as the ISDR.

Nevertheless, a meta-analysis suggested that the association

between the number of mutations in this region and SVR

achievement was more pronounced in Japanese than in European

patients [39]. As most European HCV-1b strains present less than

3 mutations, large sample sizes would be required to find

significant associations; ii) recent studies have suggested that single

nucleotide polymorphisms in several human genes involved in the

IFN mediated response are associated to treatment outcome in

HCV-1 infected patients, especially the IL28B gene polymor-

phisms [14–18]. Since our study was retrospective, whole-blood

samples were not available to assess host genetic polymorphisms;

iii) the sample size was limited to 43 patients. However, a similar

number of patients were included in each group, accounting for

the fact that about 50% of patients infected by HCV-1b achieve

an SVR. Although an independent but similar population was not

available, we performed an internal cross-validation. This method

is commonly used to reduce classification bias and estimate future

model performance [40].

Our results show that both host and viral factors are involved

in treatment failure, although the exact mechanisms should be

further characterized. The host-related variables included in the

prediction models are routinely used for patient management

and relatively easy to obtain, while viral variability estimates are

obtained through laborious methods. Even so, and if confirmed

in further studies, the information obtained may help physicians

to restrict treatment to those patients that are likely to benefit

from it, thus reducing overall treatment costs. Those patients

Table 3. Sensitivity, specificity, and predictive values for the discriminant models obtained.

AUC Cut-off
Sensitivity, % (cross-
validated)

Specificity, % (cross-
validated)

NPV, % (cross-
validated)

PPV, % (cross-
validated)

Model 1 0.9946 0.500 95.2 (76.2) 100 (72.7) 95.7 (76.2) 100 (72.7)

Model 2 0.9697 0.550 90.5 (85.7) 95.5 (81.8) 95.0 (81.8) 91.3 (85.7)

0.900 95.2 (95.2) 68.2 (63.6) 93.8 (93.3) 74.1 (71.4)

AUC, area under the receiver operating characteristic curve; PPV, positive predictive value; NPV, negative predictive value.
doi:10.1371/journal.pone.0014132.t003
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that are unlikely to respond could avoid current therapy and

related side effects, and wait for more effective treatment

regimens.

In conclusion, discriminant analysis using both baseline HCV

genetic variability and host characteristics has been shown as a

useful statistical tool allowing us to accurately predict combination

treatment outcome in a high proportion of Spanish HCV-1b

infected patients. Further studies including host genetic polymor-

phisms and larger numbers of patients are under way, and

similarly generated models will probably have an increased

predictive power.

Materials and Methods

Ethics statement
This study was approved by the Clinical Research Ethics

Committee at our institution (‘‘Comité Ético de Investigación

Clı́nica’’, CEIC). As this was a retrospective study, and data were

analyzed anonymously, informed consent was specifically waived.

Patients and specimens
Patients with chronic hepatitis C by HCV-1b, treated with

combination therapy at ‘‘Hospital Universitari Germans Trias i

Pujol’’, were retrospectively selected. Exclusion criteria were:

previous IFN-based treatment, HIV or HBV coinfection, and

having other causes of liver disease or alcohol abuse. Infection with

HCV-1b was confirmed through NS5B sequencing followed by

phylogenetic analysis, as previously described [41]. The patients

had started antiviral therapy with PegIFN-a2a (180 mg/week) plus

weight-based doses of RBV (1000–1200 mg/day) for 48 weeks

between 2003 and 2008. The patients were classified into

responders (patients with SVR, defined as undetectable HCV-

RNA in serum 24 weeks after treatment cessation) and non-

responders. Non-response was defined as continued presence of

HCV-RNA during therapy (null response), rebound of HCV-

RNA while on therapy (breakthrough) or 24 weeks after the end of

treatment (relapse). All virological analyses were performed using

serum specimens obtained before patients initiated treatment and

conserved at 280uC until testing.

Baseline clinical and epidemiological host parameters
Variables considered were gender, age, weight, source of

infection, stage of fibrosis according to the Scheuer scoring system

[42], and serum levels of ALT, AST, and GGT. Liver enzyme

levels were transformed into a quotient expressing the factor times

upper limit of normal (ULN) according to gender. We defined

good treatment adherence as having received $80% of total

maximum dose prescribed of both drugs for $80% of the

expected duration of therapy [43].

