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Abstract

Background: Mild retinopathy (microaneurysms or dot-blot hemorrhages) is observed in persons without diabetes or
hypertension and may reflect microvascular disease in other organs. We conducted a genome-wide association study
(GWAS) of mild retinopathy in persons without diabetes.

Methods: A working group agreed on phenotype harmonization, covariate selection and analytic plans for within-cohort
GWAS. An inverse-variance weighted fixed effects meta-analysis was performed with GWAS results from six cohorts of
19,411 Caucasians. The primary analysis included individuals without diabetes and secondary analyses were stratified by
hypertension status. We also singled out the results from single nucleotide polymorphisms (SNPs) previously shown to be
associated with diabetes and hypertension, the two most common causes of retinopathy.

Results: No SNPs reached genome-wide significance in the primary analysis or the secondary analysis of participants with
hypertension. SNP, rs12155400, in the histone deacetylase 9 gene (HDAC9) on chromosome 7, was associated with
retinopathy in analysis of participants without hypertension, 21.360.23 (beta 6 standard error), p = 6.661029. Evidence
suggests this was a false positive finding. The minor allele frequency was low (,2%), the quality of the imputation was
moderate (r2 ,0.7), and no other common variants in the HDAC9 gene were associated with the outcome. SNPs found to be
associated with diabetes and hypertension in other GWAS were not associated with retinopathy in persons without
diabetes or in subgroups with or without hypertension.

Conclusions: This GWAS of retinopathy in individuals without diabetes showed little evidence of genetic associations.
Further studies are needed to identify genes associated with these signs in order to help unravel novel pathways and
determinants of microvascular diseases.

Citation: Jensen RA, Sim X, Li X, Cotch MF, Ikram MK, et al. (2013) Genome-Wide Association Study of Retinopathy in Individuals without Diabetes. PLoS ONE 8(2):
e54232. doi:10.1371/journal.pone.0054232

Editor: Balraj Mittal, Sanjay Gandhi Medical Institute, India

Received August 8, 2012; Accepted December 11, 2012; Published February 5, 2013

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for
any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Funding: The authors declare that they have no relevant financial interests. Age, Gene/Environment Susceptibility–Reykjavik Study has been funded by National
Institutes of Health (NIH) contract N01-AG-12100, the National Institute on Aging and National Eye Institute Intramural Research Programs at the NIH
(ZIAAG007380 and ZIAEY000401), Hjartavernd (the Icelandic Heart Association), and the Althingi (the Icelandic Parliament). The Atherosclerosis Risk in
Communities Study is carried out as a collaborative study supported by National Heart, Lung, and Blood Institute contracts HHSN268201100005C,
HHSN268201100006C, HHSN268201100007C, HHSN268201100008C, HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, HHSN268201100012C,
R01HL087641, R01HL59367 and R01HL086694; National Human Genome Research Institute contract U01HG004402; and National Institutes of Health contract
HHSN268200625226C. Infrastructure was partly supported by Grant Number UL1RR025005, a component of the National Institutes of Health and NIH Roadmap
for Medical Research. The Blue Mountains Eye Study (BMES) was supported by the Australian National Health & Medical Research Council (NHMRC) grants (IDs
974159, 991407, 211069 and 457349). The genome-wide association study was supported by the following grants: NHMRC project grants IDs 512423, 475604,
529912 and 590204, and funding by the Wellcome Trust, UK as part of Wellcome Trust Case Control Consortium 2 (A Viswanathan, P McGuffin, P Mitchell, F
Topouzis, P Foster), which supported the genotyping costs of the entire BMES population (Grant numbers 085475/B/08/Z and 085475/08/Z). The Cardiovascular
Health Study research was supported by National Heart, Lung, and Blood Institute (NHLBI) contracts N01-HC-85239, N01-HC-85079 through N01-HC-85086; N01-
HC-35129, N01 HC-15103, N01 HC-55222, N01-HC-75150, N01-HC-45133 and NHLBI grants HL080295, HL075366, HL087652, HL105756 with additional
contribution from the National Institute of Neurological Disorders and Stroke. Additional support was provided through AG-023629, AG-15928, AG-20098, and
AG-027058 from the National Institute on Aging. See also http://www.chs-nhlbi.org/pi.htm. DNA handling and genotyping was supported in part by the Clinical
Translational Science Institute grant UL1RR033176 to the Cedars-Sinai General Clinical Research Center Genotyping core and National Institute of Diabetes and
Digestive and Kidney Diseases grant DK063491 to the Southern California Diabetes Endocrinology Research Center. Additional funding was provided by the
Cedars-Sinai Board of Governors’ Chair in Medical Genetics (JIR). The Multi-Ethnic Study of Atherosclerosis (MESA) and MESA SNP Health Association Resource
(SHARe) are conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with MESA investigators. Support is provided by
grants and contracts N01 HC-95159 through N01-HC-95169 and RR-024156. Funding for SHARe genotyping was provided by NHLBI Contract N02-HL-6-4278. The
authors thank the other investigators, the staff, and the participants of the MESA study for their valuable contributions. A full list of participating MESA
investigators and institutions can be found at http://www.mesa-nhlbi.org. The GWA database of the Rotterdam Study was funded through the Netherlands
Organization of Scientific Research NWO (nr. 175.010.2005.011). The Rotterdam Study is supported by the Erasmus Medical Center and Erasmus University,
Rotterdam; the Netherlands Organization for Scientific Research, the Netherlands Organization for Health Research and Development, the Research Institute for
Diseases in the Elderly, the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII), and the
Municipality of Rotterdam. The ophthalmologic part of the Rotterdam Study was supported by Lijf en Leven, Krimpen a/d Lek; MD Fonds, Utrecht. Oogfonds
Nederland, Utrecht; Stichting Nederlands Oogheelkundig Onderzoek, Nijmegen/Rotterdam; Swart van Essen, Rotterdam; Netherlands Organisation for Scientific
Research; Bevordering van Volkskracht, Rotterdam; Blindenhulp, The Hague; Rotterdamse Vereniging Blindenbelangen, Rotterdam; OOG, The Hague; Algemene
Nederlandse Vereniging ter Voorkoming van Blindheid, Doorn; Blinden-Penning, Amsterdam; Blindenhulp, ’s Gravenzande; Henkes Stichting, Rotterdam; Topcon
Europe BV, Capelle aan de IJssel; Medical Workshop BV, Groningen; all in the Netherlands; Heidelberg Engineering, Dossenheim, Germany. The Singapore Indian
Eye Study was funded by grants from the Biomedical Research Council of Singapore (BMRC 09/1/35/19/616 and BMRC 08/1/35/19/550) and the National Medical
Research Council of Singapore (NMRC/STaR/0003/2008). The Singapore BioBank and the Genome Institute of Singapore, Agency for Science, Technology and
Research, Singapore provided services for tissue archival and genotyping. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: richaj@uw.edu

