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Abstract

The production of a functional mRNA is regulated at every step of transcription. An area not well-understood is the
transition of RNA polymerase II from elongation to termination. The S. cerevisiae SR-like protein Npl3 functions to negatively
regulate transcription termination by antagonizing the binding of polyA/termination proteins to the mRNA. In this study,
Npl3 is shown to interact with the CTD and have a direct stimulatory effect on the elongation activity of the polymerase. The
interaction is inhibited by phosphorylation of Npl3. In addition, Casein Kinase 2 was found to be required for the
phosphorylation of Npl3 and affect its ability to compete against Rna15 (Cleavage Factor I) for binding to polyA signals. Our
results suggest that phosphorylation of Npl3 promotes its dissociation from the mRNA/RNAP II, and contributes to the
association of the polyA/termination factor Rna15. This work defines a novel role for Npl3 in elongation and its regulation by
phosphorylation.
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Introduction

Gene expression is regulated through a complex series of events

that coordinate the synthesis, processing and export, and in some

instances, degradation of the mRNA. As the polymerase reaches

the end of the gene, these events must coincide to produce a

functional mRNA. The transcription of sequences that specify

cleavage/polyadenylation signals directs the termination phase of

transcription [1,2]. In yeast, the cleavage/polyadenylation ma-

chinery, which is composed of the Cleavage Factor I (CFI) (CSTF

in humans) and Cleavage/Polyadenylation Factor (CPF) (CPSF in

humans) complexes, is responsible for the recognition of polyA/

termination signals and their subsequent processing [2–6]. Within

CFI, Rna15, the homolog to mammalian CSTF64, specifically

recognizes and binds sequences that direct the polyA/termination

machinery to the 39 end [7]. Lacking is a detailed understanding of

how the recognition of polyA signals transitions towards

transcription termination, and how this is linked to the preceding

elongation phase. The allosteric or anti-termination model takes

into account some of these events. In this model, association of a

positive elongation factor or an anti-terminator with RNA

Polymerase II (RNAP II) is essential. Dissociation of this factor

from the polymerase at the end of a gene is predicted to have two

effects: (1) it destabilizes transcriptionally active RNAP II, and (2) it

promotes the recruitment of the polyA/termination machinery.

The SR-like protein Npl3 functions in transcription, 39 end

processing, hnRNP formation, and mRNA export [8–12]. Previ-

ously, we proposed that the competition between Npl3 and Rna15

for binding to RNA targets is central to the function of Npl3 in

termination and 39 end processing [11,12]. Increased binding of

Npl3 to a target sequence can shift the competition away from

processing, strongly inhibiting cleavage/polyadenylation in vitro [12].

In vivo, mutations or deletion of npl3 can result in the utilization of

weak or otherwise poorly recognized polyA sites, while strong polyA

signals are recognized and stably bound by cleavage/polyadenyla-

tion factors for processing [11,13]. As we demonstrated previously,

shifting the competition in favor of protection instead of processing

by overexpressing Npl3 strongly inhibits cleavage/polyadenylation

[12]. These results are consistent with a model of competition driven

by the relative binding affinities of Rna15 and Npl3, yet an

additional layer of regulation could not be excluded.

Phosphorylation plays an important role in the association/

dissociation of a number of activators and factors that regulate

transcription and mRNA processing. Most notable is the co-

transcriptional phosphorylation of the carboxy terminal domain

(CTD) of RNAP II. In S. cerevisiae, phosphorylation of the CTD

repeat at serine 5 recruits capping enzyme, while phosphorylation

at serine 2 functions to coordinate transcription and mRNA

processing [14–17]. Another prominent transcription/RNA pro-

cessing kinase is Casein Kinase 2 (CK2). In yeast, CK2 associates

with elongation factors Spt16/Pob3 and Chd1 [18,19]. In higher

eukaryotes, one third of CK2 phosphorylation targets are involved

in gene expression, half of these being transcription factors [20].

These include the activator PC4 (Sub1 in yeast), which is required
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for the regulation of mammalian promoter-dependent elements

(DPE), and was shown to have an anti-termination effect [21–23].

CK2 also phosphorylates factors within the polyA/termination

machinery that are important for 39 end processing [24,25].

Here we show that Npl3 directly interacts with phosphorylated

serine 2 of the CTD and stimulates the elongation rate of RNAP II in

vitro. Association with polymerase is inhibited by phosphorylation of

Npl3 on S411. Stimulation of elongation is also reduced by a mutation

in the Npl3 RNA binding domain, indicating that RNA binding is

important. CK2 is shown to be required for Npl3’s phosphorylation,

and alter the competition between Npl3 and Rna15 for binding to the

RNA. These results demonstrate that Npl3 functions as both a

positive transcription elongation factor and an anti-terminator and

that these activities are regulated by phosphorylation.

Results

Npl3 affects the rate of transcription elongation
Mutations in or near the second RNA Recognition Motif (RRM)

of NPL3 have been shown to enhance termination [11]. These

same npl3 alleles confer sensitivity to MPA (mycophenolic acid) and

6AU (6-azauracil), phenotypes suggestive of elongation defects. To

test for an effect of Npl3 on the rate of RNAP II elongation, an in

vitro transcription assay containing purified RNAP II and a

promoterless dC-tailed template was used [26–28]. In this assay,

the polymerase binds to the single-stranded oligo(dC)-tail and

initiates transcription in the presence of ATP/GTP/[a-32P]CTP

[26]. In the absence of UTP, the polymerase is forced to pause at

the first non-template T stretch (135 nt = T3) (Figure 1, lanes 1
and 2). After a 30-minute labeling incubation, the reaction is split

and incubated for an additional 5-minutes with buffer or Npl3. The

labeled transcripts are then extended with limiting UTP and excess

unlabeled CTP for 2 to 60 minutes in the absence (Figure 1, odd
lanes), or presence of Npl3 (Figure 1, even lanes). Limiting the

chase lowers the rate of nucleotide addition through dTTP regions

on the template, causing the accumulation of transcripts that are

,250 nt in length. These products are eventually chased into

longer products. A notable increase in the rate of elongation by

RNAP II was observed in the presence of Npl3 (Figure 1). These

results suggest that Npl3 functions as a positive elongation factor in

the absence of termination factors.