Baseline virological parameters
Serum viral load. HCV-RNA had been quantified by RT-

PCR (CobasH Amplicor HCV Monitor test, Roche Molecular

Systems, Pleasanton, CA, USA) or by real-time RT-PCR (Abbott

RealTime HCV assay, Abbott Molecular Inc., Des Plaines, IL,

USA), according to manufacturer’s instructions.

RNA extraction and reverse transcription (RT). Total

RNA was extracted from 220 ml of serum, using the QIAampH
viral RNA kit (QIAGENH GmbH, Hilden, Germany) according to

the manufacturer’s protocol. RT was performed using random

hexamers in order to prevent any bias during the reaction, as

previously described [44].

PCR-cloning and sequencing of the E1–E2 region. A 532-

bp sequence encompassing the E1 C-terminal and the E2 N-

terminal regions (including the HVR-1, HVR-2 and HVR-3) was

obtained and referred to as E1–E2 region (nucleotides 1322–1853

in the H77 reference sequence, GenBank accession number

AF009606). PCR products were cloned and sequenced as

previously described [44]. Briefly, a hemi-nested PCR was

carried out with the proofreading Pfu DNA polymerase

(Promega, Mannheim, Germany), and HCV-1b specific

degenerated primers (2-Eg1 and 2-Ea, and 2-Eg2 and 2-Ea

primers for the first and second rounds of PCR, respectively) [45].

Amplified DNA products were purified and cloned into EcoRV-

digested pBluescript II SK(+) phagemid (Stratagene, La Jolla, CA,

USA). Plasmids were transformed into Escherichia coli XL-1 blue

MRF’ competent cells (Stratagene). Between 25 and 35 colonies

were selected and subjected to PCR followed by purification and

sequencing of both strands using vector-based primers and the

BigDyeTM Terminator v3.1 Ready Reaction Cycle Sequencing

Kit on ABI Prism 3730 or 3100-Avant Genetic Analyzers (Applied

Biosystems Foster City, CA, USA). Readings were assembled and

edited with the STADEN package v1.6. [46].

PCR and direct sequencing of the Core region. The

whole Core region (573 bp, H77 positions 342–914) was amplified

using forward primer Cg1 (59 GCCATRGTGGTCTGCGGAAC

39, H77 positions 137–156), which was slightly modified from

primer CC11 [37], and reverse primer Ca (59 GTTGGA-

GCAGTCGTTCGTRA 39, H77 positions 949–968). PCR was

performed in 50 ml containing 5 ml of cDNA, 0.2 mM of each

dNTP, 0.4 mM of each primer, Pfu buffer and 0.6 U of Pfu DNA

polymerase (Promega). Thermocycler conditions were: 1 cycle at

94uC for 2 min, 35 cycles at 94uC for 1 min, 55uC for 2 min and

72uC for 3 min, and 1 cycle at 72uC for 7 min. PCR products

were directly sequenced with the Cg2 primer (59 GGGAG-

GTCTCGTAGACCGTGCAYCATG 39, H77 positions 318–

344), which was slightly modified from the Core-A1g primer [47],

and the Ca primer.

Phylogenetic analysis of the E1–E2 region. The complete

E1–E2 cloned region was subjected to phylogenetic analysis in

order to rule out potential contamination between specimens and

assess clustering of patients according to treatment outcome.

Sequences were aligned by ClustalW implemented in MEGA 4

[48]. jModeltest [49] was used to obtain the evolutionary model

that best fitted the data according to the Akaike Information

Criterion. This model was employed to reconstruct a maximum-

likelihood phylogenetic tree with PHYML [50]. RAxML software

was used for evaluating tree reliability on the basis of branch

support (1000 replicates) [51].

Genetic variability analysis of the E1–E2 region. Multiple

alignments were generated for each patient for the complete E1–

E2 region, and the HVR-1, HVR-2 and HVR-3 (H77 nucleotide

positions 1491–1571, 1761–1787, and 1632–1739, respectively).

The following genetic variability estimates were obtained for each

multiple alignment with DnaSP v4.50 [52]: total number of

polymorphic sites (S), total number of mutations (g), nucleotide

diversity corrected by Jukes-Cantor method (p), and number of

quasispecies variants (number of haplotypes, nHap). The number

of nonsynonymous substitutions per nonsynonymous site (Ka) and

Ks were obtained using the Nei-Gojobori method.

Amino acid composition analysis in the E1–E2 region.