First author from each of the cohorts involved in the study.

" Senior author from each of the cohorts involved in the study.

{ Membership is provided in the acknowledgements.

Retinopathy GWAS in Individuals without Diabetes

PLOS ONE | www.plosone.org 2 February 2013 | Volume 8 | Issue 2 | e54232

.



Introduction

Mild retinopathy, defined as the presence of isolated microan-

eurysms or dot-blot hemorrhages, is frequently observed in the

general non-diabetic population. Several population studies report

these signs are found in 5 to 15% of adults without diabetes

[1,2,3]. These retinopathy lesions represent a disruption of the

blood–retinal barrier that results from increased arteriolar tone,

vasospasm, media hyperplasia, intimal thickening and degenera-

tion of vascular smooth muscle with or without endothelial cell

necrosis [3]. In addition, these clinical findings are typically

transitory in nature making them difficult to study [2].

The etiology of mild retinopathy in individuals without diabetes

remains unclear [4]. Risk factors identified in individuals without

diabetes include older age, hypertension, impaired glucose

tolerance, dyslipidemia, obesity and elevated levels of inflamma-

tory markers. Of these, hypertension is the major risk factor

[5,6,7,8,9]. In normotensive individuals, few risk factors have been

consistently identified.

Importantly, mild retinopathy signs have been suggested to

reflect microvascular disease in other end organs. For example,

studies have shown mild retinopathy signs are associated with

renal dysfunction [10,11,12], incident hypertension [1], clinical

stroke [13,14,15,16,17], congestive heart failure [18], and

cardiovascular mortality [19,20]. Mild retinopathy may also signal

subsequent risk of clinical diabetes for individuals who do not

currently have diabetes but have a family history of diabetes [21].

To date, no genetic studies of mild retinopathy have been

conducted in a population without diabetes. In an attempt to

identify biological pathways involved in the pathogenesis of these

signs, we conducted a genome-wide association study (GWAS) to

examine the association between ,2.5 million single nucleotide

polymorphisms (SNPs) and the presence of isolated microaneu-

rysms or dot-blot hemorrhages. This was done in six community-

based cohorts comprising 19,411 individuals of European ances-

try, followed by a meta-analysis of GWAS results. The primary

analysis was restricted to individuals without diabetes and

secondary analyses were stratified by hypertension status. No

European cohorts were available for replication so we examined

the SNP and locus transferability of genome-wide significant

results in a cohort of Singapore Indian Asians and an African

American cohort. We also investigated the association of these loci

with other diseases that may share a similar microvascular

etiology, including kidney disease, in cohorts of European

ancestry. Finally, we looked at SNPs identified in previous GWAS

of diabetes and hypertension (the two most common causes of

retinopathy [22,23]) to determine if they were associated with

retinopathy in a normotensive population thought to be free of

diabetes.