Unphosphorylated Npl3 interacts with RNAP II and
mediates the elongation effect

The C-terminal RS domain of Npl3 contains three serine/

proline [29] and six serine/arginine (SR) repeats that are

interspersed within a region rich in arginines and glycines

(RGG/RS domain). RS domains in other proteins can mediate

protein-protein interactions [30]. Phosphorylation of RS domains

also functions in the recruitment of these proteins to sites of

transcription (e.g., SF2/ASF) [29]. In addition, RS domain

phosphorylation can affect RNA binding affinity [8,30,31].

Npl3 and RNAP II co-immunoprecipitate from yeast extracts,

although it is unclear if this interaction is direct or indirect [9]. In

order to test the role of the RGG/RS domain of Npl3 plus its

phosphorylation in this interaction, peptides corresponding to

three repeats within the RGG/RS domain were conjugated to a

resin and used in pull-down experiments with purified RNAP II

(Figure 2A). Peptide RGG/RS1 corresponds to the SR repeat

(GGYGGYSRGGYGGY), peptide RGG/RS2 corresponds to the

SP repeat (RGGYDSPRGGY), and peptide RGG/RS3 corre-

sponds to the SP repeat containing serine 411 (YRTRDA-

PRERSPTR). Since S411 is phosphorylated in vivo, and it has been

extensively characterized [10,32], we also included a phosphor-

ylated form of this peptide (YRTRDAPRERpSPTR). No RNAP

II was detected as interacting with the RGG/RS1 or RGG/RS2

peptides (Figure 2A). However, significant binding was observed

with the unphosphorylated RGG/RS3 peptide. Binding to the

phosphorylated RGG/RS3 was much weaker. These results

suggest that Npl3 interacts directly with RNAP II primarily

through RGG/RS3 in its unphosphorylated form.

The contribution of S411 in RGG/RS3 to the interaction

between Npl3 and RNAP II was further tested by immunopre-

cipitation with full-length Npl3 and three different mutants of

S411 (S411A, S411E and S411D), which resemble unpho-

sphorylated or phosphorylated forms of the protein. To rule out

possible conformational changes due to the mutations, the point

mutants were tested for RNA binding and found to retain their

ability to bind RNA (data not shown). Purified RNAP II was

incubated with recombinant histidine-tagged Npl3, Npl3-S411A, -

S411D or -S411E, and reactions were immunoprecipitated using

anti-His antibody and immunoblotted for RNAP II. Wild-type

Npl3 bound to RNAP II (Figure 2B), while mutants Npl3-

S411A, -S411D and -S411E showed further decrease. This result

suggests that changes to S411 affect the interaction, particularly

those mutations that resemble a phosphorylated state.

The interaction between unphosphorylated RGG/RS3-S411

and RNAP II suggested that Npl3’s effect on elongation might be

regulated through phosphorylation of S411. The three mutants of

Figure 1. Npl3 stimulates RNAP II elongation. Oligo(dC)-tail
templates were used in transcription reactions with or without 78 nM
Npl3, as indicated. Reactions were pulsed by the addition of ATP, GTP, and
a32P-labeled CTP for 30 minutes as described in Materials & Methods.
Transcripts were chased by the addition of excess CTP and limiting UTP for
the indicated times. A schematic of the experimental scheme is shown on
top. The oligo(dC)-template is represented next to the gel and the
positions of the pause sites at stretches of Ts are indicated.
doi:10.1371/journal.pone.0003273.g001
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S411 (S411A, S411E and S411D) were used in the elongation

assay to test for this possibility. In addition, a mutant that was

previously shown to have a defect in RNA binding (Npl3-120) and

a truncated form of Npl3 containing only the two RRMs (aa 121–

280) were also tested [11,12,33]. Elongation stimulation by Npl3-

S411D and Npl3-S411E, which may resemble the phosphorylated

form of Npl3, was reduced as compared to the wild-type

(Figure 2C). In addition, the Npl3-S411A mutant was slightly

reduced. This result further highlights the importance of

maintaining the integrity of the S411 residue since the S411A

substitution differs only in the hydroxyl group present in the serine

residue. These results are consistent with the model that S411

phosphorylation can modulate the effect on elongation. Notably,

the truncated form of the protein did not stimulate elongation,

which reinforces the importance of the RGG/RS domain and

S411 in the interaction with RNAP II. Finally, the RRM mutant

Npl3-120 also has reduced elongation stimulation, suggesting that

RNA binding contributes to this activity. We conclude from these

experiments that the positive effect of Npl3 on elongation requires

both binding to the nascent RNA and its physical interaction with

RNAP II, which may be inhibited by phosphorylation of S411.

Npl3 interacts with phosphorylated serine 2 of the CTD
The phosphorylated form of serine 2 of the CTD repeat