This analysis aimed to detect any amino acid position in the E1–

E2 region that differed between groups but showed within-group

homogeneity. Consensus sequences were compared between

groups with the program VESPA [53] to obtain the

predominant sequence for each group. The VESPA output file

was employed to estimate the G-statistics in each amino acid

position as previously described [31], where p-values #0.05 were
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considered significant. The false discovery rate procedure was used

to correct for multiple comparisons.
Amino acid composition analysis of the Core region.

Direct sequences obtained were analysed as described for the E1–

E2 region. Sequences were also aligned to assess the presence of

amino acid polymorphisms associated to treatment outcome.
Statistical analysis. Clinical and virological values were

compared between responders and non-responders in bivariate

analysis using Student’s t test or Mann-Whitney U test for

quantitative variables, and Chi-square or Fisher’s exact tests for

categorical variables. Data was expressed as mean 6 standard

deviation, median and range, or relative frequency. Values

between 1.5 and 3 inter-quartile range above/below the upper/

lower quartile of quantitative variables were identified as outliers.

Statistical models were developed to predict non-response. A

multivariate logistic regression analysis was performed, where

covariates included in the model were explanatory variables that

achieved a p-value ,0.20 on bivariate analyses. Variables which

presented high correlations with other variables (Spearman’s

correlation .0.7) were also excluded to avoid colinearity

problems. To obtain the final set of variables included in the

model we used a backward stepwise selection procedure [54]. OR

and CI95% were reported for significant variables. Two discrim-

inant analyses were also carried out [55]. In model 1 all covariates

analyzed but those which presented high correlations with other

variables were considered. Variables with a skewed distribution

were transformed using quadratic or Log transformations and

multivariate normality was tested using Henze-Zirkler’s test [56].

The final discriminant function was obtained using a backward

stepwise variable selection procedure. To assess how the results

obtained would generalize to an independent but similar data set,

each case was classified by the functions from all cases other than

that case (‘‘leave-one-out’’ cross-validation); this validation was

performed in the whole stepwise variable selection procedure. Chi-

square test was used to test the equality of covariance structures

across groups [57], considering a pooled covariance matrix when

the value was not significant at the 0.1 level. Model 2 included

covariates that achieved a p-value ,0.15 on bivariate analyses

with the goal to improve the cross-validation results. ROC curves

were obtained and the following parameters were calculated to

measure the effectiveness of prediction: AUC, sensitivity (propor-

tion of responders which are correctly identified), specificity

(proportion of non-responders which are correctly identified),

NPV and PPV. These parameters were also computed after cross-

validation taking into account all misclassified patients in any of

the 43 replications. Cut-off values that yielded highest sensitivity

and specificity were selected by ROC curve analysis for the three

predictive models obtained. P-values ,0.05 were considered

significant. Statistical analyses were performed using the statistical

software packages SPSS v15.0 and SAS v9.1 (SAS Institute Inc.,

Cary, NC, USA).

Accession numbers. All sequences obtained in this study

were submitted to the EMBL Nucleotide Sequence Database

(http://www.ebi.ac.uk/embl/) under the following accession

numbers: FN675941-FN675983, FN675984-FN676976, and

FN676977-FN677019 for Core, E1–E2 and NS5B regions,

respectively.

Supporting Information

Figure S1 All viral sequences obtained for each patient are

identified with a vertical line, the patient identification number

and the response group (R, responders; NR, non-responders).

Substitution model: GTR+G+I (gamma shape parameter: 0.926,

proportion of invariable sites: 0.271). All nodes corresponding to

each individual patient were supported with bootstrap values

.70%. The scale bar represents 0.05 substitutions per nucleotide

position.

Found at: doi:10.1371/journal.pone.0014132.s001 (0.02 MB

PDF)

Text S1

Found at: doi:10.1371/journal.pone.0014132.s002 (0.03 MB

DOC)
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31. Torres-Puente M, Cuevas JM, Jiménez-Hernández N, Bracho MA, Garcı́a-
Robles I, et al. (2008) Genetic variability in hepatitis C virus and its role in

antiviral treatment response. J Viral Hepat 15: 188–199.
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45. Bracho MA, Garcı́a-Robles I, Jiménez N, Torres-Puente M, Moya A, et al.

(2004) Effect of oligonucleotide primers in determining viral variability within
hosts. Virol J 1: 13.

46. Staden R, Beal KF, Bonfield JK (2000) The Staden package, 1998. Methods
Mol Biol 132: 115–130.
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