Methods

Ethics Statement
Each cohort secured approval from their respective institutional

review boards, and all participants provided written informed

consent in accordance with the Declaration of Helsinki.

Study Population
The study population was comprised of individuals from six

studies across Australia, Europe and the United States. Partici-

pants of European ancestry came from the Cohorts for Heart and

Aging Research in Genetic Epidemiology (CHARGE) Consortium

[24] {the Age, Gene/Environment Susceptibility (AGES)–Reykja-

vik Study [25], the Atherosclerosis Risk in Communities (ARIC)

Study [26], the Cardiovascular Health Study (CHS) [27], and the

Rotterdam Study (RS) [28]}, the Blue Mountain Eye Study [29]

(BMES) and the Multi-Ethnic Study of Atherosclerosis (MESA)

[30].

All participating studies approved guidelines for collaboration,

and a working group agreed on phenotype harmonization,

covariate selection and analytic plans for within-study analyses

and meta-analyses of results. Details of each participating study are

provided in the Supplementary Material including sample

selection, retinopathy grading, genotyping platform, imputation

algorithm, and quality control procedures used by each study.

The Reykjavik Study is a population study with a random

sample of 30,794 residents assembled in 1967 to study cardiovas-

cular disease and its risk factors among those born between 1907

and 1935. The AGES is a prospective study of 5,764 surviving

members, aged 66 years and older recruited from 2002–2006 [25].

It was designed to examine genetic susceptibility and environ-

mental interactions as risk factors for disease and disability in old

age.

The ARIC study is a population-based prospective cohort study

of cardiovascular disease and its risk factors [26]. ARIC included

15,792 individuals aged 45 to 64 years at baseline (1987–1989),

selected by probability sampling from four US communities.

The BMES is a population-based cohort study of vision and

common eye diseases in an urban older population comprising two

postcode areas in the Blue Mountains region, west of Sydney,

Australia [29]. The original cohort (1992–1994) included 3,654

participants, of those, 2,335 participants were examined at the

five-year follow up exam and 1,952 at the ten-year exam.

The CHS is a population-based cohort study of risk factors for

cardiovascular disease in adults 65 years of age or older conducted

at four field centers [27]. The original cohort of predominantly

European ancestry consisted of 5,201 participants recruited in

1989–1990 from random samples of Medicare lists. An additional

687 African-Americans were enrolled in 1992–1993.

MESA is a prospective study of 6,814 adults aged 45–84 years

with no history of clinical cardiovascular disease at the baseline

exam (July 2000–July 2002) [30]. Each site recruited equal

numbers of men and women with site-specific racial and ethnic

proportions. Participants defined themselves as European, African,

Hispanic, or Chinese Americans. Only subjects of European

ancestry were used in the discovery phase of this study.

The RS is a prospective population-based cohort study

comprising 7,983 participants aged 55 years or older from

Ommoord, a district of Rotterdam, the Netherlands. It was

designed to investigate the incidence and progression of diseases in

the elderly and the original cohort was identified between 1990

and 1993 [28].

Retinopathy
Retinopathy was defined as the presence of microaneurysms or

dot-blot hemorrhages. Individuals with diabetes were excluded.

We also excluded individuals with secondary causes of retinopathy

(e.g. branch or central retinal vein occlusions, late age-related

macular degeneration) and other retinopathy phenotypes includ-

ing exudates without microaneurysms or dot-blot hemorrhages

and pre-retinal or vitreous hemorrhages.

Fundus photographs were graded using site-specific standard-

ized protocols (Supplemental Material). Not all sites took pictures

with multiple fields of view through dilated pupils in both eyes.

Some sites took photographs through undilated pupils (ARIC,

CHS, MESA), some sites were limited to photographs using 1 field

of view (ARIC, CHS, RS) and one site (CHS) did not take

photographs of both eyes.

Retinopathy GWAS in Individuals without Diabetes
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Diabetes and Hypertension
Diabetes was defined by self-report or fasting blood glucose

$126 mg/dL [7.0 mmol/L]. In Rotterdam, fasting glucose was

not available at baseline so participants were excluded if random

glucose was .198 mg/dL [11.0 mmol/L]. Hypertension was

defined as current use of blood pressure medication or systolic/

diastolic blood pressure $140/90 mm Hg.