YSPTSPS is associated with elongation [17]. Previous crosslinking

experiments demonstrated the presence of Npl3 throughout

elongation [9], suggesting a possible link to the CTD and possibly

phosphorylated serine 2. An interaction with the CTD was first

tested using the RGG/RS peptides. As with purified RNAP II, the

unphosphorylated RGG/RS3 was observed to interact with GST-

CTD (data not shown). In addition, unphosphorylated or

phosphorylated Ser 2, Ser 5 or Ser 2/Ser 5 CTD peptides were

used in pull-down experiments with unphosphorylated full-length

Npl3 (Figure 2D). The CTD repeat peptide containing the Ser 2

phosphorylation was observed to interact with Npl3, and this

result was reproducible. We concluded from these experiments

Figure 2. Npl3 interaction with RNAP II is affected by S411 phosphorylation. (A) Unphosphorylated peptide RGG/RS1 (lane 1), RGG/RS2
(lane 2), RGG/RS3 (lane 3) and phosphorylated RGG/RS3 (lane 4) were used in pull-down assays with purified RNAP II, as indicated, and one fifth of the
input is shown in lane 5. The precipitated sample (P) and supernatant (S) were analyzed by immunoblotting. (B) Full-length Npl3 or S411 mutants
were used in immunoprecipitation assays with purified RNAP II (100 ng), as indicated. A control lane with RNAP II (10 ng) is shown in lane 13. (C)
Oligo(dC)-tail transcription reactions were performed as described in Figure 1 for 30 minutes with RNAP II only (lane 1) or with equivalent
concentrations of Npl3 (lane 2); Npl3-S411A (lane 3); -S411D (lane 4); -S411E (lane 5); Npl3-truncated (RRMs only, aa 121–280) (lane 6); or Npl3-120
(lane 7). Quantification of the transcription reactions was performed by calculating the ratio of the 450 nt to the 250 nt bands and normalized using
the RNAP II only lane, as shown in the graph. The experiment was done twice, and a representative gel was chosen. (D) Unphosphorylated (lane 1 and
6), or phosphorylated Ser 5 (lane 2 and 7), Ser 2 (lane 3 and 8), and Ser 2/Ser 5 (lane 4 and 9) CTD peptides were used in pull-down assays with full-
length Npl3, as indicated, and input is shown in lane 11. The IP and S shown were analyzed as described for (C) using antibodies specific for Npl3.
Control Npl3 with no peptide is shown in lanes 5 and 10.
doi:10.1371/journal.pone.0003273.g002
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that the phosphorylated form of Ser 2 CTD mediates the physical

interaction between unphosphorylated Npl3 and RNAP II.

Cka1 phosphorylates Npl3 in vitro
In yeast, the cytosolic kinase Sky1 phosphorylates the SP motif

closest to the C-terminus of Npl3 (S411) [10]. Phosphorylation of

Npl3 at S411 in a sky1 deletion strain is reduced, but not abolished

[8] (data not shown), raising the possibility that another Npl3-

specific kinase remained to be identified, and that other

phosphorylation sites in Npl3 might exist. To ascertain the later

possibility, endogenous Npl3 was immunoprecipitated from whole

cell extracts and phosphorylation sites were analyzed by mass

spectrometry. Multiple phosphorylation sites were identified in the

endogenous Npl3 (Table 1). Our results confirmed phosphory-

lation of serine 224, 349 and 356, which where identified

previously in two large-scale phosphorylation analyses [34,35].

One new additional site was shown to be phosphorylated, serine

212. This data is summarized in Table 1.

We speculated that a putative kinase might be able to modulate

the activity of Npl3 in the nucleus. As noted earlier, CK2 kinase

had been shown to phosphorylate several targets within the

cleavage/polyadenylation machinery (Cft1, Fip1, Brr5 and Pta1)

[24,36]. Therefore, this kinase was a good candidate and was

tested for its ability to phosphorylate Npl3 in vitro. Recombinant

His-Cka1 and His-Npl3 were purified from E. coli and incubated

in the presence of [c-32P] labeled ATP. Cka1 phosphorylates Npl3

and this modification is reversed by addition of Lambda-

Phosphatase (Figure 3A). A combination of mass spectrometry

and point mutants was used to further analyze phosphorylated

peptides in Npl3. In vitro, CK2 phosphorylation resulted in

modification of multiples sites in Npl3, including Ser 212, Ser

349 and Ser 356 sites identified in vivo (Table 1). Phosphorylation

of S411 was tested using the S411 substitutions (S411A, S411D

and S411E) in the kinase assay (Figure 3B). A significant

decrease was observed in the phosphorylation of Npl3-S411A, -

S411D and -S411E as compared to wild-type. The residual

phosphorylation signal observed for the mutant Npl3s is probably

due to phosphorylation of the other sites reported in Table 1. We

conclude from these results that Npl3 is hyperphosphorylated in

vivo and that S411 is likely a major target of CK2 phosphorylation.

Given that the phosphorylation of sites in Npl3 did not strictly

fit the known consensus sequence for mammalian CK2

([ST]XX[EDpTpS]) [20], and that the RGG/RS1-3 peptides

were not efficiently phosphorylated when tested in the in vitro CK2

kinase assay (data not shown), the specificity of the yeast Cka1 was

assayed by mass spectrometry using peptide libraries (Figure S1).
Quantification by mass spectrometry of the phosphorylation

efficiency of Cka1 confirmed the specificity of yeast Cka1 used

in our study for peptides with serine or threonine residues within

acidic motifs, as previously reported for the mammalian CK2

counterpart [20,37]. Conversely, peptides containing SP motifs

were phosphorylated very poorly (Figure S1). In the context of

the entire Npl3 protein, the SP or SR motifs of Npl3 that were

detected as phosphorylated in vitro might reside in an acidic

environment that favors phosphorylation by Cka1. This possibility

is supported by evidence from the structure of the central RRM

domain of Npl3, which revealed that all acidic residues lie on the

surface of the protein [33]. Npl3’s reported self-association may

also be a factor, especially given recent evidence that dimerization

is in some instances required for the phosphorylation of targets

with poor similarity to recognition motifs [38,39].

CK2 phosphorylates Npl3 in vivo
The ability of CK2 to phosphorylate Npl3 was next tested in the

context of the cellular environment using strains that have the genes

for both of the catalytic subunits of CK2 deleted and carry

complementing plasmids for either a wild-type (CKA1) or a mutant

allele of CKA1 (cka1-12(ts) or cka1-45(ts)) [40]. These strains were

grown and assayed for the steady state phosphorylation of Npl3 by

immunoblotting with general anti-Npl3 and anti-phospho-S411,

which was demonstrated previously to be specific for the S411

phosphorylation in vivo [10]. The wild-type CKA1 strain showed

robust phosphorylation of Npl3 at both permissive (25uC) and non-

permissive temperatures (37uC), whereas cka1-12 showed reduced

phosphorylation at both temperatures, and cka1-45 showed a

decrease upon the shift to the non-permissive temperature

(Figure 3C). At steady-state-levels, Npl3 localizes to the nucleus

[41]. Therefore, the phosphorylation decrease observed in the cka1

mutant strains was assumed to be due to CK2 mutations. The

residual phosphorylation of S411 is presumed to be due to other

kinases, including Sky1. While indirect phosphorylation of Npl3

cannot be absolutely excluded, we conclude from these results that

Cka1 is required for the phosphorylation of Npl3-S411 in vivo.

Phosphorylation of Npl3 affects its competition for RNA
binding

As mentioned earlier, phosphorylation of Npl3 by Sky1 reduces

RNA binding affinity [8]. Therefore, Npl3 phosphorylation might

Table 1. Npl3 phosphorylation sites.