Genotyping
Different genotyping platforms were used by the individual

studies prior to formation of collaborative phenotype working

groups. The AGES and CHS used the Illumina HumanCNV370-

Duo. The ARIC and MESA studies used the Affymetrix

GeneChip SNP Array 6.0. The BMES used the Illumina

Human670Quadv1 custom chip. The RS used the Illumina

Infinium HumanHap550-chip v3.0. All of the cohorts imputed to

about 2.5 million SNPs using the HapMap Centre d’Etude du

Polymorphisme Humain collection samples from Utah (CEU)

reference panel [31] after quality control analyses, (Supplementary

Material).

Statistical Analysis
In participants without diabetes, a GWAS of mild retinopathy

including microaneurysms and dot-blot hemorrhages was con-

ducted by each of the six cohorts described above. Logistic

regression was performed using an additive genetic model with a

1-degree of freedom test of trend relating the presence of

retinopathy to genotype dosage (0–2 copies of the coded allele)

and adjusting for age, sex and systolic blood pressure. For

individuals currently taking medication to control blood pressure,

10 mm of Hg was added to the measured systolic blood pressure

based on methods established for previous GWAS of hypertension

and blood pressure [32]. This was chosen as a more parsimonious

method rather than adjusting separately for both systolic blood

pressure and current use of medication to treat hypertension.

ARIC and CHS also adjusted for clinic site, BMES adjusted for

four multi-dimensional scaling dimensions and MESA adjusted for

population structure using 10 principal components. Regression

coefficients and their standard errors were determined using the

ProbABEL program (http://mga.bionet.nsc.ru/̃ yurii/ABEL/)

[33] in AGES, ARIC, BMES and RS. R software (http://www.

r-project.org) was used in CHS and SNPTEST v2 [34,35] was

used in MESA.

An inverse-variance weighted fixed effects meta-analysis of the

beta coefficients and standard errors from each site was performed

using METAL software (http://www.sph.umich.edu/csg/

abecasis/Metal/index.html). The fixed-effects analysis provides a

good approximation of the estimates we would get from a

Table 1. Subject characteristics by study site.

Subject Characteristic AGES ARIC BMES CHS MESA RS

Sample Size* 2,451 7,116 2,237 966 2,059 4,582

HTN 1,941 2,614 1,656 494 728 1,433

No HTN 510 4,502 581 472 1,331 3,149

Age (years){ 76.065.4 60.165.6 66.869.1 78.364.1 63.9610.1 67.968.3

HTN 76.565.4 61.565.6 67.968.8 78.564.2 67.769.6 69.968.3

No HTN 74.264.9 59.365.5 63.869.0 78.163.9 61.769.7 67.168.1

Body Mass Index (kg/m2){ 26.964.3 27.564.9 27.564.7 26.364.1 27.564.9 26.263.6

HTN 27.164.4 28.865.3 28.064.8 26.964.4 28.764.9 27.263.7

No HTN 26.064.0 26.864.5 26.163.9 25.663.5 26.864.7 25.863.5

Systolic Blood Pressure (mm Hg){ 141.7619.7 121.9617.9 146.4621.5 134.5620.0 120.2618.9 138.0621.8

HTN 145.9619.6 133.7619.8 154.6618.4 137.1620.7 132.7620.4 155.6622.5

No HTN 125.669.3 115.0612.2 123.369.5 131.8618.9 112.7613.1 130.0616.1

Diastolic Blood Pressure (mm Hg){ 74.269.5 70.869.9 84.7610.2 68.5610.8 68.869.6 73.8611.3

HTN 75.069.9 74.4611.0 87.369.5 68.6610.0 71.7610.2 80.0611.9

No HTN 71.367.2 68.668.49 77.268.1 68.4611.5 67.068.6 71.069.8

Females (%) 58.9 54.3 56.6 64.7 52.0 58.6

HTN 59.8 52.8 57.7 65.2 50.4 63.1

No HTN 55.7 55.1 53.5 64.2 52.7 56.5

Current Smokers (%) 12.9 17.4 9.8 5.6 17.1 23.3

HTN 12.1 14.8 8.3 4.9 10.7 19.2

No HTN 15.9 18.9 14.1 6.4 20.8 25.1

Fasting Glucose (mg/dl) 99.169.0 98.4610.0 98.5630.3 91.569.4 91.169.4 113.4623.4{