Npl3 (414 aa) Phosphorylated Serines Treatment Analysis Reference

Endogenous Ser212, WCE (whole cell extract) MS This study

Ser224 WCE MS-IMAC This study, [34]

Ser349, Ser356 WCE MS-IMAC (Ficarro et al, 2002)

Ser411 32P-in vivo labeling 2D gel (Gilbert et al, 2001)

CK2 in vitro phosphorylated Ser77, Ser79, Kinase assay MS This study

Ser212, Ser230, ‘‘

Ser328, Ser336, ‘‘

Ser349, Ser356 ‘‘

Ser411 Point mutants

Phosphorylation sites identified in Npl3.
*Highlighted residues where phosphorylation sites detected in both the endogenous and in vitro CK2 phosphorylated Npl3.
doi:10.1371/journal.pone.0003273.t001
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be expected to reduce its ability to compete with Rna15. Using a

modified UV cross-linking assay with a labeled RNA oligo (N4)

thought to be a preferred binding site for Rna15 at GAL7 [7],

recombinant Npl3 and Rna15 were tested for binding. Npl3 was

observed to compete strongly for binding to the polyA signal

(Figure 4A). Titration of Cka1 resulted in an ATP-dependent

reduction of Npl3 binding to the RNA, while binding to an oligo

corresponding to an Npl3-preferred site was unaffected (N2)

(Figure 4B). No cross-linking of Rna15 was detected with the N2

oligo. Rna15 was not phosphorylated by Cka1, nor was binding to

the polyA signal affected in reactions with Cka1 lacking Npl3 (data

not shown). Thus, we concluded that phosphorylation of Npl3 by

Cka1 had a dramatic effect on the RNA binding competition at

Rna15-preferred sequences.

Competition for RNA binding decreases stimulation of
elongation

Previous characterization of alleles of NPL3 demonstrated that

the function of Npl3 in transcription termination relies on its

ability to bind RNA [11,33]. This defect is due to mutations in

RRM2, which result in reduced the binding specificity of Npl3

[33,42], and reduce the ability of the protein to compete effectively

for binding to polyA/termination sequences [12]. In the

elongation assay, the RRM mutant Npl3-120 had slightly reduced

elongation stimulation, which suggested that RNA binding was

also important for elongation (Figure 2C). We exploited the

unspecific RNA binding of Rna15 and its competition with Npl3

to test the RNA binding requirement of Npl3, presuming that

binding of Rna15 to the nascent RNA might prevent a stable

Npl3/RNA interaction. Stimulation of elongation was therefore

measured in the presence of the competing polyA factor Rna15. A

two-fold molar excess of Rna15 (relative to Npl3) was added

together with Npl3 during the 5-min incubation between the pulse

and chase. Figure 4C shows the results for transcription reactions

for 0 and 30-minutes after UTP addition. Rna15 alone did not

affect the rate of elongation (Figure 4C, lane 8). Npl3 still

stimulates elongation in the presence of Rna15, but a decrease in

the intensity of the signal for the longer transcripts was seen.

Therefore, competition for binding to the RNA transcript between

Rna15 and Npl3 may decrease the positive effect on elongation,

and strengthens the suggestion that RNA binding plays an

important role in the stimulatory effect of Npl3.

Figure 3. Cka1, the alpha catalytic subunit of CK2, phosphorylates Npl3. (A) Recombinant His-Cka1 was incubated with His-Npl3 in the
presence of radiolabeled ATP. Phosphorylation of Npl3 is reversed by the addition of increasing concentrations of l-Phosphatase. (B) Using the in
vitro kinase assay with mutants of Npl3-S411, this residue was uncovered as an additional phosphorylation site. Wild-type His-Npl3 or S411 point
mutants, His-Npl3-S411A, -S411D or -S411E were incubated with His-Cka1, as described for (A) in the presence of radiolabeled-ATP. Coomasie stain
representing the concentration of recombinant Npl3 proteins used is shown below. (C) CKA1 mutations show reduced phosphorylation of Npl3.
Whole-cell extracts were prepared for cells grown for one hour at the permissive (25uC) or non-permissive (37uC) temperature for wild-type CKA1,
cka1-12 or cka1-45, and immunoblot analysis was performed using antibodies specific for phosphorylated or non-phosphorylated Npl3, as indicated.
Detection of Rpb3 with specific antibodies is shown as a loading control.
doi:10.1371/journal.pone.0003273.g003
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Termination defects associated with Npl3 RNA binding
and phosphorylation

Our previous chromatin immunoprecipitation experiments

demonstrated that mutations in the RNA binding domain of

Npl3, such as the npl3-120 allele, lead to more efficient termination

and increased cross-linking of polyA/termination factors to the 39

end of various genes [11]. Phosphorylation of Npl3 reduces its

association with RNA in vivo [10], and its association with an

Rna15 preferred binding site in vitro (Figure 4A and [12]. Our

results further suggest it is also important for regulating its

interaction with RNAP II. Therefore, the expectation was that a

mutation that abolishes S411 phosphorylation might result in a

termination defect. The S411A mutation was selected for analysis

since it more closely resembles an unphosphorylated state,

although slight decreases in the elongation and binding assays

were detected upon loss of the serine hydroxyl group. The

predicted outcome in vivo was that a sustained interaction between

unphosphorylated Npl3, the polymerase and RNA, would result in

failure of RNAP II to release and terminate, and a more effective

competition with Rna15 for recognition of termination/polyA

signals, based on the assumption that both mechanisms are

coupled in vivo. This prediction was tested by RNA expression

analysis using whole genome tiled arrays consisting of 25-mer

reverse probes with 5 base pair spacing. RNA was extracted from

NPL3, npl3-120 and npl3-S411A strains, followed by synthesis of

labeled sense-strand cDNA and hybridization to the tiled arrays

[43]. The intensities of two independent experiments were used to

plot the ratio of mutant to wild-type.

Shown in Figure 5A–B are plots for three representative genes

(FBA1, MPE1 and TDH3). The ratio of mutant to wild-type

expression levels showed a clear difference at the 39 ends. For the

npl3-120 strain, a decrease in transcript levels near the 39end of the

genes was observed (Figure 5 and Figures S2, S3 and S4),
consistent with previous experiments showing that this mutation

Figure 4. Cka1 disrupts the ability of Npl3 to effectively compete for binding to an Rna15-preferred sequence. (A) Recombinant Npl3,
Rna15 and Cka1 were incubated with a radiolabeled RNA oligo (N4), UV cross-linked, and resolved in denaturing 10% SDS-PAGE gels. This RNA oligo
consists of an A-rich repeat (described in Materials and Methods), which is the preferred binding site for Rna15 and is commonly found upstream of
polyA sites [7]. Representative UV-cross-linking experiments are shown where increasing Cka1 is added to reactions containing Npl3 with Rna15. The
graph below each gel shows quantification for the average of three experiments (Npl3, white bars; Rna15, black bars). Binding levels were calculated
as fractions relative to a reaction containing the highest concentration of the individual RNA-bound protein (lane 1 for Npl3 and lane 2 for Rna15).
Control UV-crosslinking experiment where Cka1 has been added with or without ATP is also shown. Values represent total PhosphorImager units
(PIU). (B) Recombinant Npl3, Rna15 and Cka1 were incubated with a radiolabeled U/G/C-rich RNA oligo (N2), UV-cross-linked, and resolved in
denaturing 10% SDS-PAGE gels and quantified as described for (A). (C) Similar reactions were performed as described for Figure 1 for 0 and
30 minutes without (lane 1 and 5) or with 78 nM Npl3 (lanes 2–3 for 0 min time-point; and 6–7 for the 30 min time-point). 200 nM Rna15 was added
to the transcription reactions in the presence or absence of Npl3 (lanes 3–4 for 0 min time-point; and 7–8 for the 30 min time-point). The oligo(dC)-
template is represented next to the gel and the positions of the pause sites at stretches of Ts are indicated. Quantification of the transcription
reactions was performed as shown for Figure 2C.
doi:10.1371/journal.pone.0003273.g004
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leads to more efficient termination [11]. In contrast, the npl3-

S411A mutant had the opposite effect, showing increased

hybridization at the 39 end, indicating the presence of readthrough

transcription beyond the polyA site. A list of genes with a similar

transcription readthrough defect for the npl3-S411A strain and

additional sample plots are included in Table S2 and Figures
S2, S3 and S4. For reference, the plot corresponding to the ratio

of the rna15-2 vs. wild-type is included. The rna15-2 strain has a

well-characterized termination defect that results in readthrough

transcription [44–46]. At the FBA1 gene, changes were observed

in the npl3-S411A and rna15-2 mutants at both ends of the gene

denoting a terminating effect in the flanking MPE1 gene

(Figure 5A). For two of the examples shown (FBA1 and

MPE1), the ratio of rna15-2 strain was similar to that of the npl3-

S411A (Figure 5A). The PDX1 gene lying upstream of TDH3,

had a clear termination defect in the rna15-2 strain, but was

unaffected by the S411A or npl3-120 mutations (Figure 5B). This

suggests that the competition between Npl3 and Rna15 might be

dependent on cis-elements; i.e., strong polyA signals may override

the competition [12]. The npl3-S411A mutation resulted clearly in

readthrough transcription of .800 genes (Table S2). A scatter-

plot is provided for these genes using the mean value for the log2

ratio of npl3-S411A vs. wild-type for a 300 bp region within the

ORF and at the 39UTR of each gene (Figure 5C). An increase in

mean value of the probes was observed at the 39UTR. A scatter-

plot in Figure 5D was also generated for the total number of

genes in the Crick strand. The majority of these genes showed an

increase mean value at the 39UTR relative to the region within the

ORF for the npl3-S411A mutant (Figure 5D). Our results are

consistent with the involvement of Npl3 in a widely distributed

mechanism of transcription termination.

Discussion

Termination of transcription is a critical mechanistic step in

regulating gene expression, particularly for genes with multiple

polyadenylation sites. Here we report that the SR/hnRNP protein

Npl3 directly enhances the elongation rate of RNAP II. Although

Figure 5. Opposing effects in termination demonstrated using RNA-binding or phosphorylation defective npl3 alleles. RNA was
extracted from NPL3, npl3-120 and npl3-S411A and whole transcript sense strand cDNA was synthesized and used for hybridization to tiled arrays. The
hybridization signals for (A) FBA1, MPE1 and (B) TDH3 for two independent experiments were used to calculate the ratio of mutant vs. wild-type. The
top panel shows the ratio of rna15-2/RNA15; bottom panel shows the ratio of each npl3 mutant/NPL3; a solid line for npl3-120/NPL3, or dashed line for
npl3-S411A/NPL3. The corresponding position and orientation (Watson (W+), dashed bars, or Crick (C-) strand, black solid bars) of the genes is also
shown. (C–D) A 300 bp region at the beginning of each ORF (+50 to +350 relative to the start codon), was selected for comparison to the same size
region at the 39UTR (2100 to +200 relative to the stop codon) of the genes that showed increase readthrough for the npl3-S411A strain. The mean
value of the log2 ratio of npl3-S411A/NPL3 was calculated and graphed in a scatter plot. (D) The total number of genes corresponding to the Crick
strand were used to calculate the mean value of the same region described for (C).
doi:10.1371/journal.pone.0003273.g005
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co-transcriptional recruitment of eukaryotic RNA binding proteins

is now well established, to our knowledge a direct stimulation of

elongation by SR or hnRNP proteins has not been previously

reported. No such stimulation is seen with the RNA binding

protein Rna15 or the truncated Npl3 RRM domain, arguing that

the Npl3 effect is not due to non-specific interaction with RNA.

The data presented is consistent with a model where Npl3

functions in two ways: it directly interacts with phosphorylated

serine 2 of the polymerase CTD to promote elongation and at the

same time binds RNA to antagonize binding of the polyA/

termination factor Rna15 (Figure 6) [9,11]. This combination of

activities resembles the l-related phage 82 anti-terminator Q82

that, together with the NusA protein, decreases pausing of the

bacterial RNA polymerase and protects the RNA transcript from

termination factors [47].