HTN 99.669.1 100.0610.3 99.9630.7 92.769.5 92.869.8 117.0623.4{

No HTN 97.368.6 97.469.7 94.7628.7 90.269.1 90.068.9 111.6623.4{

*Sample size of cohort used for primary analysis.
{Presented as mean (standard deviation).
{Random glucose. HTN: Current use of blood pressure medication or systolic/diastolic blood pressure $140/90. AGES: Age, Gene/Environment Susceptibility-Reykjavik
Study. ARIC: Atherosclerosis Risk in Communities study. BMES: Blue Mountains Eye Study. CHS: Cardiovascular Health Study. MESA: Multi-Ethnic Study of Atherosclerosis.
RS: Rotterdam Study.
doi:10.1371/journal.pone.0054232.t001
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combined analysis in which we adjusted for cohort effects. While a

random-effects analysis adjusts for heterogeneity between studies,

there were too few cohorts available in this study to have power to

measure heterogeneity across cohorts. Strand information was

available from all the cohorts and all results were synchronized to

the forward strand. The level of genome-wide significance was set

at p,561028, corresponding to a family-wise p-value of 0.05 after

Bonferroni correction for one million independent tests. To

account for possible residual population structure or other

confounding factors, genomic control [36] was applied to each

cohort before meta-analysis. This entailed multiplying the standard

error of the SNP regression coefficient by the square root of the

estimated genomic control inflation factor for that cohort.

In the secondary analyses, participants were stratified by

hypertension status, defined above. Adjustments for the stratified

analyses were the same as those used for the primary analysis

except no adjustment was included for systolic blood pressure in

individuals without hypertension and systolic blood pressure was

replaced by an indicator variable for treatment of hypertension

(yes/no) in the analyses of individuals with hypertension.

We also examined the SNP and locus transferability of our

findings to cohorts of other ethnicities including Singapore Asian

Indians from the Singapore Indian Eye Study (SINDI) [37] and

African Americans in the MESA cohort. First we looked at the

SNP transferability to the SINDI and MESA cohorts using a

significance level of 0.05. Second we looked at the locus

transferability by examining all the SNPs in the gene of interest.

For those tests we determined the number of tag SNPs required to

cover the gene of interest for each ethnicity using the Genome

Variation Server (http://gvs.gs.washington.edu/GVS). In all cases

we excluded HapMap 3 and selected the following additional

parameters; minor allele frequency of .0.01, r2 threshold = 0.5

and no monomorphic sites. Combined samples and combined

variations of the Han Chinese of Beijing China (HCT)/Japanese

in Tokyo, Japan (JPT) populations were used for the Singapore

cohort and the Yoruba in Ibadan, Nigeria (YRI) population for the

African American cohort from MESA. The level of significance

was set at the Bonferroni-corrected p-value based on the number

of tag SNPs for each population at each gene tested, p,4.961024

for Singapore Asian Indians and p,1.761024 in African

Americans.

In addition, we investigated the association of these loci with

chronic kidney disease and cardiovascular disease. This was

accomplished by performing in silico look-ups in the Chronic

Kidney Disease Genetics (CKDGen) consortium [38] (chronic

kidney disease, microalbuminuria, urinary albumin/creatinine

Table 2. Distribution of retinopathy lesions.

Cohort n Any Retinopathy* (%) Microaneurysms (%) Dot-blot Hemorrhages (%)

AGES

All subjects 2451 11.4 6.3 5.9

HTN 1941 12.0 6.4 6.3

No HTN 510 9.4 5.7 4.1

ARIC

All subjects 7,116 2.3 1.2 1.3

HTN 2,614 2.8 1.5 1.7

No HTN 4,502 2.1 1.0 1.1

BMES

All subjects 2,237 8.4 NA NA

HTN 1,656 9.2 NA NA

No HTN 581 6.4 NA NA

CHS

All subjects 966 5.6 2.8 3.8

HTN 494 6.9 3.9 4.5

No HTN 472 4.2 1.7 3.2

MESA

All subjects 2,059 7.0 4.2 3.0

HTN 728 8.9 5.1 4.3

No HTN 1,331 6.0 3.7 2.3

RS

All subjects 4,582 6.4 NA NA

HTN 1,433 8.6 NA NA

No HTN 3,149 5.3 NA NA

*defined as the presence of microaneurysms or dot-blot hemorrhages excluding individuals with self-report of diabetes or fasting blood glucose $126 mg/dL
[7.0 mmol/L]) and individuals with secondary causes of retinopathy (e.g. branch or central retinal vein occlusions, late age-related macular degeneration) and other
retinopathy phenotypes including exudates without microaneurysms or dot-blot hemorrhages and pre-retinal or vitreous hemorrhages. RS defined diabetes as a
random glucose . = 11.1 mmol/L, diabetic medication or self-reported history. HTN: Current use of blood pressure medication or systolic/diastolic blood pressure
$140/90. AGES: Age, Gene/Environment Susceptibility-Reykjavik Study. ARIC: Atherosclerosis Risk in Communities study. BMES: Blue Mountains Eye Study. CHS:
Cardiovascular Health Study. MESA: Multi-Ethnic Study of Atherosclerosis. RS: Rotterdam Study. NA: Not Available.
doi:10.1371/journal.pone.0054232.t002
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ratio, and renal function as estimated by serum creatinine