Phosphorylation of Npl3 reduces its interaction with RNAP II and

RNA. It is interesting to speculate that the targeted phosphorylation

of Npl3 at 39 ends of genes might help trigger termination. This

model is supported by chromatin immunoprecipitation experiments

where crosslinking of Npl3 was observed to decrease downstream of

the polyA site [11], by the expression analysis presented here where

mutations at S411 or in the second RRM of Npl3 were shown to

specifically affect transcript signals at 39 ends of genes, and by UV-

crosslinking where the Cka1 phosphorylation decreased Npl3’s

competition for binding to polyA signals. In addition, a recent report

by Lund et al suggests that phosphorylation is involved the

autoregulation of the NPL3 transcript [32]. The cytosolic kinase

Sky1 phosphorylates Npl3 [8]. Thus far, no other kinase had been

linked to the phosphorylation of Npl3. CK2 is the only kinase

reported to phosphorylate proteins involved in mRNA 39 end

formation. Phosphorylation of 39 end processing factors Pta1 and

Fip1 by CK2 affects their ability to cleave and polyadenylate the

mRNA [24]. Therefore, the phosphorylation of Npl3 by CK2 shown

here would support a targeted phosphorylation at the 39 end. The

existence of nuclear and cytosolic kinases that phosphorylate an

mRNA shuttling protein at an identical residue suggests that the

same phosphorylation switch, which functions by modulating

protein-protein and -RNA interactions can be activated in different

compartments of the cell. It remains to be determined what other

kinases operate at the 39 end or whether additional transcription-

associated kinases can control the phosphorylation state of Npl3 to

regulate its activity at sites of transcription.

The model postulates several events that would affect assembly

of the polyA/termination machinery at the 39 end (Figure 6).

Figure 6. Two activities of Npl3 promote elongation. Npl3 directly stimulates the elongation rate of RNAP II by physically interacting with
phospho-Ser 2 of the CTD and the RNA. Phosphorylation regulates Npl3’s interaction with RNAP II and RNA, and promotes binding of
polyadenylation/termination factors. Binding of Npl3 to the nascent RNA may stabilize interactions between CTD-RNAP II and the RNA. Npl3, white
circle; Rna15, small black diamond; CFI, large black diamond; RNAPII, grey shaded oval.
doi:10.1371/journal.pone.0003273.g006
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First, upon dissociation of Npl3, the elongation rate of RNAP II

would decrease to enhance the window of opportunity for polyA

factors to bind to signals in the nascent RNA. It is known that the

rate of transcription elongation can affect alternative splicing

decisions [48,49], so it is reasonable to assume that a similar

relationship can exist between elongation rate and polyadenyla-

tion. Interestingly, the elongation promoting activity of Npl3 is

weaker in an RNA binding mutant and is inhibited by Rna15,

which suggests that binding to the RNA transcript by Npl3 is

important for stimulating RNAP II. Binding of Npl3 to the nascent

transcript might stabilize interactions between the CTD, RNAP II

and the RNA and prevent premature 39 end formation.

Accordingly, interactions between the CTD of the mammalian

RNAP II with the RNA were shown to be critical to suppress

premature termination [50]. Additionally, binding of Npl3 to the

RNA may prevent the formation of arrest-inducing secondary

structures, or suppress pausing at cryptic polyA sites.

A second event upon dissociation of Npl3 would be a shift in the

balance of the competition between Npl3 and Rna14/15 for

RNA-binding. Several lines of evidence have shown that this

competition is important for proper polyadenylation. Transcrip-

tion readthrough of weakened polyA signals can be suppressed by

mutation/deletion of Npl3 or Cbp20/80, or by overexpression of

the polyadenylation factors Rna14 or Hrp1 [11–13]. This

competition between Npl3 and Rna15 can be reconstituted in

vitro [12], and here we show that this competition can be shifted by

the CK2 phosphorylation of Npl3.

There are many examples of SR proteins being regulated by

phosphorylation. In the case of Srp40, phosphorylation of the RS

domain is required for sequence-specific RNA binding [51]. For

another RS protein, ASF/SF2, phosphorylation enhances contacts

essential for splicing [8,30,52–55]. The identification by mass

spectrometry of multiple phosphorylated serines in vivo and in vitro

suggests that Npl3 is hyperphosphorylated at the RRM and

RGG/RS domains. In the case of Npl3-S411, its phosphorylation

decreases crosslinking of the protein to RNA [8](this study), and

also functions in autoregulation of the NPL3 transcript [32]. Our

study suggests that CK2 is required for the phosphorylation of

S411, and we also show that this residue appears to affect Npl3’s

interaction with RNAP II. Thus, S411 participates in the binding

for both RNA and RNAP II.

While this manuscript was in preparation Lund et al reported

of an effect of Npl3 in autoregulation of its own transcript [32].

In this study, phosphorylation of Npl3-S411 was observed to

increase termination efficiency, thus modulating its own protein

levels. Our expression analysis suggests that the termination of

NPL3 represents a unique case likely shared by a limited number

of genes. Previous work by Steinmetz and co-workers suggested

that the choice of termination sites at the NPL3 locus involved a

Sen1 anti-termination pathway [56]. In addition, the phosphor-

ylation decrease observed for S411 in the cka1 alleles reported in

this study did not significantly affect the steady state levels of

Npl3, as observed by Lund and co-workers. Therefore, we

believe that the autoregulation of Npl3 is likely the result of an

activity that is distinct from that mediated by CK2. At this time,

the mechanism by which Npl3 functions in its autoregulation by

allowing the selection of an alternative termination site remains

unresolved.

Our study suggests that Npl3 affects elongation and termination

in a high percentage of genes (,30%) making this a widely used

mechanism in yeast that is likely to function in higher eukaryotes.

We predict that metazoan SR-proteins with known functions in

hnRNP formation, splicing and mRNA 39end processing might

also be able to affect elongation in a manner similar to Npl3.

Materials and Methods

Plasmids and Strains
Plasmids pSBEThis7-NPL3 and pSBEThis7-npl3-120 were

described previously [11]. For plasmids pSBEThis7-npl3-S411A, -

npl3-S411D, and -npl3-S411E, the ORF of NPL3 was amplified by

PCR using the oligo: 59-CATGCCATGGCTGAAGCTCAAGA-

AACTCACG-39 and 59- CGCGGATCCGCTTACCTGGTTG-

GTGCTCTTTCACG-39 for the S411A; or 59- CGCGGATC-

CGCTTACCTGGTTGGTTCTCTTTCACG-39 for the

S411D; and 59-CGCGGATCCGCTTACCTGGTTGGGTC-

TCTTTCACG-39 for the S411E substitution, and cloned into

BamHI/NcoI site of pSBEThis7. Plasmid pET21b-CKA1-His6 was

described previously [24]. DNA template pAdGR220 used for

transcription assays was described previously [28]. Yeast strains

used are shown in Table S1. The npl3-S411A strain was kindly

provided by M. Lund (UCSF).

Protein Purifications
E. coli strain Rosetta (DE3) or BL21(DE3) were transformed

with pSBEThis7-npl3-S411A, -S411D, -S411E, pET21b-RNA15 or

-CKA1-His6 and purified as described previously [11]. Wild-type

RNAP II was purified from yeast as described previously [27].

Pull-down and immunoprecipitation assays
Npl3 peptides were conjugated to resin using the Carboxylink

Immobilization Kit (Pierce). Peptides containing the amino acid

sequences: GGYGGYSRGGYGGY (RGG/RS1), RGGYDS-

PRGGY (RGG/RS2), YRTRDAPRERSPTR (RGG/RS3), or

YRTRDAPRERpSPTR (RGG/RS3p) were synthesized (BCMP/

HMS Biopolymers Lab). Peptides were normalized by OD

280nm. 100 ng of purified RNAP II (A. Ponticelli) was incubated

with each of the conjugated peptides overnight at 4uC in IPP-150

buffer (10 mM Tris [pH 7.9], 150 mM NaCl, 1 mM MgOAc,

2 mM CaCl2, 0.1% NP-40, 1 mM DTT with protease inhibitors:

1 mg/ml of aprotinin, leupeptin, antipain and pepstatin-A), and

washed using buffer IPP-150 plus 0.01% SDS (sodium dodecyl

sulfate) [24]. Amino-terminal biotinylated CTD peptides were

previously described [57]. For immunoprecipitations, IgM agarose

(Sigma) was conjugated to a His antibody. 100 ng of purified

RNAP II was incubated with recombinant His-Npl3, -S411A,

-S411D or -S411E for 2 hours at 4uC in IPP-150 buffer and

washed as described above. Alternatively, 5 ml of streptavidin-

coated magnetic beads (Dynal) were used to bind 1 mg of a CTD

peptide repeat (YSPTSPS) containing unphosphorylated, Ser 2,

Ser 5 or Ser 2/Ser 5 phosphorylated peptides. 100 ng of

recombinant Npl3 was incubated with each CTD peptide and

500 ng Bovine Serum Albumin (BSA), as described previously

[57]. For immunoprecipitation of endogenous Npl3 for mass

spectrometry analysis, Protein A (Sigma) was conjugated to

polyclonal rabbit anti-Npl3 (kindly provided by Lithgow, La

Trobe University, Australia) and incubated with 5 mg of whole

cell extracts prepared as described previously [58]. All protein was

eluted by boiling in the presence of SDS-PAGE loading buffer and

resolved using 8% SDS-PAGE. Immunoblotting was done using

standard methods using polyclonal mouse anti-CTD (8WG16).

Oligo(dC)-tailed template transcription assays
Transcription reactions were performed as described previously

[28]. Briefly, reactions were carried out at room temperature in

the presence of 20 mM HEPES-KOH, pH 7.9, 20 mM Tris-HCl,

pH 7.9, 8 mM MgOAc, 100 mM KOAc, 1 mM DTT, 0.5 mg/ml

BSA, 3% (vol/vol) glycerol, 8 U of RNasin, 100 ng template DNA

and 100 ng RNAP II. Pulse was carried out by the addition of
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nucleotides (50 mM ATP, 50 mM GTP, 2 mM CTP, and 10 mCi

[a-32P] CTP (3000Ci/mmol), followed by incubation for 30 min-

utes. Chase was performed by the addition of 1 mM UTP and

50 mM unlabeled CTP [28]. Reactions were stopped by the

addition of 10 mM Tris-HCl, pH 7.2, 0.5 mM EDTA and 0.3 M

NaCl, 0.2% SDS and 20 mg proteinase K. The reaction mixture

was extracted once with phenol-chloroform-isoamyl alcohol.

Transcripts were resolved on an 8% polyacrylamide–7 M urea

gel and then visualized using a PhosphorImager.

Cka1 Phosphorylation and Phosphatase in vitro Assays
500 ng of recombinant Npl3, Npl3-S411A, -S411D, -S411E

and Rna15 were phosphorylated in kinase buffer (20 mM HEPES-

KOH, pH 7.0, 7.5 mM MgOAc, 100 mM KOAc, 2 mM DTT,

20% glycerol) at 30uC for 60 min with [c-32P] –ATP (or cold ATP

for MS analysis) and 500 ng recombinant Cka1-His6. For protein

phosphatase assays, reactions were carried out in 16 Lambda

Phosphatase (l-PPase) reaction buffer [13] with 500 ng of His-

Npl3 and titrated (200–600 U) Lambda Protein Phosphatase [13].

These were then incubated at 30uC for 60 min and stopped by the

addition of SDS sample buffer. Proteins were subjected to sodium

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)

and detected using a PhosphorImager.

Mass spectrometry analysis
For identification of endogenous phosphorylated peptides in

Npl3, the proteinwas immunoprecipitated from whole cell

extracts. This in vivo phosphorylated Npl3 and the in vitro

phosphorylated protein were excised from Coomassie-stained gels,

digested with trypsin, and analyzed by LC-MS/MS in a linear ion

trap (LTQ) mass spectrometer. MS/MS spectra were searched

against the S. cerevisiae protein database.

Protein analysis
For the preparation of yeast whole-cell extracts, 10 ml of cells

were grown overnight, inoculated to an optical density (600 nm) of

1.5, allowed to grow at the permissive (25uC) or non-permissive

(37uC) temperature for 2 hours, and pellet. Glass beads were used

to disrupt cells in lysis buffer (20 mM HEPES [pH 7.6], 200 mM

potassium acetate [KOAc], 10% glycerol, 1 mM EDTA) supple-

mented with protease inhibitors (1 mM phenylmethylsulfonyl

fluoride and 1 mg/ml of aprotinin, leupeptin, antipain and

pepstatin-A). Equal amounts of protein were then resolved using

SDS-PAGE. Immunoblotting was performed using standard

methods with polyclonal rabbit anti-phosphorylated Npl3 (kindly

provided by C. Guthrie, UCSF) and anti-Npl3. Polyclonal rabbit

anti-Rpb3 was from Neoclone, Horseradish peroxidase-conjugat-

ed polyclonal goat anti-rabbit was from SouthernBiotech, and goat

anti-mouse HRP antibodies were from Jackson ImmunoResearch

Laboratories.