[eGFRcrea]), in the Wellcome Trust Case Control Consortium

[39] (coronary artery disease), the CHARGE Hematology

Working Group (anemia - defined as hemoglobin ,12 g/dl in

women, ,13 g/dl in men) and the Heart and Vascular Health

(HVH) Study [40,41] (stroke and myocardial infarction). Look-ups

in CKDGen were performed in all participants and two

subgroups, those without diabetes and those without hypertension.

Lastly we examined our findings for the SNPs that have

previously been shown to be associated with diabetes or

hypertension in other GWAS [42,43]. We also examined SNPs

associated with diabetic retinopathy in a recently published

candidate gene study [44]. The level of significance was set at

the Bonferroni-corrected p-value for the total number of SNPs

(p,4.861024).

Quantile-quantile (QQ-) plots of –log10 (observed p-value)

versus –log10 (expected p-value) and the Manhattan plots were

generated using R software (http://www.r-project.org). Regional

association and linkage disequilibrium plots were generated using

the SNP Annotation and Proxy Search v2.2 [45]. Forest plots were

generated using Stata Statistical Software: Release 11. College

Station, TX: StataCorp LP. These plots incorporated the I2

heterogeneity statistic to measure the percentage of variation

attributable to differences in effect size between cohorts [46,47].

Results

Population characteristics stratified by hypertension status for

each participating cohort are provided in Table 1. The

distribution of retinopathy and specific lesions (where available)

are provided in Table 2. The primary meta-analysis included all

individuals without diabetes from the six cohorts. There were a

total of 2,675,979 genotyped or imputed SNPs that passed quality

control in one or more cohorts.

No SNPs reached genome wide significance in the primary

analysis adjusted for age, sex, systolic blood pressure and site

specific population stratification covariates (study site or principal

components), Table S1 and Figures S1 and S2.

The secondary analyses were stratified by hypertension status.

Adjustments in the group of participants with hypertension

included age, sex, treatment for hypertension (yes/no) and site

specific population covariates (study site or principal components).

In individuals with hypertension, no SNPs reached genome-wide

significant association, Table S2 and Figures S3 and S4.

The analysis of the group of participants without hypertension

was adjusted for age, sex and site specific population stratification

covariates (study site or principal components), Table S3 and

Figures S5 and S6. One SNP, rs12155400, in the histone

deacetylase 9 gene (HDAC9) on chromosome 7, reached

genome-wide significance, 21.360.23 (beta 6 standard error),

Figure 1. Regional association plot of SNP rs12155400 on chromosome 7 for Caucasians. This figure is the regional association plot of
SNP rs12155400 on chromosome 7 that reached genome-wide significance in the meta-analysis of GWAS results in participants of European ancestry
without diabetes or hypertension. The lead and surrounding SNPs are color coded according to the pair-wise linkage disequilibrium (LD) with the
lead SNP (presented as a diamond) on a scale of r2 from 0 to 1. Estimated recombination rates reflect the local LD structure in the 500 kb buffer
around the index SNP and plotted based on values from HapMap II Centre d’Etude du Polymorphisme Humain collection samples from a Utah (CEU)
population.
doi:10.1371/journal.pone.0054232.g001
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p = 6.661029, Figure 1 and 2. This was an imputed SNP of

relatively low minor allele frequency (MAF) around 2%. The

observed divided by the expected variance for imputed allele

dosage, a measure of imputation quality, was 0.68, 0.64 and 0.70

for AGES, MESA and BMES respectively. Imputation quality in

ARIC and RS was measured by r2 and was 0.71 and 0.74,

respectively.

There were 849 SNPs in the meta-analysis in proximity to the

reference gene HDAC9. Eight of those SNPs were in linkage

disequilibrium (LD) with SNP rs12155400 (r2 ranged from 0.10 to

0.33). Only 1 of those 8 SNPs was genotyped in any cohort,

rs10225230, which was genotyped in ARIC and MESA. The r2

between rs12155400 and rs10225230 was 0.33 and their positions

are separated by 332 K base pairs. The results for the imputed

SNP rs12155400 and the genotyped SNP rs10225230 were exactly

the same in the two cohorts that genotyped rs10225230 with a p-

value of 0.03 and 0.003 for MESA and ARIC respectively,

indicating the results were not due to poor imputation quality at

rs12155400 in these two cohorts. The overall p-value at

rs10225230 was 1.961024. The minor allele frequencies were

similar, 0.02 for rs12155400 and 0.03 for rs10225230.