UV cross-linking assays
UV cross-linking experiments were performed as described

previously [12]. RNA oligos containing the sequences: 59-

UAAUAAUGACUAUAUAUG-39 (N4) or 59-UUGCCUG-

GUUGCCUGGUU-39 (N2) were synthesized (Invitrogen), and

[a-32P]ATP 59 end-labeled using T4 Polynucleotide Kinase

(Invitrogen) as described previously [33]. RNA (,100,000 cpm)

was mixed with recombinant Npl3, Rna15, and Cka1 in kinase

buffer (200 mM HEPES-KOH, pH 7.0, 75 mM MgOAc, 1 M

KOAc, 20 mM DTT, 20% glycerol) with 200 mM ATP. All

reactions were incubated for 20 minutes at room temperature and

then UV irradiated in an Ultra-lum/UVC-515 ultraviolet multi-

linker set at 1800 mJ (6100). Loading buffer was added and

reactions were resolved on a 10% SDS-polyacrylamide gel (30:0.8

acrylamide:bis), dried and exposed to a PhosphorImager screen.

Expression analysis with tiled arrays
RNA for NPL3, npl3-120, npl3-S411A and rna15-2 was extracted

as described previously [59]. Sense RNA was synthesized using

whole transcript sense target labeling assay (Affymetrix, HMS

Biopolymers Facility), and hybridized to S. cerevisiae Tiling 1.0R

Arrays, and intensities were analyzed using the Tiling Analysis

Software (TAS) (https://www.affymetrix.com/support/learning/

tiling_analysis/tiling_analysis_sw_tutorial.affx). Representative

graphs were generated using the R software [60]. The microarray

datasets in Figure 5 have been deposited in the GEO database

(http://www.ncbi.nlm.nih.gov/projects/geo/) under accession

number GSE12677.

Supporting Information

Table S1 Yeast strains used in this study.

Found at: doi:10.1371/journal.pone.0003273.s001 (0.04 MB DOC)

Table S2 Genes with increased Log2 Ratio at their 39UTR.

Found at: doi:10.1371/journal.pone.0003273.s002 (1.47 MB DOC)

Figure S1 Distribution of the log2 ratios of the peptide libraries

phosphorylated in vitro with Cka1 and measured by MS. Kinase

assays utilizing peptide libraries representing acidic (L[LE]D-

[KDN]D[DA][LE][ST]D[EL]E[LEN][EL]K) and proline-direct-

ed ([KP]L[VKE]L[AP][NE][ST]P[KI][LKP]VV[KL]) motifs

were performed. 20 mg of the non-phosphorylated libraries were

used, and 0.2 mg of the heavy phosphorylated standard library was

added upon reaction quenching with 0.15 % TFA. Reactions were

desalted in a tC18 SepPak and enriched for phosphopeptides with

PhosSelect IMAC resin (Sigma). Samples were desalted again

prior to injection into a capillary (125 mm618 cm) C18 column

and analyzed by LC-MS/MS in a LTQ-Orbitrap mass spectrom-

eter using a 60 minute-gradient and data dependent TOP10

method. MS/MS spectra were searched against a database

containing the sequences for all the peptides in the libraries and

all the sequences from E. coli protein sequence database (used for

distraction purposes) in the forward and reverse directions. Results

were filtered to ,1% false positives and peptides were further

quantified using the VistaQUANT algorithm.

Found at: doi:10.1371/journal.pone.0003273.s003 (0.07 MB TIF)

Figure S2 Opposing effects in termination demonstrated using

RNA-binding or phosphorylation defective npl3 alleles. RNA was

extracted from NPL3, npl3-120 and npl3-S411A and whole

transcript sense strand cDNA was synthesized and used for

hybridization to tiled arrays. Shown are the hybridization signals

for twelve genes. The three top panels represent the individual

expression intensities for each strain, with the black and gray dotted

lines showing two independent experiments. The bottom panel

shows the ratio of each mutant vs. wild-type; a solid line for npl3-120

vs. NPL3, or dashed line for npl3-S411A vs. NPL3, and the

corresponding position and orientation (Watson (W+), shown for

reference only, or Crick (C-) strand) of the genes (black solid bars).

Found at: doi:10.1371/journal.pone.0003273.s004 (0.17 MB TIF)

Figure S3 Opposing effects in termination demonstrated using

RNA-binding or phosphorylation defective npl3 alleles. RNA was

extracted from NPL3, npl3-120 and npl3-S411A and whole

transcript sense strand cDNA was synthesized and used for

hybridization to tiled arrays. Shown are the hybridization signals

for twelve genes. The three top panels represent the individual
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expression intensities for each strain, with the black and gray dotted

lines showing two independent experiments. The bottom panel

shows the ratio of each mutant vs. wild-type; a solid line for npl3-120

vs. NPL3, or dashed line for npl3-S411A vs. NPL3, and the

corresponding position and orientation (Watson (W+), shown for

reference only, or Crick (C-) strand) of the genes (black solid bars).

Found at: doi:10.1371/journal.pone.0003273.s005 (0.18 MB TIF)

Figure S4 Opposing effects in termination demonstrated using

RNA-binding or phosphorylation defective npl3 alleles. RNA was

extracted from NPL3, npl3-120 and npl3-S411A and whole

transcript sense strand cDNA was synthesized and used for

hybridization to tiled arrays. Shown are the hybridization signals

for twelve genes. The three top panels represent the individual

expression intensities for each strain, with the black and gray dotted

lines showing two independent experiments. The bottom panel

shows the ratio of each mutant vs. wild-type; a solid line for npl3-120

vs. NPL3, or dashed line for npl3-S411A vs. NPL3, and the

corresponding position and orientation (Watson (W+), shown for

reference only, or Crick (C-) strand) of the genes (black solid bars).

Found at: doi:10.1371/journal.pone.0003273.s006 (0.17 MB TIF)
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