The SNP with the highest imputation quality that was in LD

with rs12155400 was rs10234685. The imputation quality ranged

from 0.88 to 0.99. The r2 between rs12155400 and rs10234685

was 0.10 and those 2 SNPs were separated by 386,000 base pairs.

Mild retinopathy was not associated with SNP rs10234685, p-

value = 0.20. The minor allele frequency for rs10234685 was 0.07.

We tested the transferability of this SNP and locus (other SNPs

in the HDAC9 gene) in a cohort of Singapore Asian Indians

(SINDI) and a cohort of African Americans in MESA. In both

cases these cohorts were restricted to participants without diabetes

or hypertension. The SNP, rs12155400, did not extend to either

the Singapore Asian Indians (beta = 1.161.23, p = 0.39,

MAF = 0.01, n = 1,694) or the African Americans (be-

ta = 0.761.40, p = 0.63, n = 492, MAF = 0.01). However, the

power for these studies was around 60% for the Singapore Asian

Indians and less than 10% for the African Americans, Figure S7.

One SNP did reach gene-wide significance (p,4.961024) in the

Singapore Asian Indians, at SNP rs10486302 (p = 3.361024),

Figure 3. In addition, two other SNPs at this locus in linkage

disequilibrium with rs10486302 just missed reaching gene-wide

significance, rs723296 (p = 6.261024, r2 = 0.79) an imputed SNP

and rs12374816 (p = 8.261024, r2 = 0.72) a genotyped SNP. SNP

rs12155400 and rs10486302 are not in linkage disequilibrium but

they do lie within the confines of the same recombination hotspots.

In African Americans, a locus of 3 imputed SNPs reached gene-

wide significance (p,1.761024) around SNP rs213276

(p = 5.261025), Figure 4. The two other SNPs in linkage

Figure 2. Forest plot. This figure display the direction, effect, 95% confidence interval, sample size and % weight from each individual discovery
cohort and overall for the association between SNP rs12155400 on chromosome 7 and retinopathy defined as the presence of microaneurysms or
dot-blot hemorrhages. The I2 heterogeneity statistic is a measure of the percentage of variation attributable to differences in effect sizes between
cohorts. Results from this SNP were not available in CHS.
doi:10.1371/journal.pone.0054232.g002
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disequilibrium included rs213274 (p = 5.561025) and rs213273

(p = 5.861025). These SNPs lie in the zone adjacent to the

recombination hotspots shared by the other two ethnic groups.

In silico look-ups of the association between SNP rs12155400

and several micro- and macrovascular diseases were done and

the results are shown in Table 3. In participants without

hypertension in the CKDGen consortium, the SNP was

marginally associated with microalbuminuria and chronic kidney

disease (p = 0.02 and 0.04 respectively) before correcting for

multiple testing but was not associated with the urinary

albumin/creatinine ratio or renal function estimated by serum

creatinine. The small minor allele frequency prevented testing in

the Heart and Vascular Health Study. There was no association

between this SNP and coronary artery disease in the Wellcome

Trust Case Control Consortium or with anemia in the

CHARGE Hematology Working Group.

We examined our findings in a set of SNPs that have previously

been shown to be associated with diabetes or hypertension in other

GWAS studies and two SNPs associated with diabetic retinopathy

in a recently published candidate gene study. None of these SNPs

were associated with retinopathy (p,4.861024) in the primary

analytical group or either subgroup stratified by hypertension

status, Tables S4, S5 and S6.

Discussion

Results of our primary analysis and secondary analysis of

individuals with hypertension showed no evidence of a genetic

association with mild retinopathy. One SNP, rs12155400, reached

genome-wide significant association with mild retinopathy in

individuals of European ancestry without diabetes and hyperten-

sion, in the histone deacetylase 9 gene (HDAC9) gene on

chromosome 7. The available evidence suggests this is a false

positive finding. The SNP is located in an intronic region. The

minor allele frequency was low, less than 2%. The SNP was

imputed and the quality of the imputation was modest at best with

an r2 of about 0.7. There were no other common variants in the

HDAC9 gene associated with the outcome. The SNP findings did

not extend to a cohort of Singapore Asian Indians or African

Americans although there was limited power to detect an

association in these smaller cohorts.

Diabetes and hypertension are the primary risk factors for

retinopathy [22,23] but the etiology of mild retinopathy in

individuals without diabetes remains unclear [4]. Determining

these risk factors may shed light on the association between mild

retinopathy and other conditions such as renal dysfunction

[10,11,12], incident hypertension [1], clinical stroke

Figure 3. Regional association plot of SNP rs10486302 on chromosome 7 for Singapore Asian Indians. This figure is the regional
association plot of SNP rs10486302 on chromosome 7 that reached gene-wide significance (p,4.961024) in the testing of transferability of the
discovery SNP, rs12155400, to other SNPs in the histone deacetylase 9 gene in a cohort of Singapore Asian Indians without diabetes or hypertension.
The lead and surrounding SNPs are color coded according to the pair-wise linkage disequilibrium (LD) with the lead SNP (presented as a diamond) on
a scale of r2 from 0 to 1. Estimated recombination rates reflect the local LD structure in the 500kb buffer around the index SNP and plotted based on
values from HapMap II Han Chinese of Beijing China (HCT)/Japanese in Tokyo, Japan (JPT) populations.
doi:10.1371/journal.pone.0054232.g003
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[13,14,15,16,17], congestive heart failure [18], cardiovascular

mortality [19,20] and risk of clinical diabetes [21].

Common genetic factors are thought to underlie the pathogen-

esis of microvascular disease in the eye and kidney, particularly in

persons without the major risk factors for pathologies in these

organs; diabetes and hypertension. There are congenital syn-

dromes associated with genetic defects affecting both the retinal

and renal vasculature such as von Hippel Lindau Disease and

Sturge-Weber-Krabble Syndrome [48].

We found a number of SNPs in our study with highly suggestive

p-values (p,9.99E206) some of which are associated with retinal

degenerations. For example, in the primary analysis there were

two SNPs associated with mild retinopathy, rs7553035 and

rs21661074 near RD3 on chromosome 1. This gene encodes a

retinal protein that is associated with promyelocytic leukemia-gene

product bodies in the nucleus. Mutations in this gene cause Leber’s

congenital amaurosis type 12 [49]. Another locus of interest in the

secondary analysis of subjects with hypertension included SNPs

near TEAD1 on chromosome 11, a gene associated with

peripapillary chorioretinal degeneration [50]. In this same group,

SNP rs1933752 near the UTRN gene on chromosome 6 was also

associated mild retinopathy. The protein encoded by this gene

shares both structural and functional similarities with the

dystrophin gene. Dystrophins are normally part of critical

cytoskeleton-associated membrane-bound molecular scaffolds in-

volved in blood-brain barrier function [51].

The negative results from our study do not completely rule out

genetic effects in the development of mild retinopathy. Limitations

in our study make finding these associations difficult. The

combined phenotype of microaneurysms or dot-blot hemorrhages

is transitory in nature [2]. Photos in each of these studies were

taken with a limited number of fields and sometimes only in one

eye. There are potentially many pathways to develop both dot-blot

hemorrhages and microaneurysms some of which may be unique

to each phenotype. All of these limitations lead to misclassifications

that tend to bias results towards the null.

Despite the lack of genome-wide significant findings, this study

does represent the first large scale genetic study of mild

retinopathy in a population based cohort. This work serves to

highlight some of the difficulties in studying this phenotype

particularly using cross sectional retinal observations. Hopefully it

will provide insights for better research methods in the future as

well as serve as a resource for candidate gene analyses of some of

our highly suggestive hits in biologically relevant genes or

rs12155400 in HDAC9. HDAC9 has recently been reported to be

associated with large vessel ischemic stroke [52] and there was

evidence of locus transferability to other SNPs in HDAC9 that

reached gene-wide significance in Asians and African Americans.

Figure 4. Regional association plot of SNP rs213276 on chromosome 7 for African Americans. This figure is the regional association plot
of SNP rs213276 on chromosome 7 that reached gene-wide significance (p,5.261025) in the testing of transferability of the discovery SNP,
rs12155400, to other SNPs in the histone deacetylase 9 gene in a cohort of African Americans without diabetes or hypertension. The lead and
surrounding SNPs are color coded according to the pair-wise linkage disequilibrium (LD) with the lead SNP (presented as a diamond) on a scale of r2

from 0 to 1. Estimated recombination rates reflect the local LD structure in the 500 kb buffer around the index SNP and plotted based on values from
HapMap II Yoruba in Ibadan, Nigeria (YRI) population.
doi:10.1371/journal.pone.0054232.g004
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In conclusion, results from this study showed little evidence that

the presence of mild retinopathy in individuals without diabetes

was associated with SNPs. Further studies are needed to explore

the remaining highly suggestive SNPs. This may include fine

mapping in HDAC9, gene-environment interaction studies or

pathway analyses. Identifying genes associated with these signs

may help unravel novel pathways and determinants of microvas-

cular diseases.
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